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Abstract. We have observed anomalously enhanced self (tracer) diffusion in systems of

polymer-like, breakable tnicelles. We argue that it provides the first experimental realization of a

random walk for which the second moment of the jump size distribution fails to exist (« Lkvy-
flight»). The basic mechanism is the following due to reptation, short tnicelles diffuse much

more rapidly than long ones. As time goes on, shorter and shorter tnicelles are encountered by the

tracer, and hence the effective diffusion constant increases with time. We discuss in detail the fact

that this anomalous rkgime only exists in a certain range of concentration and temperature. The

theoretical dependence of the asymptotic diffusion constant on concentration is in quite good

agreement with the experiment.

1. Inwoduction. Anomalous diffusion.

Brownian diffusion is a most widespread phenomenon, occurring in a variety of different

physical situations and studied by many different experimental techniques. The two

characteristic features of Brownian diffusion are well known: first, the position of the

diffusing particle typically increases as the square root of the elapsed time t, and second, the

diffusion front (or the probability distribution of the particles positions) is Gaussian. These

two features are extremely general and robust, because the Central Limit Theorem (CLT)
controlling the statistical properties of sums of random variables holds in an overwhelming
majority of situations. In order to impede the application of CLT, strong statistical

pathologies » must be present [I]. These may be either strong fluctuations giving a

preponderant role to rare events or persistent correlations. These pathologies eventually
lead to a departure from the usual laws (see [I] for a recent review) the position scales with

an « anomalous » power of time (# 1/2), and the diffusion front is no longer a Gaussian.

Quite a few physical examples of non-Brownian diffusion exist ~photoconductivity of

amorphous materials [2], conductivity of disordered ionic chains [3], diffusion in convective

rolls [4], random walk on fractal substrates [5]...). In most of them however one observes a

(*) Assoc16 au CNRS et aux universitds de Paris VI et VII.
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subdiffusive» behaviour, that is, the position of the particle increases more slowly than

/, The mechanism underlying this behaviour is either geometric (tortuous substrate) or due

to the presence of « traps » (region of space where the particule is confined for a certain time

r) with a broad distribution of release time 1l'(r broad meaning in this case that the mean

w

trapping time
r =

r1l'(r)dr is infinite. Enhanced d#fusion (I.e. when the particle
o

position increases faster than /) is much rarer classical examples are Richardson diffusion

in turbulent velocity fields [6, 7], diffusion in layered porous media [8, 1, 9], or in shear or

Poiseuille flows. In all these cases, the mechanism responsible for this enhanced diffusion is

the long range (time) correlations present in the velocity of the tracer particle [I].
Another way to obtain enhanced diffusion is to imagine that the diffusing particle

undergoes a series of independent steps of length i~, with a « broad distribution of step

length, P (f). If the variance of P (I) is infinite, it is easy to see that the usual derivation of the

CLT fails one must then, following Ldvy [10], and others [I1, 12], generalize the CLT to this

case. A short review of the useful results is given in Appendix A and in [la] the important

results are as follows. If the position of the particle is given by (we restrict to one dimensional

motion for simplicity)

X "
i~~

l I,I

with P (I )
=

i~ ~~ + "
,

p ~
2 and (i~)

=
0

,

then, x =
t

~'", and

P (x, t)
#

t~ ~'" L
~

(xt~ ~'")

where L~(u) is a Lkvy (or stable) law generalizing the Gaussian obtained if

p =
2 defined in Appendix A. Such a generalisation of the Brownian motion has been

called by Mandelbrot [13] a « Lkvy flight ». A remarkable fact about these Lkvy flights or

