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Abstract. We study theoretically the stability of phases of unilamellar and multilamellar

vesicles in bilayer-forming surfactant solutions. It is argued that these are likely to arise, instead

of
a

bicontinuous "sponge" phase, when the elastic constants of the bilayer are chosen so that

the curvature energy of
a

sphere is small. At very low volume fractions we predict
a

phase
of noninteracting vesicles; as the concentration is increased these reach

an
overlap threshold,

beyond which "nesting"
can occur, giving

a
multilamellar vesicle or "onion" phase. At higher

concentration still,
a transition to the smectic (La) phase is predicted. This transition may

be rather weak if the mean curvature rigidity is small. The relevance of our results to recent

experimental work is briefly discussed.

1. Introduction.

Recent work
on

various surfactaiit systems has revealed the existence of isotropic liquid phases
in which the local structural unit is

a
bilayer [1-4]. These typically arise in materials for which

the lamellar phase (smectic liquid crystal) reInains stable under strong dilution as a
result

of the entropic pressure between neighboring sheets in the smectic stack. The most commoli

bilayer liquid phase is called usually L3i in this phase it is known that the bilayer forms a

continuous web
or

"sponge" [1-4] that apparently divides the solvent into two distinct regions.
This leads to some

unusual light scattering properties and novel phase behaviour II, 5]. In

many systems (those where Coulomb or van der Waals forces do not dominate), the transition

from smectic (La) to sponge (L3) can
be rationalized in terms of the Helfrich Hamiltonian for

bilayers, [6] which expresses the elastic energy in terms of the local principal radii of curvature

Ri and R21

7i
=

f
dS (2KH~ + kI<j. (1.1)

This contains two elastic constants, K
and k, which control respectively the mean curvature

H
=

)(I/Ri +1/R2) and the gaussian curvature It
=

1/(RiR2). According to the Gauss-

Bonnet theorem the latter, when integrated over the entire surface becomes a
topological
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invariant [7]:

k j~ Ii dS
=

47rk (nc nh), (1.2)

where nc denotes the number of components and nh the number of handles of the surface. For

stability one requires -2K < k < 0.

The sponge phase arises when
a

stable lamellar phase, which
can be diluted down to volume

fractions in the few percent range, is diluted further. The random surface structure is then

stabilized by configuration entropy of the interface. If
even more solvent is added to a sponge

phase, theory predicts a breakup into disconnected vesicles, stabilized by entropy of translation

[2]. However, sponge phases exist also at much higher concentrations in certain systems. These

are usually "adjacent" to a
lamellar phase in

a
pseudotemary phase diagram and the transition

from lamellar to sponge is driven by tuning (say) the amount of alcohol. It is thought [3, 8, 4]
that the alcohol acts as a

cosurfactant, so that small changes in its bulk concentration
can

lead

to shifts in the effective elastic constants of the bilayers. In these cases it has been proposed
that the transition from lamellar to sponge is controlled mainly by variation of k, [3, 8] which

couples to the difference in topology between the L3 and La phase. If so, the L3 Phase becomes

stable as k becomes less negative.
With this trend in mind, it is natural to enquire what should happen if, starting from

a

lamellar phase, the alcohol content is
now

tuned in the opposite direction (k
more

negative).
In several systems, this has also been shown to lead to an

isotropic phase, sometimes referred

to as L4 [9] (or L( [10]). In contrast to the sponge phase, this phase
can

be significantly
viscoelastic at high concentrations. It also has other characteristic features that differ from

the sponge. In particular, there is now clear evidence that at low enough concentrations, the

L4 Phase consists of dilute large vesicles [9, 10]. In the system SDS/dodecane/octanol/HzO,
conductivity, light scattering and other studies all suggest that at less than 2.5 weight percent,
noninteracting vesicles of radius

a
few hundred Angstroms are present [9]. Likewise for the

system DDAO/hexanol/H20, freeze fracture studies show clearly vesicle-type structures of
a

similar average size [10].
Throughout this paper, we assume

(as suggested by the above discussion) that the behaviour

of the system on
varying alcohol content can be understood in terms of

a
competition between

entropy, and the elastic properties of homogeneous bilayers. A different possibility is that

the stability of any vesicle or onion phase depends
on an

unequal distribution of one of the

components (e.g. the alcohol) between the two halves of the bilayer; this mechanism is known

to be relevant in phases of large vesicles formed in some
mixed surfactant solutions II Ii.

