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Abstract. A general method for calculating the properties of the Residence Time Distribution

(RTD) of a fluid flowing though a self-similar network, with or without stagnation (trapping)
effects, in the high P£clet number limit is developed. The renormalization procedure adopted
yields the Laplace transform of the Residence Time Distribution and allows one to calculate its

time moments. The incidence of the connectivity of the medium on dispersion is discussed. The

fractal dimension does not appear explicitly in the dispersion properties of the network.

Geometrical dispersion is shown to result from the difference of pathlengths offered to the fluid in

the generating pattem of the network. The dispersion front is strongly non-Gaussian and presents
several maxima (short circuits) in some extreme cases. An approximate expression for the

dispersion front is derived when the distribution of pathlengths is narrow. In the latter situation, a

dispersion coefficient can be defied, and it is characterised by two parameters, y and

(i f) i~, which represent respectively the intensity of the disorder (or the ability to mixing)
related to geometric dispersion, and the characteristic hold-up time of a tracer particle in the

stagnation phase supposed to occupy a fraction (i f) of the volume and to be uniformly
distributed in the medium. We also discuss the conditions of moments convergence and the long

time asymptotic form of the RTD.

Introduction.

Hydrodynamic dispersion is a classical topic of statistical physics and serves as a useful tool to

improve the understanding of vaTious phenomena such as traffic flow, mixing in chemical

reactors, oil recovery, polluant transport and, generally speaking, the spreading of a tracer in

a medium of complex and disordered structure.

As far as porous media are concemed, recent experimental and theoretical investigations

have pointed out the basic mechanisms of hydrodynamic dispersion [1-3]. Two essential

processes account for dispersion : first, the spatial fluctuations of the flow velocity field (I.e.,

geometric dispersion), and second, the possible trapping effects of the tracer in regions of the

(*) UMR 101.
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porous medium where the fluid is motionless (dead ends). The latter process involves

molecular diffusive effects orland adsorption effects on the solid matrix.

Strongly disordered media are known to be often locally self-similar (fractal) : the regions
offered to fluid flow in a porous medium have been shown to be percolating clusters [4]. It is

thus worth studying hydrodynamic dispersion (or directed dispersion by contrast with free

Brownian motion) on self-similar structures. In this view, a porous medium might be

modelled by a series of fractal regions. We investigate the dispersion properties of each fractal

region, and of the series as a whole. Our study starts with an original formulation of the

microscopic process of mixing consistent with previous approaches [3, II and also [15] in the

context of altemative current response of inhomogeneous materials, which is convenient for

recurrent computations on self-similar structures.

1. The JocaJ convection approximation.

Consider a disordered medium with a linear size L (Fig. I) crossed by a fluid of average drift

velocity U. The average length £ of a path through the medium of extension L is given by the

porosity e as £
=

LIE. The average transit time is r~ =
£/u

=

L/U where u =
Ule is the

interstitial velocity of the fluid. Finally, the molecular diffusion time over the path £ is

r~ =

£~/D~. The relative intensity of molecular diffusion to the convective effects on the path

£ is given by the ratio

~d u£~ Lp
p

u8£~t"P~' ~"$

where 3 is the size of the interstices. It is clear that in the high Pdclet number (Pe) limit and in

absence of a stagnant phase, molecular diffusive effects ale negligible. At the level of the

pores between the particles of the porous medium, the local mass balance equation for an

inert tracer is

()+u~j_=0
(1)

where u is the interstitial velocity, and x the local coordinate parallel to flow (Fig. 2). The

brackets
]~

denote that the mass balance equation is formulated at the microscopic level,
that means the smallest physical lengthscale of the problem. At the macroscopic scale, the

mass balance equation becomes

~~
+ U

~~
=

Djj
~~~

(2)
at ax ax~

where x is now the direction of the mean flow, and D
ii

the dispersion coefficient. Our goal is to

relate this coefficient to the geometrical structure of the self-similar network and the possible
stagnation effects.

£
:

:

'
~

L

Fig.

tracer £.
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Fig. 2. Left : typical pore connection in the actual medium. Right the connection is accounted for by

an element of the model network composed of microscopic units of volume v~, The volume

v~ is such that v~ 3~, where 3 is the size of the interstices. The flowrate Q in the incoming pore is

distributed in the downstream pores with a partition w,, with £
w, =

1.

,

2. The transfer function formulation.

Consider a set of tracer particles entering a steady flow system, They may leave the system
together or in a dispersed order. Following Danckwerts (1953) [5] (see also [2, 6, 7]), we

denote by E (t) the Residence Time Distribution (RTD). The fraction of fluid which resides in

the flow system within t and t + dt is

E (t) dt (3)

Assuming the tracer particles ale instantaneously injected (I.e., Dirac 3 injection) in the

porous system, and letting Co (t be the concentration of the tracer at the outlet of the system,

one has

~

j°' co(t) dt

