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Abstract. In a membrane with in plane orientational order, the topology determines the

total strength of the disclinations and thus controls the total elastic energy. Making
use of this

remark we discuss the relative stability of spherical vesicles, hollow cylindrical tubules (without
caps),disks and tori composed of smectic-C, hexatic or "n-atic" membranes.

Under appropriate experimental conditions, amphiphilic molecules in an aqueous environ-

ment form bilayer membranes that in turn form closed vesicles, usually with the topology of a

Sphere. The exact shape of such vesicles, which can be quite complex, depends in general on

the pres8ure difference across their membranes or whether their membranes have spontaneous
tendency to bend or not Ill. Membranes

can
ex18t in different thermodynamic states with

varying degrees of orientational and positional order. At high temperatures, the stable phase
is generally the fluid La or smectic-A (SmA) phase in which molecular axes are normal to

the surface defined by the membrane. At lower temperatures, membranes can condense into

a Smectic-C (SmC) phase in which molecules tilt relative to the surface normal or into an

hexatic phase in which there is quasi-long-range six-fold bond angle order. Tilted bilayers [2]
in what are called the Lp, phases tend to have both tilt and hexatic order (SmI, SmF,

or even

SrnL). It has not been definitively established whether the Lp, phases exhibit two-dimensional

crystalline order (I.e., have
a nonzero shear modulus). There are, however, strong theoreti-

ca1 reasons [3] for believing that two-dimensional membranes fluctuating in three-dimensions

cannot exhibit two-dimensional crystalline order, and that the Lp, phases should be viewed

as
orientationally ordered phases with large Frank elastic constants. If the membrane of a

vesicle with spherical topology were to undergo a
freezing transition to a

crystalline state, it

would necessarfly develop disdinations [4], which for large systems cost an enormous amount

of energy. Under these conditions, the vesicle might break open and form sheets or cylinders
which do not require disclinations.
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In this paper, we show that the development of in-plane orientational (SmC, I, F, or hexatic)
order can favor a morphology change from a sphere to a cylinder or to a torus provided the

membrane Frank elastic moduli
are

sufficiently large, as they will be if positional correlations

arising from incipient crystalline order are well-developed. Our hope is that our
calculations

will provide a possible basis for understanding
a series of experiments on

microtubule formation

in diacethylene compounds [S], morphologica1changes in self-assembling phospholipids [6],and
ultimately morphological changes occuring in some biological systems [7]. Our calculations

are only approximate in that they do not consider the continuum of possible shapes. They
also do not include chirality~ which certainly is important in the examples cited above [8~ 9].
Nevertheless~

our calculations show that orientational, rather than crystalline order is sufficient

to cause equilibrium shape changes and, in particular, to favor cylindrical or toroidal topologies

over spherical
ones.

We also show that spherical vesicles with in plane-orientational order must have disclinations

whose cores are either orientationally disordered (I.e., in the SmA phase)
or are macroscopic

pores providing
a passage from the interior to the exterior of the vesicle. Thus,

we
predict that

spherical vesicles whose membranes are in an Lp, phase [10] will have disclinations which might
be visible under crossed polarizers, regardless of the degree of crystalline order or the pressure
difference across the membrane. If the Lp, phases had pure hexatic order, there would be 12

disclinations at the vertices of
an

icosahedron inscribed in the sphere
as shown in figure I. For

SmF or SmI order, we expect the 12 disdinations to separate into two groups of six centered

at each pole and forming a star defect analogous to that
seen

in free standing films Ill]. We

present here only calculations for the pure hexatic case.

In order to keep algebra
as simple

as
possible and still illustrate our point,

we
will compare

the energies of orientationally ordered membranes with the limiting shape of a sphere with
or

without pores, a
cylinder, a flat sheet, and a torus. In reality, however, membrane and vesicle

shapes change continuously in response to continuous changes in the degree of orientational

order in the membrane [12]. It is thus possible to go continuously from a
spherical to a

cylindrical shape. In our calculations, this transition will be discontinuous.