That the dilute L4 Phase consists of vesicles is a
fairly natural idea when we consider the

Gauss-Bonnet theorem, (1.2). It is known that for k < -2K, the system becomes unstable to

the formation of extremely small vesicles (whose size is limited only by anharmonic corrections

to (I.I) which
we

have ignored). For k close to but larger than -2K, the net energy to form

a
vesicle, 4x(2K + k) is small and positive,

so
by tuning k into this range one may expect to

see a stable vesicle phase, where translational entropy balances the small energy of formation,

even at moderate volume fractions. The renormalization of the elastic constants at large length
scales [12, 13] can also favour the occurrence of vesicles of reasonable size (in contrast to the

very small vesicles which may arise
on

ultimate dilution of a sponge phase, for example).
In this paper, we give a more detailed analysis of how the vesicle phase can arise, and for

what range of parameters. This builds
on earlier work by Huse and Leibler, [14] among others.

However, we also address
a more

difficult issue, namely the character of the L4 Phase at higher
concentrations. In this regime, the vesicles cannot be dilute. We investigate here the possibility

that at higher concentrations (above
a

suitably defined overlap threshold), the vesicles become

"nested" into multilamellar vesicles or small spherulites (Fig. I). We shall argue that a state
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in which each of these "onions" contains between 2 and 5 layers is thermodynamically feasible

for typical parameters. This seems to be roughly consistent with the observed properties of

the L4 Phase above the overlap threshold. The possibility of much larger mean layer numbers

is also addressed.

jfifi~
fi fi )
)j

fi
~ ~

Fig. I. Typical vesicle configuration in the proposed onion phase.

We do not consider the dynamics of the system in this paper; however, it
seems

possible
that the

even
the small multilamellar structures proposed here could be rather stable objects

dynamically with a behaviour similar to deformable elastic spheres at similar volume frac-

tions. If so, it might explain the relatively high viscosity (and near-yield behavior) reported
in some concentrated L4 Phases [9, 10]. At present, experimental data is not precise enough
to determine whether the L4 Phase is more or less viscous than one

would expect for a system
of hard spheres with

a
similar (effective) volume fraction the comparison is made harder by

polydispersity effects, and the very strong volume-fraction dependence of the viscosity in the

hard sphere case as close-packing is approached.
In the next section we

will formulate
a

simple model of the vesicle and onion phases
and compare the relative phase stability around the critical concentration at which vesicles

interact, ~*.

2. Vesicles and onions.

Formally, the energy to create a
perfect sphere of radius

r is given by 47r2(r), where
we

have defined an appropriate bend modulus of R(r)
=

2K(r) + k(r). Fluctuations of the fluid

membrane at small length scales lead to a
renormalisation of the modulus given by (kB

"
1),

2(r) =10
7)

log ~, (2.1)
7r a

where 20 denotes the bare value,
a

denotes the
monomer

size, and present estimates suggest
that 7 =

(d 2) 8/3 (I.e. 7 =
8/3 for d

=
3) [7]. For lo < 0 there is an instability towards

forming vesicles of vanishingly small radius. However, as
lo is increased it becomes favourable

(in terms of bending free energy) to form vesicles only above
some

finite radius. Then, jf

the
mass

fraction, ~ of surfactant is sufficiently small,
a

phase of dilute, independent vesicles

will remain the stable equilibrium phase. However, as the mass fraction is increased, the

vesicles begin to interact through contact and approach close-packing. Beyond this critical
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concentration denoted by the mass fraction #*, there
are

several possible ways in which the

system may react to accommodate the additional surface
area.

The first is simply to form
a

lamellar phase. The second is for the vesicles to shrink in size and so accommodate the extra

mass fraction while remaining at the overlap threshold. Finally, the vesicles may become nested

in the form of spherulites
or

onions and thereby sustain
a

high
mass

fraction while maintaining

a
large vesicle radius. However, there is

a penalty arising from the cost in entropy in removing
translational degrees of freedom. Nevertheless,

we suggest that there is a
region of the phase

diagram in which the latter phase becomes stable, and that this may account for the observed

properties of the L4 Phase at high concentrations.

