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Abstract. We show that the boundary conditions imposed
on

the director fluctuations in

nematics by the presence of rigid walls give rise to long-range forces analogous to the Casimir

effect in electrodynamics. We discuss different caJculational schemes for the derivation of this

result. We derive the spatial behavior of this interaction for smectics and columnar phases in

different geometries.

1. Introduction.

The fluctuations of the electromapletic field generate long-range forces between macroscopic
objects such

as
conducting bodies. These fluctuations may be of quantum or of thermal origin.

To each eigenmode of angular frequency
w

of the classical electromapletic field corresponds
a

quantum zerc-point energy equal to hw/2. Casimir [I] first remarked that, although the total

zerc-point energy of the electromagnetic field contained in
a

cavity bounded by conducting walls

is divergent, its variation due to a
displacement of the boundaries is finite and corresponds to

a
weak, but measurable attraction between the walls. In the case of two parallel, conducting

plates separated by
a

distance d, Casimir showed that the interaction energy density per unit

area is given by:

E(d)
=

~ j~
i i

The presence of h witnesses the quantum origin of the fluctuations.
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At high temperature, the same efsect shows up in the classical regime, where fluctuations

are of thermal origin. It produces long-range interactions, akin to van
der Waals interactions.

In this regime (kBTd » hc), the energy density between two parallel conducting walls is given
by

Eld)
"

~)) ~((~
'

Ii'2)

where (R is lliemann's 2eta function.

An analogous efsect takes place in anisotropic mesophases [2], when immersed bodies con-

strain thermal orientational fluctuations, through the boundary conditions they impose on

the surface. This is the case, for example, for nematic liquid crystalline phases, which is the

main subject of this paper, but also of smectic and columnar phases, which we shall touch upon
briefly. There is however an important difserence with the electromagnetic case: if the geometry
of the immersed bodies imposes a distortion on the average director field, the repulsion result-

ing from the corresponding energetical cost will in general dominate the fluctuation-induced

interaction. Such a mean-field interaction does not exist for the case of uncharged bodies in

the vacuum.

In the present paper, we shall only consider the simplest geometry: namely, the case of

two parallel plates, immersed in a nematic solvent, with normal boundary conditions
on the

nematic director ("strong homeotropic anchoring~'). In this situation the average director

field is normal to the wall and uniform in space, producing thereby no interaction. We shall

show how the fluctuation-induced interaction may be calculated by adapting to the present case

several techniques developed for the Casimir efsect. In the regime where anisotropic mesophases

are stable, thermal fluctuations dominate over quantum effects. We shall only be concerned,
therefore, with the analogue to the high-temperature limit of the Casimir effect (Eq. ii.2)).

The model and notation are
introduced in section 2, where we show that longitudinal and

transverse degrees of freedom contribute separately to the effect. In section 3, we introduce

a transfer-matrix technique and we compute the free energy by exploiting the analogy with

the one-dimensional quantum oscillator. A dynamic approach is expounded in section 4: we

introduce
a

formal dynamics by means of
a

Langevin equation, which allows to calculate directly
the correlation functions of the director and the stress exerted on the plates. Section 5 contains

the discussion: similarities and differences with the Casimir effect
are

pointed out, extensions

to other mesophases are described, and a few cases where the effect we have described may
be experimentally relevant are reviewed. The splitting of longitudinal and transverse modes is

discussed in more detail in Appendix I, whereas an approach based on the direct counting of

fluctuating modes and on the zeta regularization technique is reported in Appendix 2.

2. Model.

We consider a nematic slab of thickness d, placed between two flat, parallel walls situated on

the planes z=0 and z=d respectively (Fig. I). We denote by I the nematic director, and by (
f I the unit vectors parallel to the z, y and z axes. The energy of the system is the sum of

a
bulk term lib and of the surface contribution lis, describing the anchoring of the nematic

ordering on the walls. The bulk term is given by [3]:

lib
"

/
dzdy /~ dz Ki(div £)~ + K2(£ rot £)~ + K3(£ x rot

)~j
(2.I)

o
2 2 2

The surface contribution is given by

2ts
=

/
dzdy (- ~) (i £)~, (2.2)

2
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Fig. 1. Schematic drawing of the "Casimir" geometry for the nematic case.

where the integral extends to both walls. If1 > 0, the nematic director tends to align along
the normal to the surface. On the other hand, if1 < 0, the director tends to lie parallel to the

surface. The situation is made
more

complicated, in this case, by the unavoidable presence of

anisotropy fields which tend to align £ along preferred directions in the plane. We shall only
consider the first case, and take the strong anchoring limit, correspondinj to I

- cc.