~~~~ ~~
~~~~ ~~

~~~

E(t) is an intrinsic property of the system which depends only on its geometric features

(convectivity of the pores, existence of stagnant zones), on its hydrodynamic state (turbulent

or laminal), and, more generally, on its ability to mixing. When C~ (t) is the concentration of

tracer at the inlet of the system, then Co (t) is given by the convolution integral

co (t)
=

~
E(r) cj(t r) dr (5)

Going to the Laplace domain, (5) becomes

G is)
=

j~ E it) e~~~ dt
= ~j°(~ (6)

o I S

where s is the Laplace palameter. The Laplace transform G(s) of E(t) is usually called the

transfer function of the flow system. The moments of the distribution E (t) are simply related

to G (s) by

p~
=

j°'tkE(ti dt
=

(- i
k( (G

(sij (71
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Equation (7) means that G (s) is the moment generating function of E (t). According to (7),
the variance of the residence time distribution is

~
a2 ~ 2

trt
=

~G(s) -G(s)j (8a)
IS

s=0
35 s=0~

When there are no stagnation (trapping) effect we will write

~/
=

(2 y i) pi. (8b)

Palameter y will be used to compare the variance of the actual RTD with reference RTDS.

In what follows, we will describe an arbitrary flow pattem by a suitable network of

elementary flow units of known RTD Eo(t). A simple and idealized schematic example is

given in figure 2. Two special and idealized elementary flow systems will be of interest :

. Perfect plug flow where all the particles have the same residence time in the system, and

where no mixing occurs

Eo(t)
=

3 (t ru), pi = ru, y =

1/2 (9)

which gives

Go(S)
=

e~~~° (10)

The RTD (9) is the solution for equation (I) when r~ is the convection time in the interstice.

. The perfect mixing cell where the outlet stream has the same composition as the bulk of

the cell. This is the situation of maximal mixing, and

Eo(t)
=

e~~~~°, pi = r~, y =

I (11)
To

which gives

Go(s)
= j

~~

~

(12)

Equation II comes from a mass balance for the tracer over the cell. Let vo be the volume of

the cell, and Q the feed flow rate ; the mass balance equation is

dco
vo ~ =

Q (Ci Co To =

vo/Q (13)

Which is equivalent to equation (I) at the scale of the cell when a first order approximation is

used for the spatial derivative.

With these basic tools in hand, we can easily model the RTD of the whole network of

elementary units (either plug flow or mixing cell) using the following rules resulting from

equations (4) and (6) :

the transfer function of units in series is the product of the transfer functions of the

units ;

at the nodes of the network, the transfer functions are combined according to

Kirschoff's law.

We will essentially use the perfect mixing cell as the basic flow unit because it allows one to

simply model various mixing states. Letting

go(To s)
=

(14)
+ To S
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be the elementary transfer function, the zero mixing state is obtained when there is only one

path (a unique residence time) in the network of mixing cells, It is, for instance, realized by an

infinite series of vanishingly small and identical microscopic mixing cells (Fig. 3a) with a total

volume V, Applying the first rule given above and using (14), the overall transfer function for

the series is found to be

TN (sj
=

igo( To s)i/~
,

To ~

)
>

~ ~

)
>

Y =

()
(lsj

In the limit of vanishingly small mixing cells, (14) gives

~ ~~~ ~~~~ ~fl~
+

~s/N
~

~ ~~ ~~~~

We recover here the well-known result that a volume V divided into an infinite series of well-

stirred zones is equivalent to a plug flow, that is, to a non dispersive system [6].

The other already mentioned limit is that of perfectly well mixed flow. This limit can be

obtained if we consider a system made of microscopic mixing cells placed in palallel (Fig. 3b).

The overall transfer function is then

vo V/N V
~

(17)G (s)
=

go(To S)
= j + ~s, ~° ~ W " W Q

Intermediate mixing, or dispersion states can be modeled with the concept of continuous-time

random walk [13, 14] with an exponential waiting time distribution at each step. Assuming

that we are interested in the RTD at step N, and that To is the time constant of the waiting

time distribution, the RTD is r~ (s). Consequently, N mixing cells in series, with finite N, can

account for a dispersed plug flow [2, 6, 7, 9], at least in the high P6clet number limit. This

property will be used later to compare the RTD of a self-similar network with the RTD of a

standald dispersed plug flow represented by T~(s).

a)

lj~~~
h)

Fig, 3. The two limit bounds of mixedness. al Linear series of mixing cells, which yields no mixing in

the infmite limit. b) Mixing cells in parallel leading to a perfectly mixed macroscopic volume.
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We now iocus our attention on strongly disordered media bearing self-simi1al flow-paths
regions. The existence of a stagnant phase in the medium requires a modification of the

microscopic transfer function go(ro s), therefore we will split the study into two successive

sections in order to cieally distinguish between geometric and trapping effects on dispersion.