In what follows we propose a
model with which to study this scenario. Initially

we
investigate

a system of unilamellar vesicles which exclude all surfactant from the volume they enclose,
so

for the purposes of packing they can be thought of as solid. We examine both the dilute and

interacting regime around the concentration at which unilamellar vesicles become close packed,
#*. Thereafter

we
study

a
phase in which the exclusion is relaxed, allowing the vesicles to

become nested into "onions."

2. I UNILAMELLAR VESICLES. For a
number density c(m) of spherical vesicles of aggrega-

tion number (or "mass") m, the bending energy of a unilamellar vesicle phase is given by,

~)~
=

/
dm 47r2[r(m)] c(m), (2.2)

where the radius r(m) is related to the vesicle
mass

by
m =

47r(rla)~. Here
a

is
a

molecular

length. For a system of non-interacting vesicles
a

lattice-gas description provides
a

reliable

estimate of the entropy. The cell size is set by the monomer size of the solvent, which we take

to be of order the surfactant size
a.

(Later
we

will discuss the validity of this approximation,
which is questionable when the vesicles become

more
densely packed). For low concentrations

we
have the usual expression for the ideal entropy of mixing,

)
"

/
d~ ~(~) l'°g(C(~)~~) ii- (2.3)

Finally including
a

chemical potential for the total
mass

of surfactant, and minimising the

grand potential, 4~ves
"

EVeS TSm pN, where the total number of
monomers

is given by
N

=

V#la~,
we

find an
equilibrium concentration of vesicles,

C(m)a~ > exPi-(47r?ir(m)i Pm)/Tl. (2.4)

where p is determined
as

usual from the constraint,

#
=

dm
m

c(m)a~ (2.5)

The renormalisation of the bending modulus leads to a prefactor m'/~ in the concentration,

so
that the

mass
distribution, c(m)

~-

m'/~e~~~ becomes peaked around
m m

7/2p. Applying
the constraint (2.5) on the total mass fraction,

we obtain the chemical potential,

P
=

-c~(~) exp(_ ~~~°j j-1/(2+1/2) (~ ~)
T 2+7/2 T '

where Cl(?) is
a constant (~). (For 7 "

8/3, Cl
=

0.494.) From this
we can

determine the

(~) In fact Cl(?)
"

i~i2 + 7/21/(4~i~'~~~i~~~~~'~~~
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total free energy Fves
# 4~Ves + AN, with result:

Thus (combining (2.6) and (2.7), for 7 =
8/3) the free energy density scales with volume

fraction
as

#~/~°
As the volume fraction # of surfactant is increased, the free energy continues to become

more

negative. However, for a sufficiently large volume fraction the vesicles begin to interact. The

corresponding volume fraction can be estimated by calculating the equivalent solid volume

