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Abstract. The Gaussian curvature tern in the expression for the energy density in bending of a

lipid bilayer can be decomposed in two terns one symmetric and the other one antisymmetric in

the principal curvatures. The symmetric tern is proportional to the square of the mean local

curvature. A similar tern has exclusively been used to calculate the equilibrium shape of bilayer

structures the topology of Which does not change. It is suggested that the antisymmetric tern

which is proportional to the square of the deviator of the local curvature should not be neglected
in such calculations.

1. Introduction.

Membranes are ubiquitous in nature. They serve many purposes e.g. compartmentalization,
reinforcement, mechaI1ical support. Artificial lipid bilayers preserve a few of the manifold

properties of biological membranes. In addition they are themselves pure systems that can be

described theoretically. The subject of this paper is their bending stiffness.

The resistance of a bilayer to bending moments can be decomposed into two contributions

which have been called bilayer couple bending and single layer bending [Il. Bilayer couple
bending arises from the resistance of the two monolayers to a change in surface area and from

their fixed interlayer distance. The single layer bending stiffness also called intrinsic bending
stiffness arises from the resistance of the molecules making up a monolayer to a change in

shape, e.g. from cylindrical to conical. In bilayer couple bending either the local or the global
nature or a mixture of both occurs, depending on the time scale of the deformation [Il. In

bilayers composed of a single lipid species, single layer bending is local. If more than one lipid
species is present, single layer bending can also become global.

In the second paper of this series [2] a modification to the energy density (energy per
surface area) for single layer bending was suggested. In symmetric bilayers this modification is

relevant for non zero spontaneous curvatures of the monolayers. Here this modification is

omitted for clarity ; a restriction which has no influence on the conclusions reached.

An expression for the energy density (e~ ) stored in local bending of a lipid bilayer has been

suggested by Helfrich [3] without specification whether bilayer couple and/or single layer
bending was meant. Tl1is expression has been used since then by numerous researchers in

model calculations. A recent version is given in a publication by Mutz and Helfrich [4] ; I.e.
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where ci and c~ are the principal curvatures and co is a spontaneous curvature.

k~ and i~
are the elastic constants (associated with the mean and the Gaussian curvature). tie

interpretation of k~ in terms of a resistance to deformation can be given (see first paragraph)

whereas a direct interpretation for i~ is lacking.

Tile second term on the right hand side of equation (1) has been introduced for

mathematical completeness [3]. However, the two measures the mean and the Gaussian

curvature are not independent. Indeed, for a symmetric bilayer (co
=

0), the two terms

depend in the same way on the curvature when ci = c~.

Usually shape changes of1ipid bilayer structures are considered for which the topology of

the structure does not change. Then the term with the Gaussian curvature vanishes upon

integration over the surface. For this reason little consideration has been devoted to the

elastic constant i~. This is the starting point of this work.

2. Analysis.

This chapter deals with local single layer bending only. Bilayer couple bending and global
single layer bending will be treated in the discussion.

2.I DECOMPOSITIONS.

2. I. I Gaussian curvature. The second term on the right hand side of equation (I) can be

decomposed in a symmetric and an antisymmetric contribution as follows.