3. Geometrical dispersion.

Consider the recurrent structure of figure 4. The network is fed by a flowrate Q of carrier

fluid, and has a total volume V. The generating flow pattem (n
=

I, Fig. 4) is made of three

mixing cells of transfer functions derived from go(ro s) according to the partition of the flow

rate between the parallel branches. Iu figure 4, only three generations of the constructions are

illustrated. The procedure exposed below consists of computing the transfer function

g~(rs) corresponding to n simila1repetitions of the generating pattem. The passage to the

limit n - oo permits one, first to find G (s), the transfer function of the limiting network, and

second to obtain the time moments of E (t) by an expansion of G (s) about s =

0. Iu this limit,

an elementary mixing cell represents an infinitesimal part of the whole volume V (precisely
V/3~), as requested by the local convective limit discussed in section I. We first focus on the

first two moments, such that

For the sake of simplicity, we further suppose that the flow rate is equally distributed in the

downstream pores at each node of the network. For instance in figure 4, n =
I, the flow rate

in the two palallel branches is Q/2. This corresponds to a kind of ergodicity assumption under

which the tracer particle should spend a mean time proportional to the volume of each pore
[3]. According to this assumption, the mean residence time in the branches at a given level

should not depend on the flowrate partition, but only on the volume of the branches, and this

condition is realized by the equipartition of Q. The case corresponding to a partition of the

flowrate such that the pressure drop would be equal in each branch (that is Q/3 in the branch

beating two cells and 2 Q/3 in the other branch) as well as any other flowrate partition can be

treated by the same method and the general results ale exposed in the appendix. We will refer

to this later.

Going back to the example of figure 4, we want now to express the transfer function of the

n-th generation g~(rs) as a function of g~ i
(rs) by a renormalization procedure. Assuming V

is fixed, the total volume of the network at level n I is one third of the volume at step n. As

we calculate the transfer function g~ at each step with respect to the same total flow rate Q,
the argument of g~ is Vs/Q

= rs, whereas the algument of g~_i is (V/3)/(Q/2)s
=

2 rs/3. A simple mass balance over the nodes of the network gives the recurrence relation

related to the pattem of figure 4

gn(TS)
=

lg(-1(2 TS/3) + gn-1(2 TS/3)j (19)

with the initial condition go(ros)= I/(I +ros), r=3~r~. A numerical inversion of

g~, giving the RTD E~(t) at various steps is shown in figure 5. E~(t) rapidly becomes

stationary with respect to n, typically as n approaches 50. This suggests that g~(rs) reaches a

limit which should be the solution for the fixed point equation obtained when deleting
subscripts n and n-I in equation (19). Since, according to (7), the moments of

E~(t) can be derived from g~(rs), equation (19) is also a recurrence equation for the
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n=0
-~-

~n =
1

n=2

n=3

Fig. 4. Three successive steps of construction of a self-similar network, starting from the elementary
cell (n

=

0) of transfer function g~, and the generating pattem (n
=

1).

o

0.8

,

0 2 3 4 5 6

t/~

Fig. 5. Evolution of the residence time distribution (dispersion front resulting from a Dirac pulse at

the inlet of the network) accordir~g to the step of construction n of the self-similar network of figure 4.
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moments. As explained in the appendix, the successive derivatives of (19) with respect to

x =
rs provide a recurrence equation for each moment of order j, p~,

~,

of E~(t).
We now assume that the generating pattem is made of several palallel branches, each of

them being fed with a fraction w; of the total flowrate and containing k; mixing cells (see

Fig.13 in the appendix). The mathematical derivations given in the appendix lead to the

following results. The recurrence relationship is

Gn (S)
"

gn (~S)
=

z
W ; gn I

fl ~

(20a)

Provided that all the moments p~,~ converge as n tends to infinity, the limiting transfer

function G(s) is the unique solution of the fixed point equation

G (s)
=

g (rs)
=

z w, (g
fl ~~

(20b)

All the moments pj
~

converge with n if and only if

C~ =
~j

~~
<

l
,

k
=

~j k;. (21a)

,

k (kw,Y
,

Condition (21a) is fulfilled if and only if

kw~
~

l. (21b)