To describe SmC and hexatic order, we introduce at each point x =
(z~, z~) on the membrane

a unit vector m(x) in the tangent plane of the membrane. For SmC order, m(x) is truely a

vector, invariant under rotations of 2pr (p is an
integer) about the unit surface normal N(x)

erected at x. For hexatics, rotations of m(x) by 2pr/6 about N lead to physically equivalent

states. More generally, we consider "n-atic order" in which rotations of m through 2pr/n
produce physically equivalent states. A two-dimensional nematic with

an in-plane symmetric-
traceless tensor order parameter is an

example of a 2-atic. Although~
we

know of no
physical

,
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(a) (b) (c)

Fig.I. Equilibrium positions of discfinations for (a) vector (n
=

I), (b) 2-atic (n
=

2), and (c)

hexatic (n
=

6) order.
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realizations of other n-atics,
we

find it instructive to consider how the development of such

order affects morphological changes in spherical vesicles.

The Frank free energy for
an

orientationally ordered membrane is
a

quadratic function of

the components of gradients of m
parallel to the surface. For n-atics with n > 3, there is only

one Frank elastic constant. For n =
I or n =

2, there are in general two elastic constants. For

simplicity. we will consider the single elastic constant approximation from all
n:

F
= )KA

/ d2zvj[tram N(N (tram)]~

= )KA/d~zvjDam~D~mb, (1)

where g =
det gab is the determinant of the metric tensor gab and Dam~ is the covariant

derivative of m~. In this description all n-atics have the same
long-wavelength elastic energy.

Their properties can differ, however, because their topological excitations~ I.e., disclinations

are characterized by different strength k. The minimum strength disclination for
an

n-atic is

I/n.
The total strength (vorticity) [13] of a vector field on a

closed surface with h handles must

be 2(1 h). Thus,
a vector field on the surface of

a
sphere has total strength 2. The energy

of
an

individual disclination
on

both flat and curved surfaces is proportional to the square of

its strength. It is, therefore, always favorable to form disclinations with the lowest possible
strength. In addition, disdinations with the same sign repel each other. These considerations

imply that the ground state of a sphere with surface n-atic order will have 2n maximally
separated disclinations of strength I In. For n =

I, there will be two k
=

I disclinations at

the north and south pole; for
n =

2, there will be four k
=

1/2 disclinations at the vertices

of
a

tetrahedron; for n =
3, six k

=
1/3 disdinations at the vertices of an octahedron; and

for
n = 6~ twelve k

=
1/6 disdinations at the vertices of an icosahedron; For n =

4, there are

eight k
=

1/4 disclinations that are located at the vertices of a
twisted hexahedron obtained by

twisting opposite faces of a cube through a relative angle of 45 deg and pushing them slightly
together [14]. We have not calculated the equilibrium positions disclinations with other values

of n.

The Frank free energy Fn of spherical vesicles with n-atic order and disclinations at the

symmetry positions described above can be calculated using a
stereographic projection tech-

nique[lS] described in Appendix I. The result for a shere of radius R is

Fn
=

2rKA
~

la ~~~) +
nj

(2)

where
r

the radius of the disdination
core and In is a number that depends only on n

(its exact

form is given in the appendix). The short distance cutoff r is generally the length scale below

which conventional elasticity breaks down. This length diverges
as

the SmA-SmC transition

is approached and becomes of order a molecular length when positional correlations becomes

well-developed. The core region can either be disordered (I.e., in the SmA phase)
or it can be

a pore creating
a passage between the interior and the exterior of the vesicle. In the former

case, the core energy is proportional to a condensation energy e times the core area
~r~. In

the latter case, it is proportional to a
line tension 7 times the core perimeter 2rr. We consider

first the latter case for which the r-dependent part of the energy per disclination becomes

KA~ In l~~) + 2~r7. (3)
n r
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This energy is nfinimum for a pore radius

~~

~~7
2~2' ~~~

where
=

KA/7 is the characteristic length determined by Frank elasticity and line tension.