Ci + C~ 2 c~ C~ 2

~C ~l ~2 ~C ~
~C

~
~~~

The first expression enclosed by brackets is recognized as the mean local curvature. The

absolute value of the second expression enclosed by brackets we call the deviator of the local

curvature, following Evans and Skalak [5, 6].
tie dependence on the principal curvatures in the first term on the right hand side of

equation (2) is essentially the same as in the first term on the right hand side of equation (I).
This is the reason why the mean and the Gaussian curvatures are not independent measures of

the actual curvature.

2.1.2 Actual curvature. The decomposition performed above colTesponds to a representa-
tion of the actual curvature by a superposition of the curvature of a spherical cap and that of a

symmetric saddle. The first has isotropic curvature. The second is characterized by two

principal curvatures of the same absolute value. The curvature of the spherical cap and that of

the symmetric saddle are called the isotropic and the deviatoric contribution to the actual

curvature. They are linearly independent since in a spherical cap there is no deviatoric

contribution and vice versa.

Each contribution is characterized by a single value ; I.e. the mean and the deviator as

defined above.

2.2 GEOMETRY OF ISOTROPIC AND DEVIATORIC BENDING. In an expression for the

bending energy the difference of the actual curvature to the spontaneous curvature must

enter. In this section, we interpret ci and c~ as such differences which is equivalent to zero
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spontaneous curvature. In this section and the next one (2.3) we consider bending of a single
monolayer.

2.2.I Isotropic plate. First, we consider tile deformation of a plate composed of an

isotropic material (Fig. lA-D). We compare two cases, tile deformation to a spherical cap

(left column) and to a symmetric saddle (right column). To facilitate the comparison the

maximum curvature of the saddle has the same absolute value as the curvature of the

spherical cap. A Cartesian coordinate system gives the principal axes (x, y) and the direction

of the normal (z). In figure IA a quadratic section of the plate in the unstrained state is
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Fig. I. Schematical representation of bending a lipid monolayer into a spherical cap (left column) or

a symmetric saddle (fight column). In lines A-D the monolayer is represented by a plate made of an

isotropic material. In lines E-G individual lipid molecules are represented by elastic bodies, packed side

by side to form the monolayer. Line A shows in cross section a square plate being flat when unstrained.

The origin of a coordinate system is placed in the centre of the plate. The axes x and y are parallel to the

comers of the plate and the z-axis is in the thickness direction. Line B and C show the bending of the

plate along the x and y direction. Line D shows exaggeratedly how in first order the top (o) and bottom

(I) surface of the plate change their shape upon bending with respect to the midsurface (n) the shape of

which remains unchanged. Line E corresponds to line A. Two representative molecules of a monolayer

are shown. Their unstrained shape is cylindrical. Line F corresponds to line B and C. It shows

exaggeratedly how the molecules deform when the layer is bent. For deviatoric bending the molecules

can altematively comply by kinking (line G).
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presented in cross section. Figures lB, lC show two cross sections after bending. Figure ID

shows exaggeratedly how to first order the top (o) and bottom (I) face of the plate change
shape upon bending. The spherical defornlation changes tile surface area whereas the saddle

deformation changes the shape of the faces. This implies that bending to the spherical cap is

associated with area' strain in different planes of the plate and bending to the symmetric
saddle is associated with in-plane shear.

Please note tllat changes in the area of the midsurface (n) are not considered here. This is

the subject of bilayer couple bending (see 3.3).

2.2.2 Lipid molecules. We now tum our attention to a lipid monolayer and consider what

these defornlations mean on a molecular level. Figure lE shows in cross section two

representative molecules which are idealized as two circular cylinders when unstrained. In

both kinds of defornlation their cross section remains constant in the neutral position which

for simplicity is assumed to be in the middle between top and bottom. In the spherical
deformation the molecules become cones (Fig. IF), whereas in the saddle deformation, there

are two possibilities. First, tile molecules remain straight and change their cross sectional

shape (Fig. lF) from a circle to an ellipse, say. The deformation would be such that the short

axes of the elliptical cross sections in the upper and lower half of the layer are oriented at right
angles. Second, the molecules keep their circular cross section and are kinked (Fig. lG) to

accomodate the deformation.

2.3 SPONTANEOUS CURVATURE AND WARP. The same decomposition tllat was performed
with respect to the actual curvature (Sect. 2.1.2) can be done for the spontaneous curvature.