fraction (ESVF) of the vesicles. Taking the volume enclosed by
a

vesicle of mass m to be

u(m)
=

(47r/3)(m/47r)~/~, the total ESVF is defined by

1~ =
dm u(m) c(m)a~,~~~

~~~~~~~~~~~~ ~~~ '4
7

~i~~ '
~~ ~~

where C2(7) is a constant (~). (For 7 =
8/3, C2

"
0.235.) With the renormalization factors

included, the ESVF of the vesicles is
a

weakly increasing function of #. This increase arises

purely by mass action effects.

We now
define the overlap threshold #*, at which the vesicles become strongly interacting,

by equating
1~ to the volume enclosed by vesicles occupying

a
cubic close-packed lattice with an

intervesicle spacing of (say) three times the vesicle radius. We thus obtain an ESVF at overlap
of1~*

=

87r/81vi
~-

0.22. In terms of surfactant volume fraction this yields, for example,
#*

=
0.025 (the value estimated for SDS/dodecane/octanol/water by Hervd and Roux [9])

when lo IT
~-

2.2.

Let us now consider the region in which # 2 j*, First we might suppose that the vesicles

simply shrink to accommodate the additional
mass but remain unilamellar. In this case we

should add an
additional Lagrange multiplier to the grand potential to enforce the constraint

that 1~ = 1~*. Minimizing 4~Ves "
Fves AN ~VI~

we
obtain the equilibrium concentration,

C(m)a~ > exPl-(47r?lr(m)I Pm ~u(m))/Tl, (2.9)

where p and ~ are determined by combining equation (2.5) with the constraint equation:

1~* =
dm u(m) c(m)a~

=
0.22. (2,10)

Of main interest is the region in which # jt #*. The behaviour in this region has been studied

numerically. Qualitatively, very close to #*, ~ becomes non-zero
and cuts off the distribution

at high
m.

As # is increased above #*, p soon becomes positive and the size distribution

becomes very sharply peaked; much of the entropy associated with polydispersity is lost as a

result. The natural tendency (from
mass

action effects) of vesicles to increase in size
as

# is

raised, becomes reversed by steric forces in this region.
A numerical calculation of the free energy Fves(#) of

a
phase of unilamellar vesicles, found by

determining p and ~ self-consistently from the constraint equations, (2.5) and (2.10) is shown

for different values of I in figure 2. (The free energy for
an

onion phase, calculated below,
is also plotted). We see that for # > #* the free energy very rapidly increases with volume

fraction. For # more
than about 3/2 times #*, this phase would be unstable with respect to

(~i In fact c2(1)
=

(1/3(4«i~/~~+'~) (ris/2 + ~/21/r12 +1/21~~+'~/~~+'~

JOURNAL DE PHYSIQUE II T 2, N' 7,JULY <W2
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a lamellar phase (whose free energy is discussed in more detail below). The fact that we have

probably overestimated the translational entropy of the phase (by using (2.3) even near
#*)

simply reinforces this prediction. We conclude that
a

phase of vnilamellar vesicles,
so

long
as

they remain spherical, will not be stable at volume fractions larger than the natural overlap
threshold.

0 0.01 .02

Fig. 2. Free energy of the unilamellar vesicle and onion phase
as a

function of the mass fraction, #
at fixed k

=
-5kBT, and for values of

~
of 3.7kBT, 3.75kBT, 3.8kBT, and 3.85kBT going from the

lower to the uppermost curve. The free energy of the unilamellar vesicle phase is shown dashed below

#*, and dotted above. The free energy of the onion phase (including the Helfrjch contribution; see

Sect. 2.2.3) js shown as a continuous line for # > #* with the points of
common tangency denoted by

filled circles.

Another possibility is that above #* the vesicles could deform into ellipsoidal shapes (rather
than simply shrink). The result might be

some sort of nematic phase; calculation of the free

energy is very difficult and
we

do not attempt it here. Formally,
we can in any case

prohibit
such

a
phase by increasing

K to a
large value while maintaining the

same
value of 2 (which

is the only control parameter for phases based
on spherical structures, as shown above). For

simplicity therefore, we exclude the possibility of a nematic phase, in what follows.
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2.2 MULTILAMELLAR VESICLES (ONIONS). Rather than constraining two vesicles to ex-

clude one another entirely from the volume enclosed by each, let
us now allow the possibility of

nesting. In this case, the
mean

vesicle size can continue to increase for # > #*, though at the

expense of some entropy. Our aim is to construct a simple model which qualitatively predicts
the equilibrium phase diagram in the system. In doing so we will make several approximations
which

we
will argue become reliable in limiting

cases.
We pay most attention to the regime

where # exceeds #* by
a

factor of about 1-4. In this region we argue that multilamellar vesi-

cles,
or

"onions" of several layers
are

formed. For simplicity
we

neglect non-uniform nestings
in which

a
single shell of membrane

can
enclose two or more internal onions (~).

Since it arises when unilamellar vesicles would become sterically overpacked,
we may assume

that any phase of onions maintains
an

essentially close-packed geometry (Fig. I). The onions

are
assumed to be configured to fill space with

a mean
separation between their surfaces of

order d
=

a/#, which is the smectic layer spacing of
an

equivalent lamellar phase. The average
spacing between layers within an onion is also of order d. These assumptions are a natural

consequence of the Helfrich repulsion, lib] which gives in a smectic phase an osmotic penalty
for any strong departure of the local layer spacing from its mean value. Thus the proposed
onion phase can be considered as a

lamellar phase whose long range order is destroyed while

maintaining
a

reasonably uniform mean spacing between layers. This is analagous to the