Lkvy sums such as (I) is their hierarchical structure : if i~~~ is the largest number in the

sequence (i~),
one has x =

i~~~ that is the full sum is dominated by its largest term (more

precise statements can be found in Appendix A). However, despite the prophecy made by
Gnedenko and Kolmogorov [12] in their remarkable book on the subject (All these laws,

called stable, dkserve the most serious attention. It is probable that the scope of applied
problems in which they play

an
essential role will become in due course rather wide), no

experiment for which the concept of Lkvy flight was directly applicable was known, even if a

few physical situations have been theoretically described as such (incoherent radiative

transfer [33], conformation of a polymer just at adsorption threshold, diffusion in billiards, in

chaotic maps see e-g- [la]). Turbulent diffusion was modeled as a Lkvy flight by Shlesinger,
West and Klafter [14] but to the best of our knowledge, there is no experimental fact

justifying this description. In particular, the Lkvy diffusion front (Eq. (2)) has never been

observed.

We want to present in this paper what we think to be the first experimental observation of a

Lkvy flight, where both the anomalously enhanced diffusion law and the Lkvy diffusion front

have been found. The system that we have studied (long cylindrical breakable micelles) is

interesting in its own right and the initial motivation for the experiments we have performed

was to understand the physical properties of these objects rather than to observe a Lkvy flight.

we shall however see that the interpretation of our results as a Lkvy process is extremely

natural when one is slightly acquainted with those micelles this is why we shall spend the

next paragraph reviewing the salient properties of these objects (for a recent comprehensive

account, see [15]) before examining and interpreting in details our experimental results. A

short version of this work has already appeared in [16].
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2. Long breakable micefles : a short overview.

Amphiphilic molecules of CTAB (cetyl trimethyl ammonium bromide), when dissolved in

salted water, aggregate to form long flexible cylindrical micelles. These objects may be grown

very long and in this case they behave much as polymers although at a different length
scale : the basic unit is of the order of a few nanometers instead of a few Angstroems in the

case- of flexible polymers. In particular, light scattering experiments [17] on semidilute

solutions of CTAB micelles ale well accounted for by the standard « blob » picture [18] : a

characteristic mesh size f (entanglement length) appears, below which the chains behave as if

they were isolated, and above which the self interaction of the chain is screened. The

dependence off on ~ (the CTAB volume fraction) gives information on the conformation of

the CTAB chains, since f is related to the number of monomers g needed to create an

entanglement through £
=

i~ g' (( is usually called
v

in polymer physics ; however
v

will be

used below with a different meaning i~ is the «monomer» size, or more precisely the

persistence length). Then, one finds [18] :