When in-plane positional correlations are
well-developed, KA may be significantly larger than

typical Frank constants of conventional liquid crystals. More precisely~ we expect [16]

KA ~
Ko(flao)~, (S)

where Ko is the "bare" Frank elastic constant, f is the correlation length for positional order,
and ao is the radius of

a
molecule in the plane of the membrane. The line tension should not

depend strongly on
the existence of positional order, and we estimate Ko/7 ~ ao and

j~ j~
~ ~

ao
°~ ~~' ~ 2n2ao ~~~

If positional correlations extend over a
large number of molecules, rm may be very large. For

example, it is quite possible for (floe) to be of order 100 or larger in hexatics or Smectics-I or

F in which crystalline correlations may extend over
hundreds of angstroms[17]. In this case,

rm m
lo~ I (for Sm-I or

Sm-F with ao * S A). The existence of such large pores should be

experimentally detectable.

The total energy of
a

vesicle includes the curvature energy Fcur that consists of a part arising
from mean curvature and from Gaussian curvature[18] (See Appendix II). For a sphere,

Fcur
=

2~(4~ + k), (7)

where ~ and k are, respectively, the mean and Gaussian curvature moduli. The total energy
of a sphere with in-plane orientational order and 2n disclinations of strength I/n is thus

Fs
=

2~KA (ln (4n~R/A) + I) + fnj + 2~(4~ + k). (8)
n

Note that this energy depends only weakly on the sphere radius. As the system evolves toward

a
crystalline structure, KA diverges,, and the energy cost of maintaining a spherical toplogy

also diverges. Thus, it is clear that one can expect a
morphology change to a state without

divergent disclination energies as KA is increased in a finite size system. This energy decreases

with increasing
n

indicating that it is preferable to create disclinations with the minimum

possible strength.
If there are no pores and the cores are disordered, then the free energy of

a
sphere with

n-atic order is identical to equation (8) with A/(2n~) replaced by KA/(2en~). From this, it

is easy to see that for large systems, it is always energetically preferable to open up pores. The

energy barrier to open such pores may, however, be quite high. In fact closed vesicles with

spherical topology and Lp, membrane order have been reported in the literature[10]. These

vesicles should have disclinations.

In what follows, we will consider three limiting geometries:
a

flat disk, a hollow cylinder
without caps, and a torus (Fig. 2). We will compare energy at constant area, 4~R~, without

preserving volume since these structures are all open with the exception of the torus. The latter,
however, can be formed from an open structure or be permeable. Depending

on
boundary

conditions, a flat disk may or may not require a disclination. We will consider only the minimum
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(a) (b) (c)

Fig.2. Schematic representation of (a) disc, (b)
an open cylindrical vesicle, and (c)

a
toroidal

vesicle.

energy state without disclinations that results when there are
free boundary conditions for bond

order at the edges. In this case, a
disc only has boundary energy:

Fd
=

2~7Rd
=

4~7R, (9)

where Rd
=

2R h the radius of a disc with area
4~R~. If there were strong anchoring of the

orientational order at the edges, there could be a disclination on the disc, but the dominant

dependence of Fd on R would still be linear (as opposed to logarithmic). Comparisons of

equations (9) and (8) Shows that discs with radii smaller than rm/n
are more stable than

spheres. (Note that since these spheres would have pore radii of order the sphere radius,
the minilaun energy shape is probably

some
curved disk, which may be the experimentally

observed "8hards" II9].
The calculation of the energy of

a
hollow cylinder is straightforward since it involves only

mean curvature and line energy:

Fc
=

4~r7 + )~( ), (10)

where r is, the cylinder's radius and S its total area
(Fig. 2a). To compare Fc and Fs with the

same number of molecules, we set S
=

4~R~. Then minimizing Fc with respect ot r, we obtain

Fc
=

6~~(R/1)~/~, (ii)

where we have set
=

~/7. Comparison of II) and (8) shows that for "very" large systems the

sphere with pores is favored over a
cylinder. If, however, positional correlations are sufficiently

well-developed, KA may be so large that the cylindrical shape is favored. Thus, for example,

as KA increases upon cooling,
a

transition from a
sphere to an

equal area cylinder could result.