sponge phase L3, but with
a

totally different local topology.
To be consistent,

we must now take into account that the undulations of each membrane

or shell within an onion are constrained by its neighbours, implying that the appropriate
renormalized bending moduli (2.I)

are those corresponding to the length scale of order d.

Actually, this is
a

slight underestimate: the scale at wlIich undulations become hindered is not

d but the "transverse correlation length" f
i ~-

d(K0/T)~/~ jib]. This means that for onions of

small size (a few times d), the Helfrich repulsion between neighboring shells is rather weak.

2. 2, I Bending energy. In estimating the bending energy of
an

onion, we will assume that

the vesicles within it are spheres. As the onions become larger, this assumption is increasingly
incompatible with

our
previous argument that the spacing between membrane layers is of order

d at all points in space. To calculate the effect of this
on the free energy requires a careful

consideration of polydjspersity (small onions can fill the interstices between larger ones), but

it seems probable that the extra bending energy involved would ultimately destabilize
a phase

of very large onions (or true spherulites) with respect to a lamellar phase. However, our main

predictions concern phases where the mean number of layers in each onion remains small, and

the size of the interstices remains
on

the order of the d-spacing. We therefore ignore any
asphericity of the onions in our calculations.

For
an

onion comprised of n shells, with mean intershell spacing d, the total aggregation
number (mass) is given approximately by

m =
(47r/3)n~/#~,

a
formula which would be exact

for very large n. Therefore, the total bending energy of
a phase of onions at concentration

c(m)
can be estimated

as

~j~ =

/
dm 47rn(m)>idi c(m). (211)

To this must be added various entropy contributions, which we now calculate.

2.2.2 Entropy of onions. To estimate the entropy of an onion phase,
we

consider three

contributions. First, there is contribution, Sm, from the translational entropy of each species

(~) Such configurations should anyway only arise for large layer numbers, and should incur
a

large
bending energy.
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of aggregate, which
we assume

is given by (2.3). The second entropy contribution arises from

fluctuations in the mass of the individual layers within each onion. We assume that each

internal shell can have any radius
r

in the range ro ad < r < ro + ad where a is a parameter

(we set a =
I for numerical work) and d is the

mean
layer spacing. Here r0 is the nominal

radius, which for the lth shell in an
onion is simply given by id. Hence there

are roughly
167ral/#2 different choices of

mass
for the lth shell. If there are n

shells on a vesicle in total,
whose

mass m is also specified, then there
are

only
n I independent contributions of this sort;

for simplicity we assume that the outermost vesicle has fixed mass but that the inner ones can

fluctuate. The fluctuations in
mass

of all the internal vesicles then provides

(n i)' l~)I"l~"~~~ (2.12)

different ways of making up an
onion of mass m. Thirdly, there is a

finite translational entropy
from the relative displacements of the centres of mass of each shell within the onion. Each

spherical shell
can

typically be displaced of order d before colliding with its inner
or outer

neighbour; the resulting multiplicity is of order (2dla)~ where a is
a

molecular size. This
can

be combined with the previous contribution (2.12) to give
a

total entropy SI from the internal

degrees of freedom within each onion. The result is

)
=

/
dm flog(n -11'- (n I) log g(4)1 C(m), (2.13)

where g(#)
=

#~/2~7ra. The total entropy of the onion phase is then estimated by SI + Sm,
with Sm obeying (2.3).

These three entropy estimates all involve some degree of approximation. Firstly, (2.3) for

Sm is the expression for noninteracting spheres; in neglecting the effects of crowding, it over-

estimates the entropy. However, we
have checked that

an
alternative vndemsiimaie of Sm

yields similar results to those presented below. Our underestimate is obtained by replacing the

characteristic molecular length a which appears in (2.3) by a length of order the mean vesicle

size Rd. In effect,
we

confine vesicle centres to lie
on a

lattice of this size [16]. In this way,

the purely translational part of Sm is eliminated, and for monodisperse onions we would have

Sm
=

0. (This is clearly
an

underestimate since in reality some translational freedom remains).
For polydisperse aggregates, as

here, there remains a large contribution to Sm which
comes

from multiple ways of assigning vesicles of different mass between our coarse-grained lattice

sites.

Our estimate of the internal entropy SI
assumes

that the radius and centre of
mass

position
of a given shell can both fluctuate by amounts of order d, the

mean
spacing between sheets

in the system. This is not true for large vesicles, since the Helfrich repulsion will provide
a

confining potential that forces
a

shell to fluctuate weakly about its nominal position, rather

than explore all (spherical) configurations that can be fitted between an inner and an outer

spherical boundary. But at least formally, this effect
can

be ignored for shells smaller than the

transverse correlation length fi which may be large compared to d if K » kT. Thus for onions

of moderate size (say, 2 5 layers), the internal entropy should not differ too much from
our

estimate (2.13).
Minimizing the grand potential 4~On "

EOn T(SI + Sm) pN over
the concentration

distribution c(m),
we obtain for the concentration of onions of mass m the following result:

47rn2 fr(n) P