To understand qualitatively (216), one may notice that I/kw
;

is the renormalizing factor of the

mean residence time in a cell of branch I from generation n to generation n + I. This factor

has to be less than unity otherwise the residence time in this branch would increase to infinity
with n leading to an «

accumulation zone »
in the network, that is to a very broad final

distribution E(t) and to diverging moments. Note that when the flowrates are either equally
distributed in all branches, or partitioned such that the pressure drop is the same in all

branches, condition (21a) is always fulfilled (see appendix).
The recurrence relation for the moments gives, at order two, the expansion of

gn(TS)

with

pi,
~

= r =

V/Q (23)

Letting y~ = p~ J2 p)
m

one obtains the relation (see appendix (Eq. (A16)))

Yn=B+AYn-i,
A=C~=z), B=z~'j(~~~~ (24)

, , ,
;

and, provided (21b) is fulfilled

Y "

LlDl yn ~

~

~
(26)

n~m
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In the particula1example of figure 4, ki
=

I, k~
=

2, wi = w~ =
0.5. A

=

2/3, B
=

2/9 and

y =

2/3. Thus

G(s)
=

I rs +
(rs)~

+ O (s~) (27)

is the exact expansion in s~ of the transfer function of the self-similar network at infinite

generation. With y =

2/3, this network exhibits a dispersive behaviour which is intermediate

between plug flow (y
=

1/2) and the macroscopic perfect mixing cell (y
=

I ).
One can proceed iri a simi1al manner with other types of generating pattems. Figure 6

shows some simple and typical cases, which define two distinct classes. Pattems leading to

1/2
< y < present different pathlengths to the fluid. The possible paths of different lengths

in the network at infinite generation imply a broad (most of the time irregular ; this point is

discussed later) macroscopic distribution of pathlengths. The more the pathlengths in the

generating pattem differ, the closer y is to 1. Conversely, pattems which involve only one

possible path give rise to only one macroscopic pathlength, that is to a unique residence time

characteristic of plug flow (y
=

1/2).
When condition (21b) is fulfilled, the fixed point equation (20b) shows that the limiting

transfer function G (s) and its moments ale independent of go. This is consistent with the fact

that the local convective equation (I) can be modelled, in the differential limit To -
0), by

~~ ~[ i
~~ ~

c) I) ~
Fig. 6. A few examples of generating pattems. Assuming equipartition of the flowrate in the

branches, pattems a), b), c) present two paths of different lengths and lead to 1/2
< y <

I. Pattems d),
e), f~ exhibit a single pathlength and lead to y =

1/2. The recurrence relations are

a) g~ (3~ To s )
= ~g~ (3~ 2 .To s )~ + g~ j

(3~ 2 To s )1/2 ; y =
2/3

~) 9n( (~l ~ ~2)~ T0 S)
#

lgn
I

((~l ~ ~2)~ 2 T0 S)~~ ~ 9n -1((~l ~ k2)~ 2 T0 S)~~l/2,

2 y #
(k2 kj )~/[(kj + k2) (kj + k2 2)]

c) g~(5~ To s)
= g~

j
(5~ To s)~ [g~

j
(5~~ 2 To s)~ + g~_

j
(5" ' 2 To s)]/2 ; y =

9/17 ;

d) gn (4~ T0 S )
= gn 1(4~ To S )~ gn 1(4~ 2 To S Y =

1/2

~) gn(3~ T0 S)
" gn -1(3~ To S) gn -1(3~ 2 To S) Y =

1/2

f~ 9n(" T0 S)
"

gn-1(4~~ T0 S) gn-1(4~~ 3 T0 S) Y =
1/2.
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any flow system with chalacteristic residence time To. The fixed point equation can also be

used for calculating the limiting moments. In the case of figure 4, one obtains

G (s)
=

g (rs)
=

j g2 rs) + g
2 rs) (28)

Then, using (7) and pi = r, successive derivatives with respect to s give p~ =

(4/3) RI,

p~ =
(32/15) RI, p~ =

(3 328/855~ pt.. The fixed point equation can be found for any

generating pattem as soon as the recurrence relation is derived, and it allows one, as an

altemative method to that presented in the appendix, to calculate the complete series of time-

moments by an expansion of G(s) in powers of s by a recurrent method. However, let us

mention that when condition (21b) is not fulfilled, the existence and uniqueness of the fixed

point solution is not demonstrated. Using the fixed point equation to obtain the moments can

lead to erroneous results in that case.

To compare the dispersion state resulting from the self-similarity with a standald dispersed
plug flow, we match the variances of G(s) and of T~(s) (see Eq. (15)) to obtain

N
= ~

(29)
Y

For y =

2/3, the RTD of the self-simi1al network of figure 4 at infinite generation is

compaled with the RTD of a series of N
=

3 mixing cells in figure 7. This comparison shows

that the RTD of some self-similar networks can be close to the RTD of mixing cells in series,

or altematively, of a standard dispersed plug flow even though N is low (or y close to 1).

