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Abstract. Polymeric nematic liquid crystals crosslinked into elastomers (solid liquid crys-
tals)

are
shown to display novel and complex elasticity. The internal (nematic) direction can

experience a barrier to its rotation which couples to standard elasticity. We predict a new

phenomena unique to anisotropic rubber
a

"soft elastic response"; uniaxial strain is devel-

oped without resistance below
a

critical deformation J° due to the relaxation of related shear

strains and reorientation of the nematic director. We discuss possible experiments to verify this

prediction and interpret the existing experimental observation in terms of the concept of "soft

elasticity".

1. Introduction.

Anisotropic (liquid crystalline) elastomers have attracted a considerable attention in recent

years due to their unique properties. de Gennes [I] first recognized that the most dramatic

effect of molecular shape change coupling to orientational order would talce place in these

materials. Like conventional elastomers such "solid liquid crystals" can sustain very large
deformations causing molecular extension and orientation, but conversely spontaneous align-

ment, or a nematic phase induced by applied stress, can lead to spontaneous distortion or a

jump in a stress-strain relation. There exist molecular models [2, 3] explaining such effects as

mechanical critical points, memory of crosslinking, shifts in phase equilibria and stress-strain

relations. At the heart of these descriptions is that nematic and hence anisotropic chains lead to

a straightforward modification of the conventional Gaussian elastomer theory. The theory can

be further developed, as in conventional networks, to account for junction point fluctuations

[3] and other effects, but to understand the startling new effects visible in nematic elastomers

these elaborations are not necessary.

Several important experiments have been performed and most basic effects have been ob-

served, for instance shifts in the phase transition temperatures with both crosslinking density
and crosslinking state ii-e- nematic or isotropic) [4], unusual stress-strain relations in the region
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of the N-I transition for the elastomer, strong deviations from classical stress-optical laws and

mechanical influences on the phase transition itself [5].
We continue here an investigation of the complex elasticity of such elastomers deep in the

nematic phase, in particular when the principal stress-strain axes are not coincident with

the initial nematic direction. A linear, continuum picture has been sketched by de Gennes

[6] who described the anisotropy of such media, the coupling of strain to nematic order and

the resistance to rotation. In recent publications ii, 8] we have reported results, showing
that this rotational resistance is extremely subtle and is dependent on geometrical constraints.

Molecular theory [8], in contrast to linear continuum theory, can describe the non-linear regimes
where the discontinuous transitions are predicted to occur. The non-linear analysis within the

framework of a molecular theory of Gaussian chains and anisotropic rubber elasticity, presented
in this paper, results in a completely unexpected conclusion that at straining with minimal

constraints on the overall sample shape, nematic rubber can extend with little or no resistance,
I-e- with the imposition of little stress.

The impetus for this theory comes from experiments on nematic monodomains. The first

experiment on
(microscopic) monodomains of elastomers was carried out by Zentel [fl] where

reorientation of the director under applied electric fields was seen under some circumstances

but not under others. Although not involving imposed stresses or strains, these experiments are

crucial to our understanding of nematic rubber elasticity. Freely suspended samples respond
readily with shape changes to modest electric fields. In contrast, samples constrained by

electrodes do not change their shape in response to similar fields. Evidently the response, when

all or most components of the distortion I are free to relax, is in some sense soft. It hardens

to values conventionally found in elastomers when constraints are applied. We examine this

anomalous electro-mechanical response in another paper. However these experiments appear

to support the main conclusion of the present paper, namely that elastic deformations can

occur without resistance in certain geometries.
Recently large nematic monodomain samples have become available in practice. Such single

crystal samples can be made by crosslinking in a field oriented nematic melt [10], or alterna-

tively by two-stage crosslinking and stressing the intermediate state [11]. Large monodomain

elastomers lend themselves to the mechanical experiments corresponding to the theory de-

scribed in [8]. Already Mitchell et al. [12] have performed applied strain measurements on

monodomain rubbers far below their N-I transition. With stress applied perpendicular to the

original director they find the predicted new mechanical transition where at a critical strain

the director jumps by 7r/2 to the principal applied stress direction.