~~ ~~~~ ~~~~3 ~ ~xp[- ) T~~'

which
we

have written in terms of
an

effective n-dependent bend modulus,
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?err(n)
=

?ldl +
) (j loglg(4)1-

°~~~)
~~"~ (2.15)

which includes the various entropic contributions.

The chemical potential is again determined by (2.5), but
we now introduce a

cutoff on the

lower limit of integration at mo #
47r/3#~, corresponding to an onion having a single layer

with radius of order d (~).
Evaluation of the free energy of the onion phase Fon is performed by substition of (2.14)

for the size distribution together with the appropriate chemical potential, p into the equation
Fon

"
4~on + AN. This confirms the presence of only a slight mismatch at #* with the

free energy Fves of the unilamellar vesicle phase calculated in section 2.I above (see Fig. 2).
Fortunately the mismatch is unimportant in calculating phase equilibria since the free energy

in the immediate vicinity of #* has upward curvature (according to either estimate). Thus the

transition from vesicles to onions is by means of
a

smooth crossover without phase separation.
As in the previous discussion of the unilamellar case, the integration (2.5)

can
only be

performed analytically in certain asymptotic limits, and in the region around #* it is necessary

to resort to a
numerical computation of p and the total free energy. However, it is possible to

qualitatively understand the behaviour directly from the mass distribution (2,14). For # small

the effective bend modulus, left becomes negative. The distribution becomes peaked at some

value of n > I and the chemical potential p truncates the distribution. As # increases so
left

becomes more positive, p becomes smaller and the weight of the distribution moves slowly to

higher
n.

Eventually there is a crossover in the distribution to a region where the factorial

term in the exponent becomes dominant, typically at a large value of n. This crossover occurs

extremely rapidly, and the optimal n quickly becomes extremely large, as shown in figure 3 on

a
log plot (~).

2.2.3 Free energy, and phase diagram. To compare the free energy of
an

onion phase,
as

calculated above, with that of
a

lamellar phase, a naive argument would be to say that the

lamellar phase has neither bending energy nor entropy so
that FLmn

"
0. However, it has

been shown [16] in the context of L3 phases and microemulsions that tbis is a very unrealistic

choice, mainly because fi~F/fi#~ vanishes identically, which means that phase diagrams cannot

be constructed. To obtain sensible results it is necessary to include the Helfrich free energy
arising from repulsion of two neighbouring layers due to the constraints

on
the amplitude of

the undulations. This free energy has been calculated as [15]

It seems clear that such
a

contribution should also be added to any onion phase containing

very large spherulites, since locally these
are

the same as a
lamellar phase. On the other hand,

for small onions or vesicles that arise at low #, the Helfrich repulsion is very small as argued
in section 2,I above. In fact it is easily checked that the contribution of (2,16) is negligible in

comparison to the other terms in the free energy in this region. Therefore it is a good enough
approximation simply to add the Helfrich term, (2.16) to the free energy estimate Fon given

previously, not only at high volume fractions but over the whole range of #. The free energy

(~) This low m
cut-off prevents a

collapse of the distribution into
a mathematically artefactual phase

where the onions possess only a fraction of
a

layer each; it is necessary because in the concentrated

regime
we

impose
a

space-filling requirement on the onions.

(~) In practise, however, the free energy in this region is likely to exceed that in
a

lamellar phase,
for reasons discussed below.
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Fig. 3. Log plot of mean number of layers in the onion phase
as a

function of the mass fraction, #

at fixed k
=

-5kBT, and for values of
~ of 3.7kBT, 3.75kBT, 3.8kBT, and 3.85kBT going from the

right to left most curve. The boundary of the twc-phase coexistence region is denoted by filled circles.

curve
found by this procedure, F(#)

=
Fon+FHei is our final estimate for the onion phase. Note

that the first contribution depends
on

the elastic constants only in the combination k
~-

2K + k,
whereas the second depends on K alone. Figure 2 shows the free energy as a function of volume

fraction for
a

given value of k and various values of
K.

With this final form for F(#),
we can now construct phase diagrams for our system as a

function of #, K and k. For reasonable parameters we find numerically
a

twc-phase coexistence

between an onion phase of typical number of shells n
which is larger than unity (though not

by
a

large factor) and
a

coexisting denser phase. Typical cuts through the phase diagram at

fixed values of both k and
K are

shown in figures 4a,b. In figure 4c is
a

plot with 2K + k and

# as
the variables. In this representation, there is a strong degree of universality (since Fon

depends only on
this combination) with

a
weaker residual k dependence as shown.

According to our
calculations, the dense phase at coexistence is

an
onion phase of very large

mean layer number
n:

the difference in free energy between this phase and the lamellar phase
is extremely small, that of the onion phase being marginally lower. However, the apparent
stability of this phase with very large

n at high volume fraction is probably an artefact arising
from our neglect of any bending energy needed to deform the onions

so as to satisfy the space-



N°7 VESICLES AND ONION PHASES 1449

4.3

~'~
K =

-5 k~T

4,I '

4

Fd~ ~

( 3.9
,

~
3.8

"
~~~~~~~~