~sq~
~q 0.4

~

o-o

0 2 3 4 5

t/~

Fig. 7. Solid line : RTD of the network of figure 4 at infinite generation (n
=

50). Dotted line RTD

of N
=

3 mixing cells in series.
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However, this is not a general rule. Considering the generating pattern made oi two parallel
channels containing ki and k~ microscopic cells respectively and fed with equal flow rates (see

Fig. 6b), one finds

g~ (ki + k~)~ To s]
= (g~~ i

[(ki + k~)~ 2 To s] + g~~ i
[(ki + k~)~ 2 To s]) (30a)

2

~2 (k~ kl)~
(30b)Hi " ~

'

~ ~
(ki + k2)(kl + ~2 ~~

One checks that y =1/2 for ki =k~ (identical paths in the two branches). When the

difference k~ ki in the pathlengths is increased, figures 8a and b show that the RTDS are

distorted, and can present several maxima. Such generating pattems would be interesting to

model bypasses through fractured or heterogeneous media. In the limit ki/k~-0,
E(t) is the sum of two equal Dirac peaks, one located at t

=

0 corresponding to the by-pass
through the volume (ki/(ki + k~) V

-
0, the other located at t

=

2 r, corresponding to the

longest path through the volume (k~(ki + k~)) V
-

V, crossed by a flowrate Q/2.

The shape of the RTD is very sensitive to the partition of the volumes in each channel.

Figure 9 shows that for ki + k~
=

6, and omitting the trivial case ki
=

k~
=

3 leading to plug
flow, the distribution with ki =1, k~= 5 is very different from the distribution with

ki
=

2, k~
=

4. In an equivalent manner, the shape of the RTD is also very sensitive to the

partition of the flowrates in each channel. For ki
=

I and k~= 2, figure10 shows the

distortion of the RTD for various partitions, starting from the convergence condition

w~ =

1/3 which displays a monotically decreasing behavior without maximum.

These extreme situations clearly demonstrate that the first and second moments of

E(t), or the associated spatial moments, are not sufficient to depict dispersion properties of

self-similar systems. In these particular cases, the computation of a dispersion coefficient

would not make any sense. However, self-similar networks which present a narrow

distribution of pathlengths in the generating pattem give rise to a «
regular

»
RTD, with a

single maximum (Fig. 7). In this case of anomalous (the diffusion front is not Gaussian), but

«
regular

»
dispersion (a single maximum), the RTD is fairly approximated by (16) and (29),

at least for long times. The long time asymptotic form of the RTD may also be extracted from

the generating pattem; using Tauberian theorems [16], the asymptotic behavior of the

limiting distributions is given by

E (t) L (I/t) t~ P when t - oo

where L (x) is a slow varying function at the origin (see Feller [16]), and p is the smallest root

greater than 2 of

~j~'(kw,)~~P =1.

4. Traps and dispersion by a stagnant phase.

For intermediate P6clet numbers, porous media are readily modelled by the fraction

I f of the volume where no hydrodynamic motion takes place [2, 3, 8]. The medium is

assimilated to a network of convective paths (as previously) liable to exchange mass with a

stagnant phase via essentially diffusive Brownian processes.
We want to sketch the incidence of a stagnant phase uniformly distributed into the volume.

We assign a trap zone to each microscopic mixing cell in the network. Then, the basic element
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k~=I, k~=5
k~=I, k~=3
k~=I, k~=2

p
~J

o.5

0.0 0.5 1-O 1.5 2.0 2.5 3.0 3.5

t/~

a)

k~=1, k2=10000

k~=I, k~=loo0

~
k~=I, k~=loo
k~=I, k~=lo

~
~

#4
~ 6

4

2

o

0.0 0.5 1-O 1.5 2.0 2.5 3.0

t/~

b)

Fig. 8. RTD at generation n =

50 based on the generating pattems of figure 6b. Effect of increasing
the difference in the pathlengths.
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4

3

k~=3, k~=3

~

k~=2, k~=4
(

2 k~=I, k~=5
~

l
",

' ,
' ,

' ,
' '

' ,"~
'

/ "

"

'