In the state of lowest energy the director £ is uniform and parallel to k. If we
consider only

small fluctuations around this state, we have

it In«> ny> i)
=

(n>1). (2.3)

We shall denote by v a
twc-dimensional vector and by I

a
three-dimensional one. In the

harmonic approximation one obtains the following expressions for 2tb and 2ts:

lib
=

/
dzdy /~ dz

)Ki(V
n)~ + )K2(V x n)~ +

K3(0zn)~j
,

(2.4)
o

ll~
=

/
dzdy (n~(z, y, z=0) + n~(z, y, z=d)) (2.5)

Here V is the twc-dimensional nabla operator. The field n may be split into its longitudinal
and transverse components:

n = ni + nt> (2.6)

such that

V x ni =
0; V nt =

0. (2.7)

By applying this decomposition to (2A) we
obtain:

~lb
=

~li (nil + ~ltIntl (2.8)



490 JOURNAL DE PHYSIQUE II N°3

where

~~~~~
/

~~~~
~

~~
~~~~~

~~~~ ~
~~~~~~~~~i

'
~~'~~

~~in~i
=

f
dzdy j~ dz [(n~(v x n~)2 +

~~(ozn~)2j
(2.io)

The surface contribution (2.5) splits into two terms of the same form, one involving the longitu-
dinal field ni and the other the transverse one nt. Therefore one may consider the longitudinal
and transverse fluctuations separately.

3. Partition function.

We now calculate, in the harmonic approximation, the partition function of nematic fluctu-

ations in the slab. Due to the separation of longitudinal and transverse modes,
we can first

consider only the longitudinal field ni, treating it
as a scalar field #. This procedure can be

justified by the projection operator technique discussed in Appendix I. We obtain therefore:

zi
=

/
D> exp

(- ] (~ii~i + ~s id) (3.1)

Due to translation invariance in the (z,y) plane, Zi factors into independent contributions

Zi(q),
one for each independent wavevector q parallel to the (z, y) plane.

One has:

zi(q)
=

f
D#(q, z) exP

(-( (#~(q> z=0) + #~(q>
=d)))

exP (-liq)
,

(3.2)

where #(q,z) is the Fourier transform of #(z, y,z) along the (z, y) plane, and
we

have defined

fig
=
j~ dz

)kiq2<2
+

ii~(oz<)~j
(3.3)

The elastic parameters have been rescaled by kBT:

I
=

I/kBT; k;
=

K;/kBT, I =1, 2, 3. (3.4)

Equation (3.2) may be cast in the form

zi(q)
=

f
d#od#i exp I- (#I + if) Kd(#i, #o), (3.5)

'~~~~~

J~~~<i, <o)
=

iii'((' D>(z)
xP1- ~

dz
ii~>~~'~

+
>~~°~~~i1

~~~~

The kernel Kd(#> lo satisfies the equation

~Kd(#> lo)
=

(£$ kiq~#~j
Kd(#> lo)> (3.7)

3

~
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analogous to the Schr6dinger equation for the one-dimensional oscillator. The initial condition

reads:

Ko(<><o)
= &(< <o). (3.8)

Therefore Kd(#,#o) may be expanded in the form

m

Kd(#> lo)
"

£e~~~(~~~'~>~ltp(i)ltj(10)> (3'9)

p=0

'~~~~~

~~ = (t>
'

q =

(j)
q, (3.10)

'C3 3

and where the ~p's are
eigenfunctions of the quantum harmonic oscillator. They are given by

~p(#)
=

) ()) e-fl~~~'~Hp(@#)> (3.ii)

where

~~
=

(i~ik3)~q> ~~ ~~~

and Hp(z) is the p-th Hermite polynomial.
Equation (3.5) now takes the form

zi(q)
= £e-Wq~P+1'2>d fd#oe-~~"2~~(#o)) /d#ie-~~?'2~~(#1)) (3.13)