All particular expressions involved are presented in terms of intrinsic anisotropy of the poly-

mer chains that underly the network before deformation, I( II(. Theory [2, 3, 8] shows simply
that an anisotropic network, heated to the isotropic state, will suffer a spontaneous shape
change lc

=
ii( II( )~/3 on cooling back to the initial state. This ratio I( Ii [ is thus an observ-

able quantity [4] and therefore the current analysis does not involve any model parameter at

all. Since we shall find calculations of some algebraic complexity, we first describe the theory in

general terms, including the scheme of imposition of strain and the response of chains, stating
and interpreting the key results. The detailed derivations will follow in later sections so that

they do not mask an understanding of th'i underlying effects we shall find.

FORMULATION OF THE THEORY. We should like to address the interested reader to our

previous paper [8] on this subject, where the detailed formulation of the theory is given and

all relevant approximations are discussed in some detail. Here we shall briefly recall the main

concepts and equations used.

We use the following general scheme for notation. We use a superscript ° to denote quantities
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in initial (undeformed) states. Hence the initial nematic director is denoted by n°, which

evolves under a deformation to n. To describe tensors we use either suffix notation or a double

underscore e-g- I % lq. When describing uniaxial tensors, subscripts
i

and
jj

are used to

differentiate between the two distinct axes. In their principal frame, the
jj

component is taken

to lie along the I axis of that frame. As an example, the tensor used to describe the anisotropic

step length characterizing the network chains in the initial (undeformed) state is 1°, which has

eigenvalues I( and I[ in its principal frame. With this tensor the average square form of the

networking points positions ii-e- end-to-end distance of polymer strands) is (R)R))
=

)Ll)~
where L is the contour length of the network strand. The effective step lengths of the random

walk, and thus the overall average shape, are functions of the nematic order parameter Q~j.
Uniaxial nematic order Qq is characterized by both a magnitude Q and (most importantly)

the current orientation of the director
n.

We employ the alfine deformation assumption, an assumption that pervades network theory.
Thus the current network span is defined as R~

=

lqR) with lq the macroscopic deformation

of the whole block of rubber. We consider deformations ~q imposed with respect to the initial

crosslinking state. Strictly speaking, if the temperature has been changed since the crosslinking,
the initial sample shape before deformation is determined by a spontaneous strain tensor ~

This requires a trivial re-definition of the deformation ~q, which has been been discussed~t

some length in [8].

Since the shear modulus of rubber is around 10~ N/m~ and that for the volume change is

typically 10~° N/m~, deformations of elastomers are at constant volume (to within 10~~
accu-

racy), that is: Det[~q]
=

I. Taking the usual quenched average F~i/kBT
=

-(lnP(R))p~~R°)

one obtains for the elastic free energy per network strand [8]:

~~
=

~[1° ~~' l~~ ~]-ln
~~~~~ ~l(1)

~~~ ~

~~i~~

where l~ is the anisotropic step length tensor after the deformation, which in general may

differ from I( in both magnitude and orientation of its principal values [8].

We are
interested here in the case where an imposed deformation J has principal axes not

coincident with n°, thereby creating an equilibrium state with n at some angle with respect

to n°. We shall determine as a function of the magnitude of deformation and the orientation

of the frame of the imposed deformation ~q with respect to n°. To do this we shall minimize

F~i with respect to any free components of ~ and with respect to Q and
@,

which characterize

the underlying nematic order Q.

The most unconstrained deformation is when the strain ~ is imposed in one direction u with

all other strains free to relax. This is equivalent to imposing a uniaxial stress on a sample at an

arbitrary angle a to the original director, that is, along u of figure I.. We find the astonishing
result that n rotates with increasing J but that the free energy does not rise until n lies along
the principal direction u

of J. Thereafter the free energy rises as for a classical isotropic
elastomer starting its deformation at this point. Variants of this imposed stress, where one of

the shear strains in the plane spanned by the stress and n° is fixed at zero are treated in our

previous paper [8] and yield very different, "hard response", results albeit with discontinuous

transitions.
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Fig. I. Alignment geometry in the (x, z) plane for
an

unconstrained extension nor and n are
initial

and current directors respectively; unit vector u
defines the principal axes of deformation.