'

i ',
i

1

,

0 2 3 4

tI~

Fig. 9. RTD at generation n=50 based on the generating pattems of figure 6b with

kj + ki
~

6. Effect of the difference ir~ the pathlengths.

of the network is divided in two subelements, first a convective path of volume

fvo, and second a stagnant zone of volume (I f) vo (Fig. II). We assume that these zones

are coupled by a first order mass transfer law of the form

dc~ co- c~
W"

t~
~~~~

where C~ and Co are the concentrations of tracer in the stagnant zone and in the convective

path respectively, and t~ is a characteristic hold-up time. This law is equivalent to an

exponential release contribution of the tracer at each step [3, 13, 14].

Linear adsorption could easily be embedded in (31) by replacing Co C~ by Co/K C
~,

K

being an equilibrium partition coefficient depending on temperature. The trapping time

t~ depends on the detailed mechanism of the transfer process, and it can be interpreted either

as the exploration time of some small scale f of the medium (t~
=

f~/D~ or f~/D~,

D~ beeing the
« ant »

diffusion constant defined by [I] when f is a fractal lengthscale), or as

the characteristic desorption time constant of an adsorption process [1, 2]. An elementary

mass balance gives the transfer function of the microscopic cell (Fig. iii

~°~~° ~> ~°'~

i + ~~~ s +

(
i
~i~iio s

~~~~
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k~=I, k~=2

2.0

o~~= 0.6

p o~~= 0.45
~

m~ =1/3

.o

o.5

o-o

0 2 3 4 5

t/~

Fig. IO. RTD at generation n= IO based on the generating pattems of figure 6b with

kj
=

I, ki
=

2. Effect of flowrate splitting, w~ is chosen to ensure moments convergence.

=: .~~ll[I[][ I[1,~ fvo

'.. )I_[(lj~~l ;l~J Qo QCO
,<~" 'i' ml ~,.i Co

~l
.>='~ li~]1

.; ~
4'

:_'[ Ii
_~~

<]~_.m~ij_

;:. i <I Cs

~'
~

(l-f)vo

Fig. II. Left : stagnation zone adjacent to a pore in the actual medium. Right : trapping is accounted

for by a microscopic volume v~ which is divided into a convective fraction fvo, and a stagnant fraction

(I f) vo. The two fractions are coupled by a rust order mass transfer law.

The limiting situations where f
=

I or t~
=

0 restore the previous microscopic function (14).
If t~ scales as To (t~= Aro, A

=

constant), then go(r~s, t~) becomes a function of

To s only as in the absence of stagnation effect. The results of section 3 hold and the limiting
RTD is independent of the trapping phenomenon. This is easily understood since in that case

the traps are vanishingly small at infinite generation. If t~ is related to a process that does not
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follow a scaling law (t~ independent of n), equations (20), (21) still hold, whereas the second

order expansion of go is

~2
go(ro S, tm)

=

I To S + (2(1 f) To tm +
vi)

j + O (S~) (33)

The term 2(1- f) To t~ accounting for stagnation effects is linear in r~ and thus it

renormalizes like the first order moment pi,
~

= r to become 2(1- f) rt~ at the n-th

generation. Furthermore, we know that flow and trapping effects additively contribute to the

variance of the RTD [9]. Consequently, the expansion of the transfer function is

G~(s)
=

I rs + [y~ r~
+ (I f) rt~] s~ + O (s~) (34)

where y~ is still given by (25), and convergence of moments is ensured by (216). The limiting
variance is thus composed of two terms

al
=

(2 y I) T~
+ 2(1 f) Tt~. (35)

The first corresponds to the previously discussed geometrical dispersion contribution, and the

second accounts for stagnation effects which, as expected, vanish for f
=

I or t~
=

0.

5. The dispersion coefficient.

When this coefficient makes sense (I,e., essentially when the distribution E(t) has only one

maximum), the expression for the dispersion coefficient in a linear sample of size L can be

derived as explained below. We assume that the medium is locally self-similar over a

correlation length $, and we picture the medium as a series of P
=

L/$ fractal elements or

blobs (Fig. 12). Consequently, if G (s) is the transfer function of the self-similar element, then

the transfer function, Gp(s) of the whole system is

Gp(s)
=

iG(s)i~ (36)

The mean square spatial deviation of the tracer distribution is

~~
"

(X~) (X)~
~

2Djj pi (37a)

~~
"

U~(R2 al)
=

U~ al (37b)

then, Dj reads, as a function of the variance of the residence time distribution

Dj
=

~~i
(38)

2

~

The variance al is derived from the whole transfer function of the sample in its expanded
form (34)

GP (s)
=

Ii I
s + Y

I ~

+ ( i f ) I ml s~
+ O

s~)1~
(39)

where
T = p~ =

V/Q
=

L/U, and P
=

L/$. From (8), one finds al
=

(2 y I) T~/P
+

2(1 f) Tt~ and

Di
= Y

j
u£ + (i f) u2 t~. (40)



1038 JOURNAL DE PHYSIQUE II N° 5

u

~

p~
L

Fig. 12. A disordered medium is modeled by a series of P fractal cells of size equal to the correlation

length £.