~ ~ (/(i 3 <)
~~~

Experimentally [15, 17], the law f
~

~ °.~~ (corresponding to (
=

0.59 the value observed

for three dimensional polymers in good solvents) seems compatible with both fight scattering
and elastic modulus data, although somewhat larger values of tare not excluded. For scales

~
f, the chains are expected to be ideal [18] : (

=

o-S- This analogy is however restricted to

static properties the crucial difference between the two systems is the fact that, while for all

practical purposes polymer systems are irreversibly tethered, micelles break and recombine

constantly they are « living polymers », This polymerisation in equilibrium also occurs in

other systems (see Ref, given in [15]), among which one may cite plastic sulphur [20] and

liquid selenium [21], The two main consequences of the transient » (rather than permanent)
nature of these objects are the following :

2.I SOLUTIONS ARE INTRINSICALLY POLYDISPERSE. If one assumes, following Cates [22],
that scission can occur anywhere along the chain with equal probability, and that two chains

may fuse in a way indepqudent of their size, then the equilibrium size distribution ~ is found to

be [22]
j/

/I
~ (L

=

(' IL) exP (- L/L) (2)

with

L
"

fl ~°eXP (E/2 kT) (3)

and E is the energy needed to « cut the chain into two pieces. Throughout this paper, we

shall call L the total arc length of a chain, in units of the persistence length i~. Equation (2)

can be throught of as a mean field description of the size distribution of the aggregates.
However, correlations of some sort could affect this simple law (for example, chains may
rather break near their ends for purely energetic reasons it is also conceivable that the

probability that two off springs » recombine very shortly after being « bom is greater when

a large chain breaks than when a short chain breaks because short chains diffuse away from

each other faster, etc...). We propose that a semi~phenomenological way to take these

correlations into account is to write

~ (L )
=

L ~ 'L~ + ~
' exp (- L/L (2')
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where «
is a non trivial exponent (which is positive if short chains are favored), Such a law is

very common in the physics of clusters the best known example is the cluster size distribution

in percolation (below threshold). In this case, « =1 [23].

2.2 DIFFUSION IS ENHANCED. Usually, diffusion is very slow in polymeric systems,
because of strong steric constraints (usual polymers cannot « go through » each other) the

change of conformation can only be achieved through motion of the chain « along itself»

(reptation). When the end part of the chain retracts and leaves a certain region of space, the

environment is allowed to relax and « erases » the trace left behind. Hence the chain trying to

creep back has to choose a new local conformation the old configuration is « eaten up » by
the two ends. Since the chain diffuses along its own tube », (art of the chain which is still

in the old configuration has a length given by L~j~
=

L 2 Dt, where D is the (curvilinear)

diffusion constant of the whole chain, which is a factor L smaller than the diffusion constant of

a single monomer Do- The chain is completely desentangled when L~j~
=

0, I,e, after a time

r~~(L)
=

L~/Do (see [18, 24] for more details).
When scission occurs, polymers are in a sense allowed to go through » each other every

now and then. This accelerates diffusion and stress relaxation if the typical breaking time

vb is smaller than r~~~, since in this case only a fraction of the chain will have to disentangle
through reptation. Two new characteristic times goveming stress relaxation and single

monomer diffusion appear.

*
Stress relaxation time let C be the probability of scission per unit time and per unit length

of the chain (rb and C are then related by Cr~ L
=

I). For a mechanical constraint to be

relaxed at a given point, a chain end must go through that point. The typical time

r~ for this to happen is such that a new end » must appear (through scission) and pass
through the 'ven point durin its lifetime r~. This takes a time r~ such that

Cr~
fi=

I, or r~ =

fi
[15, 22].

*
Single monomer d%fusion The previous discussion was extended by Cates to predict the

diffusion coefficient of a «marked» monomer. When r~ is infinite, a given monomer

undergoes truly independent jumps only every v~~. For t
~ v~, the back and forth motion of

the chain in its tube means that the curvilinear coordinate
s

of a given monomer increases as/
; its position in space hence scales as R

=

t"~
: motion of a single monomer is subd%fusive

for t ~ v~~~
((

~
l ). For t = r~~~, the monomer will have spanned a distance of the order of the

gyration radius of the whole chain R
=

L'. For t » r~~~, the particle will have undergone
(t/v~~) independent steps of size L', and hence R~

=
D~~(L) t with D~~(L)

=
L~'/v~~. In

the semi~dilute regime, one should take as the basic unit a blob of size f- this is important to

get the concentration scalings right this finally leads to (*) D~(L)
=

L~ ~ ~ ~'~, and hence,
using L

=
~ ~'~exp (E/2 kT),

~ ~~~
~

~ ii j~
~~~

When the scission time is smaller than the reptation time, the monomer, according to Cates,
performs independent jumps of size (D(L) v~~~)"~ every v~;~, where r~~~ denotes the time

needed for a complete disengagement of the segment of the chain carrying the marked

monomer. This occurs when the chain breaks on a segment which has created its new tube

through reptation, I-e- when

CT
d~~

D (L)
v d,~ =

l (5)

(*) In particular, one has Do(g)
=

T/(6 arqf) (Stokes law : see [18] p. 180).