2. Results.

Henceforth we use a coordinate system (z, x, y) based on u e I rotated by n about j from the

original (principal) frame of1°, figure I.. The tensors 1° and l~~ have to be rotated by angles
a

and A
= a from their principal frames. One can recognize the relevant plane that includes

the initial director n°, current director n and the direction of strain, u.

If one applies a stress a
normal to one face of a body, along the I direction of a coordinate

system at an angle a to n°, the distortion ~zz relaxes to a particular value, say ~. All the other

deformations in ~ also relax. On general grounds of symmetry we expect that all out-of-plane

components of strain, ~y~
=

~~y
=

~yz
=

lzy
=

0. Given the misalignment (by angle a) of

n° and the principal direction of stress a, there will be non-trivial values of ~~~, ~yy, ~~z and

~z~. Since in tensors the )-direction has no coupling with this 2 I plane, in expressions that

follow we can use the yy components and (2 x 2) £ I tensors. Such second rank (2 x 2)
tensors, for instance 1°, will be characterized by their mean 1°

= (1(
+1[)/2 and anisotropy

b1°
=

ii( -1[ /2 of their principal values and similarly for l~~. We consider the strain ~zz % ~

to be imposed. We must minimize Fei with respect to the four relaxing deformations while

keeping density constant, that is Det[ ii
=

I
=

lyy(l~~l l~zlz~). Post hoc one can then

find the stress required to impose the deformation 1:

~~~~ l~(I)lyy(1) ~~~~ ~~~

With such great freedom to relax this is a problem of some algebraic complexity which we

analyze in detail in the following section. The remarkable result obtained is that the elastomer,

with its initial director at general angle a to u, deforms at constant free energy 2Fei/kBT
=

3

until n has rotated through angle a from n° to the direction of
u.

Thereafter the energy rises

and a finite stress is required in order to create further strain.

We return to equation (I) with matrices 1° and l~~ defined in the ix, z) plane, by elements

a, b, c and d, e, f:

These oefficients, a, b, c
and

d, e, f, epend on the angles a and A = a - @.
trices
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and lp~ respectively. With these definitions Fei takes the form:

~~~
=

adl~ + bet(~ + ael(~ + bdl(~ + 2afll~z + 2cdllz~ + (4)
kBT

2cfll~~ + 2cel~~l~z + 2bfl~~lz~ + 2cfl~zlz~ + rl(~

where r = I( /ly. A solution minimizing the free energy is quite simple (see the following section

for details). The relaxing strains attain the following values:

c
f be ~R

~~
b

~
'

~~~
e

~' ~"
r

fi '

c f
r

in 1
~~~

be
~ ~

be fi ~~~

The free energy becomes a function of the combination (be) alone,

4 be
~

l ~~~

Through (be this is a function of which must be minimized to find the equilibrium orientation

of the nematic director. On minimization one obtains be
=

l~.

When the system adopts the optimal angle given by this condition be
=

l~, the free energy
is (2Fei/kBT)~;~

=
3. This is exactly the energy per strand of an undistorted network! Thus

the energy of the network does not rise as an extension I is imposed in a particular direction,
all other distortions being permitted to relax.

Writing out the condition be
=

l~ for the angle in full,

l~
=

II blo cos 2a)(l~~ bl~~
cos 2A)

,

ii)

shows that this solution is only valid for I
=

I if the network anisotropy vanishes (blo
=

bl~~
=

0), that is, these effects are limited to anisotropic networks. The optimal value of A
= a

is obtained from ii)

cos 2A
=

~~~ ~
~ ~~ ~~~~ ~ ~) (l~ I)

cos 2a)

(1
)) lilt + i) jij i) cos

2aj
18)

where we have used the definitions of [, etc. from above, and taken ratios I( Ii( in order to

express the result in terms of if
= I( Ii(, the cube of the observed spontaneous distortion on

cooling the rubber from the isotropic to the nematic state.

The constant free energy solution persists until
n is along the extension direction, that is

A
=

o, and the I.h.s. of the equation (8) reaches its maximum value of I. This is achieved at

a critical strain I* la) given by:

I*(a)~
=

[l( + I (I( I) cos 2n) (9)
2

When I exceeds I*, the solution of dF/dA
=

0 gives the minimum free energy at 9
= a,

corresponding to n parallel to u.
The free energy for I > I* takes the form

@ l*2
~ ~

l
~~~~