i

I
~ ~

"csiclc
" ~~~'°~

3.6 '

3.5

4 (ib) ~~

3.5

4 K =
4 kjjl'

4. 5

Fd~ i

~i
5

,

~
i

L~imell;>r,

5. 5 '

,

'

,
Onion

6
vesicle

6.5

0 2 4 6 8 lC 12 14

~ (%) ~~

3.5

Fn~ 3 '

e

~ ',
i

Laniellar
04 I

2.5 '

I

Vesicle
" ~'~~"~ ',

~

, '
~

2

0 2 4 6 8 10 c)# (%)

Fig. 4. Phase diagram (a) in (#,K) plane at fixed k, and (b) in (#, k) plane at fixed
~

showing
the two-phase coexistence region. The line #* which separates the interacting and non-interacting

unilamellar vesicle phase is shown dashed. (c) Phase diagram in (#, 2~ + k) representation for k
=

-2kBT (continuous) and k
=

-6kBT (dash-dotted). (Note that #* is
a

function only of 2K + k).



1450 JOURNAL DE PHYSIQUE II N°7

filling constraint (see Sect. 2.2 above)(~). Moreover, our
estimate of the internal entropy SI is

also optimistic in the regime of large n, as discussed already in section 2.2.2. These two factors

mean that the free energy of
a

large n
onion phase is almost certainly underestimated by our

theory. By comparison with figure 2, we
conclude that in practical cases the coexisting dense

phase is more likely to be an ordinary lamellar phase than
a

phase of extremely large onions.

The low-n onion phase at coexistence has n values in the range 1-3. Although very large
n

values
are not predicted, there should still be

a
clear difference in physical properties between

a phase with n ci 3 and
a

noninteracting vesicle phase. We note that the freeze fracture studies

of reference [10] show some nesting, with an average n somewhat greater than unity, although
in this system the L4 (L() phase does not persist to very high concentration. Freeze fracture

studies
on

the SDS system [9] would be very interesting and should not be too difficult since

the phase is very viscous.