M 12 LtVY FLIGHT IN ELONGATED MICELLES 1469

or

~dis ~
~i~~rcp(L)~'~ (6)

which is indeed smaller than
v~~~

when v~ ~ r~~~. Finally, one finds [22] :

Dcates
"

( Trep/Tb) ~~~ D
rep

(L ) (7)

'(in the semi-dilute rkgime). Inserting all the concentration dependences (in particular
v~ =

~ ~'§, one obtains

Dcates
~

'l ~'~~ (8)

which is markedly different from (4) (**). Note however that, implicit in the reasoning is the

assumption that only the motion of the typical chain (of size L) needs to be considered to

obtain the asymptotic diffusion constant. This will be discussed at length below.

Experimentally, fluorescence recovery after fringe pattern photobleaching (FRAP) is a

technique particularly well suited to study monomer (self~) diffusion in these systems [25, 26].
Some details concerning the experimental set up are given in Appendix B. In a previous work

[27] we tried to test equation (8) by studying solutions of CTAB at different CTAB.

concentrations and d#ferent salinities. While for high salinities, Cates law (8) is approxima-
tively obeyed, we found that the exponent depends much on salt concentration at lower

salinities [27]. Growth laws such as
L=~~'~exp(E/2kT)

are however throught to be

inadequate when strong polyelectrolyte effects are present [28]. Two ways have thus been

explored the first one was to get rid of the ions altogether by working with inverted micelles

in oil. FRAP experiments on
lecithin inverse micelles were therefore performed [29] and the

results are compatible with Cates' model although the exponent obtained experimentally
(-1.35 ) is slightly smaller than predicted by Cates (but see below). The second possibility

was to hope that the charge effects would saturate at very high salinities (of the order of the

micellar concentration) : )his however led to the unexpected superdiffusive behaviour [16]
that we are going to describe and interpret in the next two sections. (Superdiffusive effects

were in fact also observed in lecithin micelles, but they are much weaker because the chains

are
shorter

see section 4.3).

3. The experimental observation of superdiHusive bebaviour.

3.I EXPERIMENTAL DATA. Fluorescence recovery after fringe pattern photobleaching
allows to follow the evolution of a tracer fluorescence modulation of wave vector

q =
2

ar
Ii, where I is the fringe spacing, which ranges, in the present experiment, from 2 ~cm

to 100 ~cm. In the case of usual Brownian motion of monodisperse objects, the equation
goveming the tracer probability distribution P(r, t) reads :

aPlat
=

D AP (9)

The technique directly measures the amplitude of the modulation of P (r, t for a wave vector

q, which thus evolves as :

aP~lat
=

Dq~P~ (10)

or

Pq t)
=

P
q

(0 exp ( Dq 2 t ( i 1)

(**) These concentration dependences are in fact very sensitive to the value off (the conformation of
the chains for scales «f~. For ( =0.5 (ideal blobs/mean field), one finds DC~~~~ maw ~~.~~ and

D~~(L) maw ~~, while for (
=

I («stretched» blobs for example if the chains are charged),

DC~~~~ ma
4 ~° ~~ and D~~(L)

=
4 ~~/~
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One thus usually determine the inverse relaxation time rj~ at a given wave vector by

analysing the decay of P~(t) ; the slope of rj versus q~ then directly yields D (cf. Appendix B

for more details). We have studied aqueous solutions of CTAB in the presence of potassium
bromide (KBr). The micelles entangle above a certain surfactant concentration c* =10~~

(Mole/litres). c= lM/I corresponds to a volume fraction equal to 0.3. In previous
experiments [27], we had found that above c*, the relaxation of P~(t) is exponential, not

because the micelles are monodisperse (the relaxation is in fact non exponential below

c*), but rather because, due to breakage and recombination on a time scale much shorter

than the experimental time, one observes the average diffusion bonstant (given by Eq. (8) or

(21) below). The diffusion constant was found to follow a power law dependence on c, but

with a salinity dependent exponent, varying between
=

4.5 for 0.05 M KBr solutions to

-1.5 for 0.25 M KBr. In the last case, the salt concentration is larger than the surfactant

concentration for most samples, and one can expect that the ionic strength does not change
much as c is varied : the micellar growth is in that case expected to be well describel by
equation (3). It was in order to clarify this point that we have studied micellar solutions of

very high salinities (0.5, and 2 M).