This branch of the free energy has a minimum of 3 at I
=

I* and behaves like a classical

elastomer [with
an apparent natural shape of I

=
I*(a)] for I > I* see figure 2.
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Fig. 2. The elastic free energy (in )kBT units) per network strand plotted against a distortion J

imposed at an
angle

a =
~/2 to the original director. The free energy is flat [branch (a)] for I < J < J*

with the critical J* depending
on

the misorientation
o

(see text). For J > J* the free energy increases

as
for

a
classical rubber about the point J

=
I [branch (b)].

INTERPRETATION. It is a clear expectation [6j that crosslinking chains into a network while

they are anisotropic in shape will create a memory of this anisotropy and its direction. Our

calculations [8] partially affirm this expectation in that there is sometimes a resistance to

director rotation. Recall that the direction of chain anisotropy is related to the nematic director

and that in a rubber macroscopic deformation is coupled with the chain shape. What is

unexpected is the existence of initial deformations at which there are discontinuities in the

director, and that under some circumstances the rotational barrier does not exist. These rather

different phenomena suggest that the ideas of rotational barriers arising from the constraint of

attachment to other chains is incomplete. An additional constraint is that of incompressibility

so that changes of shape in certain direction impose shape changes in others. The more

constrained the deformation, the less freedom a chain has to adopt a high entropy, low free

energy distribution. This is seen in the constrained geometries [8] where the energy rises when

chains are distorted in a direction different to their principal direction. At some critical strain

J a new director can be found where relatively more freedom for the chain exists. The chains

and hence the director and extensions thus jump. The "rotational barrier" is thus dependent

on the geometrical constraints put upon other components of the chain shape tensor.

In the unconstrained case considered here the great freedom of a chain, even with the ever-

present incompressibility constraint, means that its initially anisotropic Gaussian distribution

can be distorted at no cost to the entropy, and the free energy does not rise as the director

(the signature of this anisotropic distribution) rotates. In the next section we prove that in

this "soft elasticity" regime effects are purely entropic.

It should be emphasized that this unusual result is not simply that we have a body rotation

about the j axis (the form of J given above is different). It would seem that with sufficient

freedom to relax, macroscopic distortions
can be achieved by rotating anisotropic chains until

they are
aligned with u.