We now consider the torus, which is a structure with one handle and no edges. Since a

vector field on its surface will have zero total strength, the state with the lowest Frank free

energy Fn will contain no
energetically costly disclinations. On the other hand, a torus has a

nonzero Gaussian curvature and thus, unlike the cylinder,
a nonvanishing value of Fcurv in the

ground state. A large torus is locally very similar to a cylinder, and its Frank free energy for

a
sufficiently large area will be smaller than the edge energy of a cylinder. Thus, one might

expect the torus to be favored at large area. In Appendix II, we show that the ground state of

torus constains no
disdinations and that its total energy (including both Frank and curvature

parts) is

Ft
"

2~~KA ~~
~~

+
§~

(12)
P p I p
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where p =
r/R is the ratio of the principal radii of the torus (Fig. 2c). Note that Ft> unlike

Fs, Fd, or Fc does not involve any length scale. For a given p, one can alway choose Rt so
that

the area of the torus is ~R~. The lowest energy is thus the minimun of Ft over p. This leads

to the equation
sb~ + (2 s)b~ 1

=
0, (0 < 6 < 1) (13)

for b
=

(I p~)~/~ where
s =

KA/~. The solution to this equation for large and small s is

~ ~

~~~~
~KA/2

~~ ~~ ~
~~~~

Because Ft does not depend on size, tori should always be favored for sufficiently large systems.
There are probably substantial energy barriers making it kinetically difficult for

a sphere to

transform to a torus. Tori have, however, been observed recently in phospholipid vesicles[6]
and in partially polymerized systems [20] with an aspect ratio p =

1/v5 appropriate to the

case s =
0, which should be relevant to this experiment [21 (See Eq. (13)).

In figure 3, we show the stability limits in the (KA/~)-(R/I) plane for the various shapes
we

have considered. We have chosen k/~
=

2.20 < 2(~ 2) so that spheres are favored over tori at

small KA. We have also considered only hexatic order
so

that the icosahedral arrangement of

disclinations occurs on the sphere. At fixed R cylinders are always favored at large s
(= KA/~),

i.e., for strong local positional order. Conversely, at fixed s, tori are alway8 the most stable

structures at large R.

For example, if we start from a
spherical vesicle with

a
diameter of 20pm in the SmA phase

and cool it into a Smectic-I of F phase, it reaches an instability towards a cylinder when Fs > Fc
(if

we ignore the torus). If
we use the reasonable estimate I ci

201, the cylinder is favored when

KA/~ m
10~

or
flao * 10 if

we assume Ko * ~.
This is quite

a
reasonable figure for Smectic-I

or F phases near their transition to the crystalline phase. The cylinder diameter would be

r ci (R/1)~/~l ci I pm and
a

length L ci 2r(R/1)~/~ ci 1000 pm. These results compare well

with experilaental observations [S, 19], although, as already stated the experimental systems

are more complex than our
model since, for example, chirality, which

we
have ignored, plays

an important role in determining their properties.
The rigidity of tubules may be estimated from the energy of a torus. For a given cylinder

diameter, the Kuhn length AK is determined by F(p
=

r/lx) * ksT. For large KA, this

ilaplies lK
-~

KAr/kBT. With the numerical estimate8 used above, one obtains lK
-~

10~pm,
implying that such tubules would be essentially straight. On the other hand, it would be

extremely interesting to study experimentally the bending fluctuations of tubules or to measure

directly their bending ridigity in
a

mechanical experiment to obtain a measure of the Frank

elastic constant KA.
Although we have concentrated in this article on the transformation from

a
sphere to a

cylinder and the energy increase associated with pores in the qtructure, one should keep in

mind that spikes may also reduce dhclination energy.
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Fig.3. Phase diagram in the (R/1)-s [s
=

KA/~] plane, showing regions where disc, spherical,

cylindrical, and toroidal vescides have the lowest free energy. This figure was
generated using

a

Gaussian curvature modulus R equal to 2.20K so that spheres are favored
over tori at KA

=
0. Hexatic

order was also assumed
so

that the vortices are
located at the vertices of

an
icosahedron inscribed in

the sphere.
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AppendiK 1.