~~
T?(S

i

o-1

10~ 10~ 10' 10~

(Cm~~)

TIME (set)

Fig. I. Fluorescence recovery showing a single exponential relaxation, but with a relaxation time

scaling with an anomalous power of the wave vector r =
q-" (insert). Sample is lo mM CTAB,

2 M KBr.

Surprisingly, in CTAB samples at high salt concentration, while P~(t) is still relaxing
exponentially (see Fig. I), vj b not linear in q~. One rather has (Fig. I, insert) :

Ti '
=

q" ('2)

with p ~
2 (see Fig. 2). In other words, if one tries to define an effective diffusion constant by

forming D~ =
(q~v~)~ ~, one finds that this diffusion constant increases steadily with the

fringe separation I
=

2 ar/q. This is not a small effect since one finds a factor
=

lo between the

diffusion constant measured with I
=

90 ~cm and the one measured with I
=

3 ~cm (see

Fig. 3). The power law (12) typically holds for 5 x
10~ cm~ « q « 5 x

10~ cm~ (correspond-

ing to three time decades 0.01-10s). Equation (12) essentially means that the distance

spanned by the tracer during a time t scales as
t"", I-e-, since p ~

2, that the tracer motion is

superdiffusive.
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Fig. 2. The value of the effective exponent ~c (deterrnined through
v =

q~"), as a function of the

CTAB concentration, for different salinities.
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Fig. 3.- Effective diffusion constant, measured for various fringe separations (3 +m-diamonds;
IO +m-squares, 89 +m-circles) versus CTAB concentration. Note that this effective diffusion constant

increases with distance.

3.2 LENGTH AND TIME scALEs. We now want to specify somewhat the experimental
length and time scales which set the scenery for the theoretical interpretation of this rather

unusual behaviour.

The diameter of the cylindrical micefle is of the order of 50 A. The mesh size of the « coils

network just after entering the semi-dilute rbgime (~
=

~ *, corresponding to
=

I mM/I) is
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estimated through light scattering experiments [17, 34] on similar systems to be

=
600 A. Low salinity experiments on these systems have determined the persistence length

i~ to be =150 A [22] ; high concentrations of salt are expected to make the chains more

flexible this may reduce i~ to say =
100 A. The number L of monomers independent

subparts of the chain of size i~ on the typical chain is thus estimated as : 600=

100 L', and hence L
=

30. For ~
=

lo ~ *, L is multiplied by fi (see Eq. (3)), I-e- takes the

value L
=

100.

The entanglement length £ in the semi-dilute regime behaves as £
zz

600(~ /~ *)~°.~~.

Hence for a concentration of 10 mM, corresponding to ~
=

10 ~ f, one finds £
=

100 A.

This shows that persistence length effects (shifting the exponent ( to higher effective values)
certainly come into play.

The breaking time has been measured by Candau et al. to be of order I-1 000 ms the ratio

between the breaking tin~e and a microscopic time is thus of the order of10~-10~°, which one

may identify with exp(E/kT). Hence, for a concentration of 10 mM (~
=

3 x
10~~), one

estimates L as
fi exp(E/2 kT)

=
100 which is thus compatible with the above figure.

The experimental length scale (fixed by the fringe spacing) varies between I ~cm and

100~cm (the chains thus move on scales much larger than their own size) and the

corresponding time scales are (see Fig. I)
t~~~ =

0.I to 10 s. Hence we are in a rkgime where

the chains have indeed time to break and recombine quite a number of times but not a very

large number of times : taking say v~ =
100 ms, one has t~~~/v~ =

1-100. It is obvious that if

one observes a tracer initially standing on a typical chain, this tracer will visit, as time goes on

and due to scission and recombination, shorter and shorter chains. More precisely, the typical
size L~~~ of the shortest chain visited by the probe is determined by the condition (see
Appendix A)