Thereafter elastic distortions at microscopic level, involving entropy

and nematjc order changes, must occur and the energy rises accordingly. Evidently such an

~~~~t c~nceflation of any resistance to an external stress (in a certain region of deformations
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1 < 1*) is the feature of this theory specifically based on Gaussian chains and alfine deforma-

tions approximations. In practice one would observe a small resistance caused by other effects

in more sophisticated models of rubber elasticity, involving entanglements and correlations,
probably some resistance will be created. Experimental evidence from nematic elastomers sub-

jected to electric fields suggests that these effects are indeed small. This is an observation of

central importance to models of conventional elastomers, where the complications of entan-

glements and correlations have been discussed for over 50 years. Thus our prediction offers a

method of examining these effects in isolation since the crossover at I
=

I*, figure 2., should

be clearly detectable by experiment.

3. Calculations.

We present here more technical details omitted in the previous section. At the same time we

shall discuss when results are exact and when they involve approximations.
Rotating 1° and l~~ into the frame of I gives explicit forms for the elements a f:

a =
1° + b1°

cos 2a b
=

1° b1°
cos 2n c =

-b1° sin 2a

d
=

I-I + bl~~
cos 2A e =

I-I bl~~
cos 2A f

=

-bl~~ sin 2A

r =
I(/ly (11)

We demonstrate that when only one strain is fixed (namely lzz
=

I), resulting from an ap-
plied normal stress in the I direction, the elastomer is "soft". With I set, the other strains relax

to minimize the free energy. Setting the derivatives of (4) with respect to the unconstrained

variables equal to zero yields:

bel~~ + cfl + cel~z + bflz~ Alyyl
=

0 (12)

ael~z + ail + cel~~ + cflz~ + Alyylzx
=

0 (13)

bdlz~ + cdl + bfl~~ + cfl~z + Alyyl~z
=

0 (14)

rlyy A(ll~~ l~zlz~)
=

0 (15)

The constraint Det[I]
=

I has been included in the free energy with a Lagrange multiplier:
A[lyy(l~~~ l~zlz7) -1]. Inserting (12) into (13) and (14) and solving for lz~ gives a con-

dition yielding two solutions

(D°D (Alyy)~) (lz~ +
~)

=
0 (16)

b

where D° and D are the determinants of1° and l~~. D°
=

ab c~, D
=

de f~. Leaving for

the moment the solution containing the determinants (first bracket),
we obtain for l~z, lz~

and l~~

lz~
=

)
(17)

l~z
=

)
(18)

l~~
=

~
(Alyy + cf) (19)

Inserting (17-19) in (is) then gives

A~
"

~
(2°)
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Taking the (physically relevant) positive root of this solution and using the constraint condition

Det[I]
=

i gives for lyy

>vv -
ll~l

~~~ fi
121)

and hence for l~~

~"
~~

~
ie)~~~ /j

~~~~

Solutions iii), (18), (21) and (22) correspond to is) and minimization with respect to 9 remains

to be done. Returning the optimized distortions to Fei one obtains

fi
=

~~l~ +
~~~)~~~~ (23)

B e

where, recall, D°
=

Det[1°]
=

ab c~ and D
=

Det[l~~]
=

de f~.
This expression is valid for general director orientation 9 (that is A

= a
9) and order

parameter Q (which enter through the elements of l~~ ). We should minimize with respect to

all these quantities, which define the new nematic order of the distorted state.

If we adopt for a moment the simplifying assumption that I is merely a rotated version of1°,
that is only n in the order parameter Q changes direction but the magnitude Q is unchanged,

then (23) is only a function of A and, furthermore, D°D
=

I and r =
I. We then obtain

the result (6) of the previous section. We must minimize (6) with respect to change in the

direction of n, that is angle 9 or equivalently A
=

9
a.

dF/dA simplifies to:

~~
=

~~ ~~~~~
=

~~~~~ (- ~~
+

=
0 (24)

dA d(be) dA dA (be)~ /&l

Setting the final bracket equal to zero gives the minimization condition (be)
=

l~ used for

I < I*. When I exceeds the critical value I*, the solution of dF/dA
=

0 derives from

d(be) /dA
=

0 in (24). It is simple to check that this is only satisfied by 9
= a or 9

= a 7r/2.
It might be argued that the avoidance of self-consistency (our failure to minimize with respect

to order parameter Q) could nullify the "soft elasticity" result. In fact the result 2Fei/kBT
=

3

is already the free energy of an undistorted network with its nematic energy at a minimum.

There can be no reduction below this value (otherwise mechanical instability ensues!) and

hence there is actually no need to minimize with respect to Q and it remains at its formation

value, Q° say. After I exceeds I* this statement is no longer true and there may be further

falls in Fei below (10) on optimizing over Q. This effect, however, is hardly relevant as it goes

on the background of a standard rubber elasticity response. Since for I < I*, F~e~ is already

at an optimal Q
"

Q° then changes as I exceeds I* must be at second order and one initially

expects changes in Q small in ii I*).
Thus post hoc one sees that the neglect of the variation in the magnitude of the nematic order

parameter Q is not an approximation at all. Given then that the nematic component of the free

energy is unchanged, the unchanging total free energy implies that the entropic contribution of

the (anisotropic) Gaussian distribution is also unchanged under distortions and rotations with

j < j*, This is the basis of the assertion of constant entropy in the discussion of the previous

section about the "soft elasticity" response. It may seem miraculous when comparing with

isotropic Gaussians that always suffer a drop in entropy on distortion (the basis of classical

~ubbe~ elasticity), but calculations in this section prove that some particular distortions at

constant entropy are possible for anisotropic Gaussian chains.
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So far we have explored only one of the two solutions of the key equation (16). The second

possibility in (16), namely D°D
=

(Alyy)~, would appear to be an anisotropic remenant of a

trivial (although little known) solution for conventional rubbers under compressive stress (for
isotropic elastomers it is a simple rotation). Inserting Alyy

=

+fi% into (15) and doing
some algebra gives, in the limit where

r =
I and D°D

=
1,

lyy
=

I; l~~=(I+l~zlz~)/1