~

The integrals can be evaluated (Ref. [4], formula (7.373.2) p.837) and give

zt(~)
=

e-~~~'~ (9) ' p~~i )

~

~ii~l,~"
-~~~~

(li II
j ~

(3.14)

Performing the sum we
obtain

j 2

Zi(q)
=

e~~~~'~ ~~ ~~
i

~~ e~~°~~ (3.15)
~ flq + 1 flq + 1

The contribution of the longitudinal modes to the free energy per unit area
of the nematic slab

is therefore given by

~
~~~

/ ~$2
~~'~~~

kBT
~
j

~q

~
j d2q

((flq)1(
2x )j

2 (2x)2"~ ~~
(2x)2 ~

x fl~ + I (3.16)

kBT j d2q flq-I)~
_z~

j
~

2 (2x)2 ~

fl~ + j ~ ~
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Taking
now the strong anchoring Emit (I

-
cc)

we obtain

~ ~~~ /
(~12"~ ~ ~~~

/ ~12
~~

~x) ~~~~~

~

(3.17)

~ ~~~ (~~ ~~ ~~ ~ ~~~~

The first term is
a bulk contribution to the free energy density of the system. The second term,

independent of d, is a
contribution to the surface tension between the nematic and the walls.

Both terms are divergent for (q( - cc.
We shall discuss below how to cope with this problem.

We are interested in the third term, which is finite, and represents the fluctuation-induced

interaction between the walls. It may be explicitly evaluated to yield

~@ =

~~~' /~
q dq In Ii exp

'-2 (I)
qd

~ ~~
° '~~ (3.18)

~~
~) ~~~~~ ~~

'

where (R(3)
=

1.202, and, since the integral is convergent, we have moved the upper inte-

gration limit to infinity.
The contribution of the transverse modes to the elastic energy is analogous to that of the

longitudinal ones, up to the substitution of Ki with K2. The result is therefore analogous to

equation (3,18), with K2 instead of Ki Thus, the total contribution of the nematic modes to