L~~

[t~~~/v~] dLP (L)
=

(13)
i

where P(L) is the (a priori) probability to find this tracer on a chain of length L (cf.
Eq. (3)) :

P (L )
=

L~ (L
=

L~
'

~ L ~
' exp (- L/L ) (14)

Using equation (13) and (14), one finds (in the regime I « L~~~ « L)

~ ~~~~ j~ ~ij~~-~,~ ~i~~

Hence, for the values of t~~/r~ quoted above and for example for
« =

I/4 (see below), one

finds L~i~
=

(1 0.01 ) L
zz

100 : only after the longest experimental time scale (t~~~/r~ =

1000) is the ergodic exploration of P(L) completed. As we shall detail in next section, this

feature tums out to be crucial to understand the observed superdiffusion. Finally, the

reptation time (for the typical chain) r~~~ may be deemed as : r~~~ =
(6 arl~£ ~)/T (L/g)~ (g is

the number of independent segments «per blob» [18] in our case g=I), or

r~~~ =
I s, which is a little larger than the breaking time for the system we consider. However,

since v~~(L)
=

v~~(L). (L/L)~, chains only slightly shorter than L will be such that

T~~(L)
~ Tb.

4. SuperdiHusion : basic mechanism and Lkvy flight description.

4,I SHORT CHAIN DOMINATED DIFFUSION. We are now in position to understand why

superdiffusion occurs in this system. Take a given tracer particle and follow its fate due to

the «living» nature of the chains, the tracer rides chains of different sizes Lj, L~,
...,

L~ where N
=

t/r~ is the total number of scission/fusion events after time t (we neglect
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unimportant fluctuations of N from tracer to tracer). Each chain will contribute to the square
displacement of the tracer from its initial position proportionally to D(L;) r~, where

D(L;)
=

Do(g)(g/L;)~fl if T~(L;)
~ T~ (16a)

=

g~/To(g/L;I' (r~/T~l' if r~~(L;)
~ r~ (16b)

(see Fig. 4). Do (£ ) is the diffusion constant of a sphere of size £, and fl is an exponent which is

equal to I if the classical reptation theory holds and £
=

1/2 if the chains may be considered as

ideal for R~£. ~more generally, ( =3/2-fl). The crossover length Lc such that

r~~(Lc)
= v~ is given (for fl

=
I) by : Lc

=
L(v~/v~~)~'~ [22]. The strong dependence of

D(L) for L
~

Lc is responsible for anomalous diffusion : equation (16) makes quantitative
the obvious fact that short chains diffuse much more rapidly than long ones

aid thus

contribute a lot to the total displacement of the tracer but of course, the tracer has fewer

occasions to find itself on a short chain than on a long one. Since successive hops are

uncorrelated, the total displacement of the tracer will be given by (~) :

R2(t)
=

z D(L,) r~. (17)

, =1,~

One may now try to apply the usual law of large numbers to this sum. This yields :