An arbitrary spontaneous curvature would then be decomposed in an isotropic and a

deviatoric contribution, the first having the shape of a spherical cap the second that of a

symmetric saddle. Superposition of the two contributions would give the total spontaneous

curvature.

The spontaneous curvature of lipid monolayers has been explained on the basis of the

intrinsic shapes of the lipid molecules [7]. Israelachvili [8] has idealized these shapes by
rotationally symmetric bodies and characterized them by three parameters. Assembling a

lipid monolayer with molecules having all the same parameters results in a total spontaneous

curvature which is isotropic. For a non zero deviatoric contribution to the total spontaneous

curvature tile molecules must not have rotational symmetry. The shape shown in figure lF

(right column) would produce a total spontaneous curvature without an isotropic contribution.

This shape is symmetrical with respect to the following operations : (I) reflection with respect

to the x, z plane (it) reflection with respect to the y, z plane ; and (iii) reflection with respect

to the x, y, plane plus a rotation by ar/2 about the z axis.

The deviatoric contribution to the spontaneous curvature of a lipid monolayer has hitherto

not been considered. I suggest that it be called the spontaneous warp. In this way we can

retain for the isotropic contribution to the spontaneous curvature its old name spontaneous

curvature.

For a non axisymmetric intrinsic shape of molecules to cause a spontaneous warp the

rotational motion of the lipids plays a dual role. First, this motion must be faster than the

change in curvature imposed on the layer by the extemal forces. This is indeed the case since

typical time scales of rotational relaxation are many orders of magnitude smaller [9] than

typical time scales of deformation. Second, a decrease in entropy is associated with a

preferential orientation of molecules. For this reason the net spontaneous warp corresponds

to a minimum in the sum of the entropic and tile elastic energy contribution. When the layer is

composed of more than one molecular species tile situation becomes even more complicated
because of lateral phase separation [Ii.
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2.4 ALTERNATIVE EXPRESSION FOR THE ENERGY DENSITY. Having defined the deviatoric

contlibution to the actual as well as to the spontaneous curvature we are able to formulate a

new expression for the energy density (e~) in single layer bending of a lipid bilayer. We

suggest :

es=2Bsl~'i~~-fsl~+2Ba(1~~i~~ -i~l~ (3)

The first term on tile right hand side is identical to the one in equation (I) except tllat the

definition of the spontaneous curvature (f~) differs by a factor of two with respect to that

introduced by Helfrich. The definition of f~ was chosen to be in keeping with what one would

intuitively call the spontaneous curvature: the mean curvature a small section of the

membrane would take on if it was cut out of the closed envelope [I]. The index in

e~ and f~ indicates that these are quantities in single layer bending as opposed to bilayer
couple bending.

The second tern is new as it originates from deviatoric bending. The spontaneous warp of

the bilayer is called o. 2 if is defined as the absolute value of the difference between the two

principal curvatures we would observe if we were able to cut a small piece out of a vesicle

membrane and let it bend freely. An index is not necessary, since as I will show there is no

deviatoric contribution in bilayer couple bending.
Due to the fast rotational motion the net spontaneous warp is always oriented so as to

minimize the energy density in deviatoric bending. Therefore tile absolute value of the

deviatoric contribution to the actual curvature appears in equation (3). For the same reason,

if was by definition chosen to be positive.
The spontaneous warp of the bilayer is equal to the weighted sum of the values for the two

monolayers, the weight factors being tile share of each monolayer in the bending stiffness of

the bilayer. It is clear that for a symmetric bilayer if is equal to the spontaneous warp of a

monolayer whereas f~
=

0.

3. Discussion.

Splitting up the Gaussian curvature term and rearranging the new terms in equation (3) takes

care of the two points raised in the introduction against equation (I). First, the mean and the

deviator are independent measures of the actual curvature. Second, the elastic constant

B~ is associated with a clearly defined deformation in contrast to k~ the sign of which is not

even known. B~ is positive by definition.

According to equation (3) (provided B~ # 0) the Gaussian curvature is relevant for tile

shape of a bilayer structure even if its topology does not change. This is in contrast to the

notion prevailing to date.

3,I ELASTIC CONSTANTS. In equation (3) the elastic constant associated with isotropic
bending is called B~ in keeping with an earlier notation [I] where the index s was introduced to

indicate single layer bending in contrast to bilayer couple bending. Here the index s is derived

from symmetric. B~ is, hohvever, still associated with the same curvature term. It is to be