the attraction between the walls is given by

~~ kBT jc3
1C2

~ ~~~ 'i
~

i~
~~~~~fl' (3.19)

The interaction thus obtained is obviously attractive.

The divergence of the first two terms of equation (3.17) is removed by the introduction of

an upper cutoff A in the integral over q. This cutoff corresponds to the shortest wavelength of

fluctuations in the directions parallel to the wall, and is of the order of the inverse molecular

size. It has therefore an explicit physical interpretation. On the other hand, no
such cutoff has

been imposed, in our
calculation, on the wavelength of fluctuations in the

z
direction. We do

not expect this slight inconsistency to modify our final result (3.19).
The analogy that we have highlighted between the phenomenon

we
have described and the

Casimir effect in quantum electrodynamics [I] suggests to analyze the present problem by
methods developed for the Casimir effect is, 6]. The authors of reference [6] distinguish two

broad classes of approaches: the mode-summation method, based on the direct evaluation of

infinite sums over energy eigenvalues of the zerc-point modes, and local formulations, in which

one exanfines the constrained propagation of virtual field quanta and considers the vacuum

stress tensor, which can be expressed in terms of propagators. The method we have just
discussed is close in philosophy to the mode-summation methods. We have also attempted

a

direct evaluation of the mode sum, taking advantage of the zeta regularization technique. This

calculation is reported in Appendix 2.

We discuss in the next section a method based on the direct evaluation of the stress tensor.
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4. Dyna~nic approach.

We discuss in this section the definition of the stress exerted on the walls by the nematic

present between them, and show how it
can

be directly calculated by an approach based
on

a Langevin equation, sinfilar to the method originally used by Lifshitz [7] to discuss
van der

Waals forces.

Let us consider a fluid, enclosed in a volume V, whose local ordering is described by
a scalar

field i7 (e.g., either the longitudinal or the transverse component of the nematic field n). The

corresponding free energy reads:

F
=

/ d/F(?i7). (4.i)
v

Here fl is the three dimensional nabla operator. We shall suppose to have "strong anchoring"
boundary conditions, i7 =

0.

Let us
consider the effect of

a
virtual expansion of V due to a displacement biof each surface

element dS of the boundary 0V of V. The variation of F may be written:

SF
=

/
di

~$ b(fli7) +
/ d§ bif(fli7)

=

/ ~~~ ~$
bi7 +

~~

d§ ~$
bi7 +

/ d§ bif(fli7).
~~ ~~

v 0(Viz) s=av 0(Viz)
s=av

The first term vanishes because the equilibrium state is a nfinimum of the elastic free energy.
On the other hand, i7 does no more vanish on the actual surface S, whereas it vanishes on the

virtual surface 0V + b(0V). Therefore, bi7 can be approximated on the actual surface by:

bi7 + fli7 bi= 0. (4.3)

Therefore

SF
=

/ d§ ~$ bi. 0q~ +
/ d§ bif. (4A)

s 0(Vq~) s

Defining the stress T by

SF
=

/ (d§
T

$4, (4.$)
S

we have therefore

The first

ncompressible nematics.
This description is well adapted to

our
problem, in

which
the

walls
are immersed in a nematic

bath,
implying

that

between
the walls.

We
shall now relate the above pression to

the
correlation

functions
of the

7i
= x

/
dzdy /~ dz [(Vq~)~ + (0zq~)~]

,

(4.7)
o
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where
K =

@@, I
=

(2) for longitudinal (transverse) modes, V is the twc-dimensional

nabla operator, and

~_
l/2

h
=

? d. (4.8)
'C3~

The stress on the wall at z =
h reads

Tzz "
I'(fiz9')~)

(j'
((fiz9')~ + (V9')~j (4.9)

where
we have taken the average with respect to the thermal fluctuations.

The thermal averages appearing in this formula can be simply calculated within a dynamic
approach. Although the introduction of a dynanfic equation is strictly speaking unnecessary,

it simplifies considerably the calculations, and it has
a

physical appeal, since it clarifies the

fact that the stress we are computing originates in the thermal fluctuations of the director. We

thus introduce a Langevin equation describing a model dynamics of our system:

7j~ K?~i7
= n(F> t)> (4.io)

where q(F, t) is
a

Gaussian white noise, satisfying

(q(f t))
=

0; (q(I, t)q(I, t'))
=

2~kBTb(t t')b(F- /). (4.I1)

The dynamics we have just defined does not necessarily describe the actual dynamical behavior

of the system, but the above relations are sufficient to ensure that the equilibrium properties
of the model (in which

we are interested) are the ones we
have

so
far considered.

The i7(I,t) field is then given by

q7(I, t)
=

f di~dt'G(I, t; >,t')q(>, t'), (4.12)

where G(I,t; i~, t') is the Green's function of the evolution equation (4.10) and satisfies:

~~~ KfI~G
=

6(F- I)b(t t'), (4.13)

with the boundary conditions

G(z, y, z =
0,t; ?,t')

=
G(z,y,

z =
h,t; I,t')

=
0. (4.14)

A Fourier transformation with respect to z, y and t yields:

fi2
(iW7 + Kq~)Gqw KwGqw =

b(z z');
~~ ~~~

The solution of this system of equations reads:

~ ,~ l-[«K
sinh(«h)]~~ sinh [«(z'- h)] sinh(«z), if z < z';

~ ~~~~~~'~ -[«K sinh(«h)]~~ sinh [«(z h)] sinh(«z'), if z > z';
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Where

~ =
ij7 +

2)
~~'~~~

We can now evaluate the stress on the z =
h plane, using equation (4.9) and taking into

account that the last term vanishes because of the boundary conditions (4.14):

1(4
18)

~~

[l~ (j
j~ dz'

~~"~~'~'~~z=h ~~~~~~ '~~~~

Taking
now into account the explicit form (4,16) of G, and integrating over

z',
we obtain:

Tzz =

~~~~ / / () ~
~~/"(

_~~
coth(«+h) ~/~'

_~~

oth(«~h)j
,

(4.19)
~

q
° £Y £Y £Y

where a*
=

«(+q; +w).
In order to obtain the stress for a finite value of h, we subtract the corresponding value for

an infinite distance: ATzz
= Tzz Tg. We thus obtain, after some algebra,

~'~ lx ~~~~~~~' (4.20)

Going back to the original length scale, and taking into account that ATzz must also be rescaled,

we obtain

ATzz
=

-~ (? (R(3) ~)i> (4.21)

corresponding to equation (3.18)
or to the analogous one for the transverse modes.

5. Discussion.

The phenomenon we have discussed in this paper is obviously analogous to the Casimir effect,
Tone observes that in the isotropic case (xi

= K2 " K3) the Frank elastic energy is identical to

the electromagnetic energy, with ii (£t) Playing the role of the electric (mapletic) field. The

boundary conditions correspond to a field constrained between grounded conducting plates. It

is therefore no surprise that in the isotropic case equation (3.19) coincides with equation (1.2).
It might then appear totally superfluous to derive the

same expression with three different

techniques. However, while in the electromagnetic problem there is no small scale (ultraviolet)
cutoff, there is one

obvious
one in the spectrum of nematic fluctuations: molecular size. As

a consequence, ultraviolet divergent terms, which must be dropped altogether in the electrc-

magnetic problem (in the spirit of renormalization theory), have
a

definite physical meaning in

nematics. For example, the first term of equation (3.17) corresponds to a
bulk free energy, and

the second to a
surface tension. They scale like kBTqfd and kBTqf respectively, where qc is of

the order of an inverse molecular size. Since the Casimir-like interaction scales like kBTd~~,

one may wonder if there is any kBTqcd~~ term. Although the zeta regularization would be
un-

able to reveal its existence, the Euler-MacLaurin summation or the dynamical approach could.

Therefore it is important to attack the problem with different techniques. The advantage of

the dynamical approach is to allow us to evaluate directly the force applied
on

the boundaries.

It involves only one
cutoff-dependent term Tg, which expresses the pressure due to short-scale
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fluctuations. It is worth noting that the surface tension term is numerically sizable, since it is

of order kBTqf. It will also contribute to surface anisotropy and anchoring energy, essentially
via the cutoff anisotropy. To our knowledge, this source of anchoring energy has never been

considered before: it should always be large on a
smooth surface; reported small anchoring

energies should be the effect of inhomogeneities.
We can now try to understand why there is no term mixing short and long scales. The

simplest picture that we can give is borrowed from colloid physics: the interaction mediated

by the fluctuations
can

be thought of
as a

depletion force. The harmonically fluctuating field

may be seen as a collection of ideal gas particles, whose size is equal to their wavelength. The

particles of size larger that the gap between the plates are excluded from it, and the walls feel

the outer ideal gas pressure which tends to bring the walls closer together:

p =
nkBT

=
-Arzz. (5.I)

Here n is the number density of excluded "particles". Since each particle has an extension

proportional to d in each direction, their number density scales like d~~ This expression is

equivalent to (4.21), up to a
numerical factor.

Actually the same argument provides some hunches on the numerical factor too. Indeed,

if the particle has
a size d along z, it must have a

linear size (Ki/K3)Q~d for the longitudinal
and (K2/K3)~'~d for the transverse fields, in the (z, y) plane. We have therefore, with obvious

notations:

ni + nt c<

()
+
))

(5.2)
1 2

In this interpretation, there is no room for the interplay of short and long scales.

The correct d dependence has been obtained in equation (5.I) by retaining only the smallest

excluded '§~article" size, but one can trace down the occurrence of the Riemann (R function

to the exclusion of
a spectrum of particles of larger size. Indeed, if we accept that the gap

quantizes the modes, it is clear that all multiple integers of d are also excluded: one then has

I f I (R(3)
(5.3)

~ ~~° d~
~=j

k~ ~ ~~

This simplified picture allows us to consider at the same time other liquid crystals such

as
smectics and columnar phases in the geometries of figure 2. Their common feature is the

simultaneous existence of first and second order elasticities:

~s
=

( f
d~/1(())

~

+ al v~«)~j (5.4)

7ic
=

f
d~/

(v
U)~ + » lvU

~i~~I)~
+ >i (ii)~] (5.5)

Here u is the displacement of the layers along the normal direction z; and the twc-dimensional

vectors u and V are
perpendicular to the column axis z. The two lengths lj and 13 compare

pression to curvature. The "excluded particles" must now have a very anisotropic shape, since

in the smectic qz scales like liq~> and in columnar phases like (q/13)~'~ One thus finds:

~kBT/(lid2),
case a).

A~ ~

-(~ikBT)/(d~),
cas~ b)~

~~ -(kBT)/(1('~d5/2)
~~~

~) (5.6)

~(~lkBT)/(d~),
case

d(.
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a~ b)

C) d)

Fig. 2. Schematic draining of the relevant geometries for smectic-A (a and b) and columnar phases
(c and d).