In this appendix, we will derive equation (8) for the Frank energy of
a

sphere with surface

n-atic order. We begin by expressing the Frank &ee energy on a curved surface in terms of

the spin connection [3, 22]. In this representation, the unit vector m(x) with x =
(z~,z~)

is decomposed into components relative to orthnormal basis vectors ei and e2 in the tangent
plane of the Surface:

m = cm 7ei + 8u17e2, (Al)

and

F
= )KA

/
d~zvjg~~(fro? Aa)(fib? Ab) (A2)
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Rtan (8/2)

e,

e

FigA. The sterographic mapping of the sphere onto the complex plane. We have chosen tc place

the sphere below the projection plane so that
a positive disclination

on
the projection plane corresponds

to a positive disclination on the sphere.

where Aa
= ei .fiae2 and g~~ =

(g~~)ab. We
can

choose ei " e~ and e2 " ep to be the standard

basis on a sphere. For reasons which will become clear, we will use a stereographic projection

gauge [lS] to carry out our
calculations. In this gauge, each point R(0,#)

on a
sphere is

represented as a
coordinate

z =
2Rtan(0/2)e" in the infinite complex plane

as
depicted in

figure 4. The two independent coordinates in the complex plane are chosen to be z~
= z and

z~
=

I, we
obtain

~~~
'~ '$

2[1+
z~/4R2)]2

~~~~

and
~

~~ ~~ ~~ ~~~'
~z

+

~)~~~2~
~~ ~~ ~~~~

The Frank free energy is then

F
=

KA
/ d~z

~~
Az

,

(AS)
dz

~

where d~z
=

dzdi12. When 7 =
0, there is

a +I disclination at both the north and south

poles described by the ~l/(2iz) behavior of Az as z -
0 or co. In this case, the Frank free

energy is simply

Fi
=

2xKA in
~~

l
,

(A6)
r

where as before R is the radius of the sphere and r is the radius of
a

disclination core.

Because the divergence of Az is zero
(dzAi+ drAz

=
0), the Euler-Lagrange equation for 7

is simply Laplace's equation:
dz3z7

=
0. (A7)

The solution,

7 =
q;ImIn(z z;), (A8)

to equation (A7) has a disdination in 7 of strength q; at the inverse image of z; on the sphere.
It also has a

disclination of strength
-co.

This is easily seen from 7 -~
q;# as (z( - co.

Thus,

7 increases with clockwise rotation about the unit normal -ez at the south pole, and there is

a
disclination of strength -q;. In general, the solution,

7 =

£ q;Im(z z;)
=

£
q;7;, (A9)

; ;
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has disclinations of strength q; at z; and one of strength -Q
=

£; q; at the south pole. The

total strength in the vector m at the north and south pole include the contributions from the

basis vectors ei and e2 and are, respectively, I + qo and I Q where qo is the strength of 7 at

z =
0.

Using equations (A5) and (A9),
we can calculate F using standard procedures. We must,

however, fix the core radius
on

the sphere. The image of
a

circle of radius
r « R on

the refer-

ence sphere whose projection image is centered at z; is a circle of radius r; =
(I + (z; (2/4R~)r.

In addition, since the core region from the disclination at the south pole corresponds to the

region (z( > 4R~/r in the projection plane, integrals over
d~z

are
restricted to (z( < 4R2/r.

With this result,
F

=
S + L + Fi (A10)

where S is the contribution to F from the (0z7(~ term and L that from the dz? Az cross

term. Using /
~~~~~~~'~~ ~~

~
~~~~~

~ ~~
(A12)

alld j
d~zoz71di7i

"
~~

rjz; ZJ1'

we find

S
=

-XKA£'q;q; In
~'

+ 2xKAQ£'qi In
~°'

(A13)

;#;
~

;
~

where the prime on the sum indicates all disclinations except those at the poles. The distance

d
iZi z>1

" ~~ (A14)

is the length -of the cord separating the inverse images of z; and z;, and d;m is the length
of the cord connecting the inverse image of z; and the south pole. This result reduces to

that of Ovrut and Thomas[11] when Q
=

0. Note that S can be written more compactly
as

-XKA L;#; q;q; In(d;; /r) where the
sum is now over

all disclinations including that of strength
-Q at the south pole. The cross term is