lwR~(t)
=

t dLP (L) D(L)
=

sit. (18)
o

t=@Urj

L~~

~~~~

Lc

~

troy Threat tetp ter~ t

Fig. 4. a) Typical displacement of the fluorescent probe during a time v~~~~ as a function of the size of

the chain on which it resides. The dependence is strong for g «
L

«
Lc and it is this regime which is

responsible of the anomalous diffusion exponent. b) Ordering of time scales which make possible the

observation of Lkvy flights the chains must have travelled a distance much greater than their size

before breaking, the fluorescent probe must have encountered many different chains on the

experimental time scale, and finally the time needed to explore the full distribution P(L) must be

greater than the experimental time scale.

(1) In the following discussion, we assume that the recombination time v~ does not depend on L for

short chains. Calculation for the case r~(L)
= To. L ~~ are presented in Appendix C.
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This of course only makes sense if the ii~tegral 5l converges in which case this integral
defines the asymptotic diffusion constant of the tracer. However, in the case that we consider,

this integral diverges at small L id
« + fl m I ; in other words this integral is dominated by the

lower bound 5~
=

(L~i~)~~~ ~'~fl~. But, as we have explained at the end of the previous

paragraph, the smallest chain visited by a typical tracer after a time t has a non zero, time

dependent size (see Eq. (15)) L~~~
=

L (v~/t)~'~~ ~
" The effective diffusion constant 5l thus

evolves with time

j~(t) t
I'+ fl Iii «) (i~)

leading to a superdiffusive behaviour for R :
R~(t)

=
5~ (t) t

=

t~'" with p =
2 (1 «

)/fl « 2 :

the tracer visits, as time goes on, shorter and shorter chains and since the shortest chain met

gives the dominant contribution ti the total displacement of the tracer, the effective diffusion

constant increases with time. This effect ceases when the shortest available chain is visited-

that is, when ~2) L~;~
=

g. This takes a time given by equation (15) : t~~~ =

(g/L)~'~~
v~

above which the ergodic exploration of the full distribution of sizes P(L) can be assumed.

The conditions under which the non stationary, superdiffusive behaviour may be observed are

summarized in figure 4. In particular,

terg ~ texp (20)

For t m t~~~,
the system does not leam anything new as time increases and the asymptotic

diffusion constant is reached (for simplicity, we set fl
=

I in the remaining of this section : see

4.3) :

5~(t
~ t~~~) =

5~~~
=

~~
dLP (L) D (L)

=
D~~~~L)[L/g]~' (21)

g

This value should be compared with equation (7), which gives the contribution of the typical
chains (of length

=
L)

Dcates
"

~rcp~L)iL/LCI (22)

where Lc
= L(v~/v~~~)~'~ is the length of the chains which break and disentangle within about

the same time (cf. Eq. (16)). The inequality 5l~~~ ~ Dc~i~~ (which is a necessary condition for

anomalous diffusion to be observed) is thus equivalent to

g ~
Lc[L/LCY (23)

with y =
I (1/2 «), Condition (23) will turn out to be more stringent that the condition

g ~
Lc underwhich the region of strong dependence of the diffusiqn constant D(L) exists.

Let us finally indicate the concentration dependence of 5~~~~ =
~ ~' As was the case for

Dcaies (see footnote after Eq. (8)), y is very sensitive to the conformation of the chains at

scales
~

£. From equation (21), one finds, assuming L
~

fi,

y =
it (2 3 ~r) + (i ~r)1/(3 1) (24)

In the particular case « =

I/4, y =
1.0, 1.87 or 2.75 for (

=
1, 3/5 or 1/2 respectively. These

values are somewhat larger than those found by Cates (0.83, 1.57, 2.33 resp.).

(~) For L
« g, the chains evolve quasi freely through the polymeric net, and their diffusion constant

depends much less on L(D(L)
=

L~~'). It is easy to show that these extremely short chains are not

responsible for anomalous diffusion.
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4.2 LtVY FLIGHT DESCRIPTION : THE FULL DIFFUSION FRONT. The above arguJnents can

be restated slightly differently : suppose that one follows with time a given tracer particle,
taking snapshots of its position every r~. We thus describe the motion of this tracer as a

succession of independent jumps of size i~. The probability distribution of the i~'s is obtained