~~~ ~ ~ b~fl ~' ~~~ ~ ~

~~
~~~~

Returning these to Fei gives the result 2Fei/kBT
=

3 as before. In contrast to the first solution,
this result is achieved without any minimization with respect to A. The solution is clearly valid

until l~
=

be, the maximum value of be being when A
=

0 I-e- be
=

1*~ It is important to

emphasize that under this condition equations (25) coincide with the previous solution is),
which therefore represents just a single (extremal) branch out of the continuous set (25) valid

for all angles A. (Given that F is independent of A there is no criterion for selecting any
particular orientation of the director). Despite lyy

=
I, the solution (25) does not represent

a body rotation about the y axis, but is a combination of simple shear and extension in the

ix, z) plane. It can exist along any direction, given by an arbitrary angle A
= a

9, but

the magnitude of deformations depends on this direction through coefficients e and f. This

represents a remarkable degeneracy in the "soft elasticity" phenomenon we are describing here,
it corresponds to a natural fact that a given rotation of the director can be accomodated by

a continuous set of possible deformations of the network the smallest shear is required,
obviously, when the initial director n°

was perpendicular to the direction of shear.

One branch out of this continuous set is special, it corresponds to the maximal possible
extension 1* (9) that can be accomodated by a nematic network without changing its free

energy and the director rotation Ail) given by (8). In any experiment that is based on

constant stress, rather than constant strain conditions, only this branch would be observed

the system will deform freely under the applied stress until it reaches I*, when the elastic

response will first appear. For this reason we have picked this extremal mode of deformations,
equations is), in our discussion of the "soft elasticity" above.

In the isotropic limit b1°
=

bl~~
=

0, c =
f

=
0, be

=
I, b

=
1°, D

=
1/(1°)~ and the

continuous set of equations (25) reduces to

j i. j 11 ~ j j / j. j
=

j
=

1_ j2 j~6)
yy , xx zz zx , zz zz

This is a trivial solution for a conventional elastomer: on applying a uniaxial compression,
I < I, the system reacts by uniform body rotation ii

a cos~b) about the j axis with no

change in free energy.

4. Summary and conclusions.

Previous theory ii, 8] and experiment [12] suggest that nematic solids can behave in qualita-
tively new ways, not found in conventional liquid crystals and isotropic elastomers. Discon-

tinuous nematic and elastic response to applied stresses was found and explained in terms of

coupling between translational and orientational degrees of freedom in nematic polymers.
Here we have predicted another qualitatively new and completely counter-intuitive phe-

nomenon: a softening response of the elastomer when stress (or other external field) is applied
in sufficiently unconstrained geometries. We predict that strain should develop (with the appli-
cation of low stress or electric field) until n is along the field direction, whereupon the material



102 JOURNAL DE PHYSIQUE II N°1

will harden and attain the modulus characteristic of the elastomer in the isotropic or more

constrained nematic state. Previously unexplained electric field experiments of Zentel on ne-

matic elastomers suggest that this unusual behaviour does indeed occur. The magnitudes of

the stresses or fields required in the soft regime (where
our conventional approach to rubber

elasticity predicts that zero stress or field is required), will be an indicator of just how significant

more subtle effects in elastomers, such as entanglements and correlations, actually are.
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