The determination of the prefactor is beyond the scope of this analysis, but the argument
leading to (5.4) suggests that (R(2), (R(4), (R(5/2) and (R(5) should respectively come into

play. We have checked by explicit calculations that this is indeed true for cases a) and c). These

are the most interesting geometries, since they lead to forces stronger than
van

der Waals. For

smectics we
obtain indeed:

ATzz
=

-~j(R(2). IS.?)

Since Al is a measurable quantity, this prediction could be tested experimentally without

any adjustable parameters. Force measurement apparatuses [8] are well suited in principle
for this purpose, and experiments in smectics have indeed been performed [9]. However, the

geometry of the experiment involves curved boundaries, which imply the existence of dislocation

loops. Creation (upon compression)
or annihilation (upon dilation) of these loops gives rise to

oscillatory forces, whose minimum sits on an attractive background. It is not clear whether

this background corresponds to the long-range attraction discussed in this paper. The analysis
of this problem requires consideration of the modification of the fluctuation spectrum due to

the non-uniform distribution of the order parameter induced by dislocations.

An interesting consequence of fluctuation-induced forces concerns wetting. Wetting of sur-

faces by smectic layers has been observed at the isotropic-air interface of some mesogenic
compounds [10]. In the case of a disjoiniqg pressure arising from van der Waals forces the

growth of the wetting layer is known to follow
a

(T Tc)~l'~ law, where Tc is the bulk tran-

sition temperature. With suitable boundary conditions (e.g., strong (weak) anchoring at the

smectic-air (smectic-isotropic) interface), the growth should follow a
(T Tc)~Q~ law. Indeed,

the energy density per unit area of the smectic layer reads in such a case

F
=

fd +
~~~', (5.8)
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where K =
(R(2)/32x, and f ~K

(T Tc) is the difference in the bulk free energy between the

isotropic and smectic phases. This result gives the proposed law for d upon minimization. It

is worth noting that symmetric boundary conditions
are

also possible (e.g., rigid boundary
conditions require the anisotropic part of the interfacial tension to be larger than /1): in

this case
the behavior is qualitatively changed. The wetting layer is finite at the transition

temperature, since the attraction due to the smectic fluctuations can be compensated by the

van der Waals disjoining pressure. This could explain the finite value of smectic layers at the

isotropic-air interface close to the smectic-isotropic phase transition.
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Appendix I.

Splitting of longitudinal and transverse modes.

We discuss here with some more care
the splitting of the fluctuating field

n into its longitu-
dinal and transverse components. Let us

introduce the longitudinal and parallel projectors Pi
and Pt by means of:

ni =
Pin; nt "

Ptn. (Al.I)

They are
defined by:

(Pi)ap
=

V~~0a0p (Pt)ap
=

Sap V~~0a0p, (Al.2)

where «, fl
=

1, 2. The Hamiltonian (bulk plus surface)
can

then be written in the form

2tb
#

/
dzdy /~ dz ()(Pin)Ai(Pin) + j(Ptn)At(Ptn)j ,

(Al.3)
o

where At and At are suitable operators, and, say, periodic boundary conditions are imposed

on the fluctuating field n.

By performing the functional integral, and exploiting the property P~
=

P of the projectors,

we obtain the following expression for the free energy:

F
= kBT)Tr In (PIAIP, + PtAtPt) (Ai.4)

By taking the Fourier tranform in the (z, y) plane, we obtain

2

~ ~~~~
/ L ('nw~n + In w~

~
"

~" '

(Al.5)

where w(n and w(n are the eigenvalues of At and At Since they are both scalar operators,

and Tr Pi
=

TrPt
#

I, this is the same
result one would obtain if there were two independent

scalar fields, one subject to the Hamiltonian 2t,, and
one to the Hamiltonian 2tt> and with the

same surface term 7is.
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Appendix 2.

Zeta regularization.

We discuss in this appendix
a method based on the direct summation over fluctuating modes,

regularized by means of the zeta regularization technique, already known in the context of the

Casimir effect is, 6, 11]. For simplicity, let us first consider
a

scalar field i7, subject to vanishing
boundary conditions on the two parallel plates situated at z =

0 and z =
d:

q2(o) = q~(d) =
o. (A2.i)

We assume the Hamiltonian to be given by

2t[i7]
=

/
dzdy /~ dz

)K(Viz)~
+

K3(0zi7)~j
,

(A2.2)
o

where
K = Ki (= K2) for longitudinal (transverse) modes. We can take the Fourier transform

along the (z, y) plane and expand in eigenmodes along the z direction, obtaining the following
expression for the energy:

~
=

L~d f @
~c~~ii~qn i~ + ~3 1i~l ~

<i~qn
~l

(A2.3)

The free energy is given by:

F
=

-kBT In
/

Di7 e~~'~B~ (A2A)

If the functional integral is formally performed, we obtain

F
=

kBT~~ / ~j In eqn, (A2.5)
2

~ ~

where we have introduced the shorthand notation

£~ /
(~~2' ~~~'~~

eqn =
k q2 + ii~ (]~) ~, (A2.7)

with rescaled Frank constants (Eq. (3A)), and where a constant contribution has been dropped
§y normal12ation. We are therefore proceeding to a direct summation over the fluctuating
modes, identified by the quantum numbers q and n.

The sum (A2.5) is divergent and may be regularized by setting

((S)
=

/ f(eqn)~'> (A2.8)

where the real part of s is sufficiently large so that the sum converges. Then ((s) is analytically
continued to the whole (finite) complex plane. One then sets'

f~
In eqn =

)((s)~> (A2.9)
q

n
>=o
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where ((s) is the analytically continued function. We have:

<(s) =1-2, j~ q2
+ j3 ij~i~j'

=

~jj~'~~ ~ i j~)
~~'~'

" " (A2,10)
j-20 ,~ ~

2~2'

4x(s I)
K d