As
K

is decreased (at fixed I), there is a tendency for the transition to a
dense phase to

become weaker. Ultimately, the region of twc-phase coexistence terminates in a line of critical

points at K ~-
0.8 and approximately independent of k beyond which

a
second order transition

from onions to lamellae is predicted by
our theory. Taken literally,

our
calculations predict at

small
K a continuous transition from

an
isotropic to a

lamellar phase via
a

thermodynamically
stable phase of spherulites of diverging

mean
layer number n.

This is
an

intriguing scenario.

However, as
mentioned in the previous paragraph, the apparent stability of onion phases with

very large n at high volume fraction is likely to be an artefact. Therefore
we expect in practise

a
weak first order transition to a

lamellar phase for all parameter values. Nonetheless the trend

toward a
weaker transition at smaller

K
(when Helfrich forces are

larger) is a
clear prediction

of the model.

3. Discussion.

In this paper, we have presented results that suggest the existence of
a

phase of dilute vesicles

when the bending energy of
a

sphere 2 is not too large compared to kBT. This idea is not

new [14, 2] and the existence of such structures, stabilized by entropy, seems to be established

by the very recent experiments of Hervd et al. and Thunig et al. [9, 10]. More controversial

is
our

prediction that at higher concentration (and in
a

certain range of
K

and k)
a

stable

phase of mvliilamellar vesicles or "onions", each with
a

small number of concentric shells,

can
arise. These strongly interacting assemblies may have quite different properties from

a

noninteracting dilute vesicle phase, and we propose this
as a

model for the L4 Phase above

the overlap threshold #* for the constituent vesicles. Note that even a phase with n =
2 or

3 should be clearly distinguishable in physical properties from
a

phase of unilamellar vesicles;
for example, the hydrodynamic radius found in light scattering will be incompatible with

a

unilamellar geometry, as
will the conductivity (which is determined by the fraction of connected

space exterior to the vesicles). It is tempting also to invoke "nesting" of vesicles to explain the

novel viscoelasticity [9, 10] of the L4 Phase.
Our approximations are numerous and hard to quantify, but the results nonetheless intrigu-

ing, especially in view of the freeze fracture experiments of reference [10] which do appear to

show some nesting. Both the dilute (vesicle) and the semidilute (onion) phase are stabilized by
entropy, and by the renormalization of the elastic constants which favours curvature at large
length-scales. The onion phase is stable only

over a
relatively narrow range of parameters and

(~) The alternative is to have
a

layer spacing within onions significantly less than d. This leads to

an
increase in FHel by

an
order unity factor which is a very large penalty compared to other energy

scales in the problem.
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it is not surprising if to observe it one has to carefully tune the elastic constants of the bilayer
(such

as
k). This is consistent with the observed

narrow
stability range of the semidilute L4

phase [9].
We have not, in this paper, explicitly considered the relative stability of the onion phase

with respect to a sponge phase (L3). However, at all but the lowest concentrations the sponge
is seen on the opposite side of the lamellar phase to L4, and therefore it should not interfere

much with the relative stability of the latter two phases
as

discussed here. Put another way,

we can argue for still or
concentrated films (K(d) large) that the onion phase will only arise

roughly for 2K + k < kBT whereas in the handle-rich sponge phase, the criterion is roughly
k > -kBT [8]. Of course, for rather flexible films both criteria could be obeyed simultaneously,
and in this case a more complicated phase diagram could result.

We have predicted that
as K

is reduced, the phase transition from small onions (n
=

2, 3)
to very large spherulites

or
(more realistically)

a
lamellar phase becomes weaker. This is

consi>tent with the preliminary work of the Bordeaux group [9, 17] which suggests a
much

weakened transition in the SDS /dodecane/water system when the alcohol octanol is replaced by
pentanol. (This change is known to soften the film). The theoretical prospect of

a continuous

transition from an isotropic to a
lamellar phase via onions of ever-increasing size remains

interesting although,
as we have discussed, the stability of large onions is probably limited in

practice by the problem of filling space at uniform density with such objects, without incurring

a
large deformation energy.
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