L
=

-2xKA £'q; lln(die/r) + In(d;m /r)] + 2«KAQ In(dam/r) (A15)

where d;o is the length of the chord connecting the inverse image of z; to the north pole and

dam
"

2R. Note that L describes the repulsive interaction between the disclinations in 7 and

the two described by the coordinate system. Combining Equations (A13), (A15) and (A6),
we

find
2n

Fn
=

-XICA ~
q;q; In(d;; /r) + 2xKA [2 In(2R/r) 1]

,

(A16)
I#j=1

where the sum is over all disclinations including those with strength I + qo and I Q at the

north and south poles. The total vorticity is I + qo.+ (L(
q; qo) + I Q

=
2 as required. The

cord d;; is equal to 2Rsin(e;;/2) where e;; is the angle between the position vectors relative

to the origin of the sphere of vortices I and j. Therefore, the minimum of Fn has the form of

equation (2) with

in
"

l~£ Li~~i~(eij/2) ~lmin(@,,#,) (A17)
I#I



380 JOURNALDEPHYSIQUEII N°3

For n =
1, 2, 3, and 6 the vortices in the minimum energy configuration[14] are respectively at

the two poles and at the vertices of
a

tetrahedron, an
octahedron, and an icosahderon with

Ii
"

-1

f2
=

~In(~)-l
~

f3
" j In (2)

(A18)

$ 1 ~ ~2
f6

=
In

(-)
~ r

where
r =

(v$ -1)/2 is the golden mean. This result is summarized in equation (9) in the

text. When n =
4, vortices are not at the vertices of a

cube in the equilibrium configuration.
Rather the repulsive interaction between vortices is minimized by rotating two opposite faces

of
a cube through 45 deg and reducing slightly their distance.

Appendix II.

In this appendix we will calculate the Frank and bending energies for
a torus. Any point R

on a torus can be parameterized by the angles z~
=

b and z2
=

# shown in figure 2c:

R(b, #)
=

Rep + re~, (Bl)

where ep =
cosbe~ + sin beg and e~ =

cos#ep + sin #ez where e~, ey, and ez are
the usual

cartesian basis vectors. The metric tensor is then

gab "

~~~ /~~~~~
(82)

and its inverse is
~

~~~ ~~~~/~~~ ~2
(~~)

If we choose ei "
sin be~ + cos beg and e2 "

sin #ep + cos #ez, then the components of the

connection are

Ag
=

sin #, A~
=

0. (84)

Thus, the Frank energy is

F
= jKA

/
do

/
di r(R + r cos i) j(R + r

cos1)-~(de~ sin1)2 + r-2(o~~)~l (85)
~~ ~~

The Euler-Lagrange equation for 7 is

r(R + r cos
#)~ ~d(7 + r~ (R + r cos

#)d(7 sin #d~7
=

0. (86)

A simple solution to this equation is

7 =
k(b bo) + 70, (87)

where k is an integer. The associated Frank energy is

F
=

2«~KA fi k~
+

w~~~j w~~j (88)
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where p =
r/R. This energy is clearly

a
minimum when k

=
0, I,e., when

m = cos70ei +

sin 70e2 rotates with the local reference frame.

The calculation of the curvature energy is a textbook exercise in differential geometry. The

curvature tensor is

Kab
" e# ~a~b(Rep + re#)

#

l~~ ~~$~ ~ ~~~ ~~ ~ (89)

Then using equation (83) for the contravariant metric tensor, we
find

j~b l~C°Si~(~+~C"~)
°

(~~~)
a o _~-l

Thus the mean and Gaussian curvatures are, respectively,

~~ i(Ri~~s#) ~
~

~~~~~

and

~ ~~~ ~~ ~~ ~

~~~ ~ ~ ~°s
'1' (B12)

The mean and Gaussian curvature energies are, respectively,

F~auw
= (R

j
dodiwG

=
o. (Bi4)

Equations (88) and (B13) yield equation (13) in the text.
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