~~~~ ~~'

In this form ((s) may be analytically continued to the complex plane. Let us remark that the

Riemann 2eta function (R(z) has a
simple pole at z =

I and vanishes for z =
-2n, where n

is a positive integer. Therefore, if we are interested in differentiating ((s) at s =
0, we need

only differentiate the Riemann zeta function factor. For this purpose it is convenient to uie

the representation (Ref. [4], formula (9.513.3), p. 1072)

~~~~~
)~~~) (z~

1)
~
/

~~ i~~
~~~~ ~

~~~~ (~ ~'~l'
~~~'~~~

which vanishes explicitly for z =
-2n because T(-n)

= cc. The expression between braces in

the above equation is symmetric in the interchange
z -

I z. We are interested in
z =

-2,
but the expression is the same for z =

+3. Then

l~~~~~ ~~
,=o

"

~l ~sll~<R(3) =
-&<R(3). (A2,12)

Substituting this result into equation (A2.10) yields

~~~

,~~

lx ~~f)
~~~~~>

(A2.13)

corresponding to equation (3.18) or to the analogous one for the transverse modes.

The interesting property of this approach is that
no explicit cutoff has been imposed, neither

on q nor on the
z quantum number n.

The asymmetry that we have discussed at the end of

section 3 does not appear. In reference ill] it is shown that the zeta regularization method

yields the same result as a method in which the sum over the discrete quantum number n

is regularized by the imposition of an exponential cutoff. Indeed, it may be seen that all

such regularization method yield equivalent results,
once

it is realized that the physics of the

problem imposes to subtract the free energy of unconstrained fluctuations in a region having
the same volume and the same plate

area.

The same result may be obtained by
a

method close to the original method used for the

Casimir effect in electrodynamics, namely, by means of the Euler-MacLaurin summation for-

mula. In this case the expressions are
regularized by the introduction of

a
cutoff at large values

of (q(, which is let to infinity at the end of the calculation. We shall not discuss this method,
since it is algebraically more involved than the

one we have just expounded, and since the

asymmetry in the cutoff procedure is more difficult to circumvent.

Note added in proof:
We learn that the case of smectics in the geometry of figure 2a has been worked out for arbitrary
surface tension in: Mikheev L-V-, Zh. Eksp. Theor. Phys. 96 (1989) 632 [Sov. Phys. JETP

69 (1989) 358].
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