understood that it is an elastic constant in single layer bending. The constant associated with

deviatoric bending (B~) is also an elastic constant in single layer bending.
To get an idea of the value of B~ in relation to B~ we compare tile corresponding

deformations of the lipid molecules. The changes in cross section parallel to the x, y plane
(Fig. IF) appear to be principally different for cap and saddle deformation. However, tile

resistance of a phospholipid against volume changes is much larger than the resistance against
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shape changes [10J. Therefore the shape change of a lipid molecule can be expected to

proceed at constant volume in the cap as well in the saddle deformation. This implies that it is

only the orientation of the cross sections (the shape of which is changed) which is different in

isotropic compared to deviatoric bending. Without a knowledge of the corresponding
elasticities no conclusion can be drawn as to the relation between B~ or B~. It is, however,

likely that their ratio is of the order of unity.
The occurrence of kinks in molecules appears at first sight to offer a smaller resistance to

deviatoric bending than the change in cross sectional shape. However, the lateral packing of

the lipids might tllen be compromised. It is therefore questionable whether kinks contribute

to the elasticity in deviatoric bending at all.

These considerations make it unlikely that B~ is negligible compared with B~. Fitting
without a deviatoric term may therefore besides other reasons [2] have contributed to the

difference in elastic constants that were derived from bilayers of different geometry e.g.

spherical, planar, or cylindrical. For an overview see Mutz and Helfrich [4]. Use of equation
(3) may allow to determine the value of B~.

3.2 SPONTANEOUS WARP. The spontaneous warp if was introduced for completeness.
Whether its value is different from zero is an open question.

The molecular structure of phospholipids is characterized by two hydrocarbon chains

apposed side by side and a headgroup oriented approximately at right angles to the z-axis.

These features make it likely that the cross sections normal to tile z-axis are non circular, at

least in the gel state. An anisotropy preserved despite the strong segmental motions that

prevail in the fluid phase would form the basis of a spontaneous warp of the monolayer. These

considerations make a o # 0 more likely for lipids with saturated than with unsaturated

hydrocarbon chains.

In budding of DMPC vesicles an almost invisible tllin neck forms between daughter and

mottler vesicle [I Ii. Now, in tile neck region, tile deviatoric contribution to the actual

curvature is dominant. A large value of o would therefore promote the formation of such a

geometry. The observation of an instability in budding of DMPC vesicles indicates that if

cannot be large. An upper bound can be estimated from the radius of the neck in the last

stable configuration before the instability occurred. From the microscopic pictures [I Ii a

value of 1/(4 ~m) is obtained.

If if # 0 and B~ # 0 the equilibrium configuration of the bilayer would not be flat. It can be

shown by an approximate analysis that a corrugated surface would have a maximum curvature

of about if/2 when B~
=

B~. However, no waviness of vesicle contours except for the

thermally induced one has been observed in the light microscope. From the microscopic
resolution values of o down to 1/200 nm can be excluded.

Taken together the last two paragraphs indicate that o
m

0.

3.3 OTHER TYPES oF BENDING STIFFNESS. Up to now we only considered local single layer
bending. We now ask whetller for the other cases enumerated in the introduction deviatoric

bending is relevant.

The deformation of the monolayers as a whole determines the elasticity in bilayer couple
bending. The deformations are visualized in figure lD when we interpret the plate as a bilayer
and the shape changes of its top and bottom surface as shape changes of the outer and inner

monolayer, respectively. The area per molecule is changed upon deformation into the cap.
The resistance of lipid layers against such a change is enormous [5]. Upon a defornlation into

a saddle each monolayer is sheared at constant area per molecule. The time scale at which

shear stresses relax in lipid layers has been shown to be many orders of magnitude smaller

than the time scale of curvature change imposed by extemal forces [Ii. Therefore under
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realistic bending deformations there is no shear resistance of the monolayers and consequently

no deviatoric contribution in bilayer couple bending.
If a monolayer is composed of more than one molecular species, part of the single layer

contribution may relax to the global nature if sufficient time is available for lateral motion of

molecules [Ii. It has been discussed [Ii that this has consequences for the determination of

B~ from experiments utilizing the thermally excited shape fluctuations. Provided o # 0 there

considerations apply in an analogous fashion to a deternlination of B~.
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