The dependence
D11

Ui~ is characteristic of geometric dispersion [3, 8]. Here, the dispersion
length i~

=

(y -1/2)£ is a fraction of the correlation length £. The contribution to

D
ii

of stagnation is proportional to U~, which is characteristic of trapping. One may notice that

dispersion can occur without geometrical effects (y =1/2), as commonly encountered in

linear chromatography for instance [9].

Concluding remarks.

Our model is based on the microscopic principle of continuity and applies to disordered media

bearing a local self-similarity. The fractality is not an essential feature of the resulting
dispersion process since no fractal dimension emerges from our computations. Only the

connectivity of the network plays a major role via the difference of pathlengths in the

generating pattem.
The self-similarity roughly results in two contrasting situations. When the distribution of

pathlengths in the generating pattem is narrow, the RTD has a single maximum and it looks

like the RTD of a standard dispersed plug flow. We call
«

regular dispersion
»

this situation

where the definition of a dispersion coefficient makes sense, and where the dispersion

coefficient splits in two additive contributions (I,e., geometrical and trapping) as already

known [1, 3, 10,12].

When the distribution of pathlengths in the generating pattem is broad, the existence of

bypasses through the macroscopic fractal region is revealed by a RTD with several maxima.

We call this situation
«

irregular dispersion
».

In this case the definition of a dispersion
coefficient does not make any sense since the first two time-moments are not sufficient to

characterize the RTD. We strongly emphasize that the dispersion front is never Gaussian in

spatial dimensions.

Standard flow models, based on mass balance equations, lead either to ordinary differential

equations (see Eq. (13)) or to partial differential equations (see Eqs. (I) and (2)). In the

Laplace domain, G(s) is thus defined either by an algebraic equation or by a differential

equation which is generally easy to solve. On the contrary, self-similarity results in an implicit
fixed point equation for G(s) (see Eq. (20b)), which is generally impossible to solve

explicitly. It would be interesting to study the properties of these equations in order to get

some general results relating the RTD to the structure of the generating pattem.

Unfortunately, it seems that there is no simple method for deriving the fixed point equation
from a visual inspection of the generating pattem, except in very simple cases as those dealt

with in this paper.
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We have assumed that the basic element of the generating pattem is defined by a single

transfer function go(Tos), and we have shown that the limiting RTD is in dependent of

go for any pattem composed of parallel branches with a flow partition which ensures moments

convergence. It would be interesting to know whether the RTD converges towards a unique

limit E (t) independent of go for large n in case of diverging moments. More general situations

where the generating pattem is composed of different basic elements (multifractal sets) could

also be studied. Do these systems exhibit a more «
regular

»
dispersion behavior (smoother

RTD) or a more «
irregular

» one (more randomly located peaks than those of Fig. 8) ? In

case of
«

irregular dispersion », one may wonder whether there exist some generating pattem

which could lead to a RTD composed of a «
chaotic

»
series of peaks. The latter situation

would probably be a candidate for modeling turbulent dispersion and flows where large scale

eddies induce more or less random peaks in the early stage of a RTD.
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Appendix.

Consider a generating pattem made of I parallel branches, each of them being composed of

k, identical cells in series and crossed by a fraction w~ of the total flowrate Q (Fig, 13). We

assume that there is no stagnation effect in the elementary cell. The transfer function

G~(s) of the network at the n-th generation is given as a function of the transfer function of

the previous generation g~ i
by the recurrence relation (Same derivation as in the example of

Fig. 4 ; see Sect. 3)

G~ (S)
#

gn (TS)
=

z
W ;

g~
I

fl ~'
(A')

with

k
=

£k~, £ w~ =

(A2)

T =
k~ To (A3)

Q

kicells

Fig. 13. General generating pattem made of I parallel branches bearing k~ cells each and fed by the

fraction w~ of the inlet flowrate Q.
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At each generation n, the macroscale (I,e. T) is defined from the microscale (I.e.
To) by the dilatation factor k~, where k is the total number of cells in the generating pattem.
Let Gf~(s) be the derivative of G~ (s) with respect to s and let p ~, ~

be the moment of order j
of G~(s). According to (7), one has

Gj~(s)
=

TJ gy~(Ts) and p j, ~
=

(- ly TJ gy~(0). (A4)

With the following properties, holding for any microscopic transfer function

dgo(Ts)
go(0)

= ~~ = T =

Tg'(0) thus g'(o)
=

(A5)

With,r
= Ts and x~ =

x/kw,, one computes all the moments p j, ~

by successive derivations of

(Al).

Order 0

g~ (0)
=

by direct recurrence with g o(0)
=

(A6)

G(o)
=

1. (A7)

Order J

gi (X )
"

z
)

(gn
I (X> ) )~' gi

I
(Xi ) (A8)

~i(°)
"

~i- I(°)
"

~i(°)
"

l (A9)

Hi,
n

» T (A10)

Order 2 :

~i(X )
=

z
(

i (k; I (gn
I

(Xi ) ~~ ~ giL
I

(Xi ) + (gn
I
(X; )~' gi-

I
(Xi ) i (Al1)

gl'(0)
=

£
fi

[(k, I) + gl'_1(0)]. (A12)
k w;

Let

A
=

z )
,

B
=

£
'~~~~

(Al 3)
k

w I
2 k

w

The recurrence for the moments is then

p~,~= 2BT~+Ap~,~_i. (A14)

Looking for an expansion of the type

gn(X)
=

I X + yn X~ (A15)

one obtains

Yn "B+Ayn-1 (A16)

that is to say

A~gi(°)
~

l A~
(A17)Yn

" 2
+

1 A
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If A
=

I, y~ diverges with n such that

Yn "
i + nB (A18)

When A
~

l, y~ goes to the limit y

B
"

l -A'
(A19)

The variance of the distribution is then given by

~2j
=

2 y -1. (A20)

T

Remarks :

I) If km
>

l for any I, then

A=Z/j~Zl'=I

In this case, the variance al and y remain bounded.

2) The variance is zero if y
=

1/2 (plus flow), giving also

~2
~2_ ~

W;

Order 3 :

gl'(X)
=

z
)

j(ki i )(ki 2) gn I (Xi
~~ ~ gl~

I
(Xi ) +

,
;

+ 3 (k; I ) gn I
(Xi )~'

~ gi-
I

(Xi ) + gn I
(X,

~~ gi'-
I

(X; )1 (A21)

g("(0)
=

z
fi

[g("_1(0) (k~ I )(k~ 2) 3 (k~ I gl'_1(0)] (A22)

,

k w~

~~'~
~'~~~~l~k~j~/~

~ ~
~~~~~ll~~~~~w)~~

~
~~l~~~~~~ ~~~~ ~~

(A23)

Order j

~~ ~~ kw~~Y
~~ ~~'~

~~ ~~~ ~~' l~ ~~~ ~~ ~~' ~~~~~

~

p j ~
=

~~'~ i + pj
~

= p j ~ i
C

j
+ (A25)

k (kW
i

The moment p~,~ is proportional to the moment of the same order j of the previous
generation n I via coefficient Cj plus a contribution of the moments of order lower than j
with

Cj
=

Z( ~~)y
-1,

C2
=

A (A26)
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From (A25), the moment p j, ~
converges with n if and only if all the lower moments converge

and C
j ~

l. If there exists one branch for which km
~

l, then p~,
~

will start to diverge with n

as soon as j reaches j * such that I/(kw f* makes C~ to become greater than I. Conversely,
if p j, ~

converges at any order j, then C
j ~

l for any j and all the moments of order lower than

j converge. The conclusion is then that all the moments of the distribution G~(s) converge if

and only if

km
>

l (A27)

Particular choices of the distribution of w~.

I) Equipartition of the flowrate Q in N branches. Then w~ =

I/N and kmN.

Consequently, condition (A27) is always fulfilled, the equality km
=

l corresponding to the

case where all branches are composed of a unique elementary cell, (I) leading to

gn
=

gn-i
"

go-

2) Partition of w~ with equal pressure drop in all branches. If the flowrate admitted in

each branch bearing k, cells is such that the pressure drop (or voltage) is the same for each

branch, then k~ w~ must be a constant independent of I. This gives

w, =

(A28)

k, z
j

kj

One checks that for all
k~ m I, Ik~ m k, Il/k~, then for all I, km

= w~ Ikj
m I, and all the

moments of G~(s) converge with n.

An infinite series of bounded moments uniquely defines a Laplace transform [16].
Consequently, when p~,~ converges with n, the existence and uniqueness of a limit

G(s) to the solution of the recurrence equation (Al) is demonstrated. Moreover, since

C~ and pi = T are independent of go, the series of limiting moments and G(s) are also

independent of go. It is thus necessarily the unique solution of the fixed point equation

G (s)
=

g (Ts)
=

z w, (g
fl ~~

(A29)

This also demonstrates that the final distribution function and its moments (especially
y) are unsensitive to the details of the microscopic elementary cell (I,e, go) and that only the

connections inside the hierarchical structure (k,, w~) play a role at the macroscale.
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