as :

P(I)
=

4 aTi~ )~ dLP (L)j4 aTD (L) r~j~ ~'~
exp i~/(4 D (L) r~) (25)

o

which simply follows from the fact that the probability distribution of the distance spanned by
the tracer on a chain of length L during v~ is Gaussian with a variance given by
2 D (L ) v~. Now, using the asymptotic dependences of P (L) and D (L ) for L

-
0 given by (3,

16), one finds, for D (Lc) r~ «
i~

« D (£ r~.

p(I)
~z

it I- (1+ ») (26)

with p =

2 (1 « )/fl and I(
=

Do(£) r~ g~fl Hence, the jump size distribution decays as a

power law, and for certain values of the parameters, that is if p « 2, the second moment of

P (f) diverges. The position of the tracer particle R
=

£ I, then follows a Ldvy process, the

i I,N

asymptotic probability distribution of R being given by (see Appendix A) :

p (R, t )
=

N ii» L
~

(Rjio) N- ii» (27)

where L~ is the (symmetric) stable law of order p and N=t/r~. By definition,

L~ is the Fourier transform of exp q " Thus the experimental signal proportional to the

modulation of P(R, t) at wave vector q, is predicted to be a simple time exponential :

P~(t)
= exp (- flq" t) (28)

(fl
=

I$/r~) with an anomalous relaxation time
=

q~" This is precisely what we observe

experimentally (see 3). While superdiffusion has already been observed in a few other

systems, it is to our knowledge the first time that a Lkvy flight and in particular its

anomalous diffusion front » has been characterized in full detail.

4.3 QUANTITATIVE ANALYSIS OF THE EXPERIMENTS. VALUE OF p. ROLE OF THE CONCEN-

TRATIoN AND TEMPERATURE. As apparent from figures 2, 3, the exponent p extracted

from the r(q) dependence is markedly different from 2 only in a certain region of CTAB

concentration roughly between I and 100 mM (corresponding to ~ *
~

~
~

loo ~ *). In

this «
Lkvy flight » rkgime, the measured value of p is about 1.5, although values between 1.5

and 2 are encountered near the « boundaries » of the anomalous region (see below). As we

have explained in 4.1, 4.2, the value of His related, in our model, to the two exponents «, fl
which describe, respectively, to the chain size distribution (Eq. (3)), and to the dependence of

the diffusion constant on the chain size. Another independent experiment would be needed to

deterrhine those two exponents (see Conclusion for a suggestion) we thus make here the

assumption that the chain size distribution is more complicated than a (mean field)
exponential. We thus propose that

« ~
0 but fl

=

I and hence (~) :

p =2-2«=1.5 (29)

(~) Note however that the mean -field value
« =

0 already corresponds to marginal anomalous
diffusion R~(i)

=
t In t.
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leading to 2 «
k1/2. It could however be that the reptation model underestimates the

diffusion exponent fl in this system, and thus that one has say « =0 and

fl =4/3.

It is easy to understand why superdiffusion ceases both for high and low CTAB

concentrations :

For low concentrations (~
~

~ * ), the chains do not overlap. Reptation in this case looses

its meaning, and the diffusion constant of the chain§ does not depend sufficiently strongly on

their length to induce a « long tail in P(I). Diffusion is thus normal in this case.

For high concentrations (~=100~*=0.lM) L becomes larger (=300), while

v~ decreases (see [15], Fig. 10) and v~(= L~ ~ ~'~) becomes very large. In this case, one of the

tvio observability criteria (Eqs. (20) and (23)) may be violated.

a) Equation (23) (which compares the contribution of the short chains to that of the

« typical ones) can be written, with y =

I :

g ~
L (~b/Trep)~~~

Taking e-g- (~) r~=200ms [30, 16], r~~~=900s, L=300, one indeed finds

L(r~/r~~)~'~
=

l ~g the superdiffusion due to short chains is completely masked by the

background of typical chains. For a comparison, one has, for ~ =10 ~ *, r~ =

700 ms [16,

30], v~~ =
I s, L

=
100, one finds L(v~/v~~)~'~

=
80 » g.

b) Equation (20) ceases to be satisfied for a fringe spacing equal to
=

20 ~cm since in that

case t~~
=

(s~q~)~
=

l 000 s (with 5~
=

2 x
10~~ cm~/s) while

t~~~ =

(g/L)~'~ ~
v~ =

000 s.

From the above estimates, it is clear that near the « boundaries » of the anomalous rkgime,
the time interval where superdiffusion can be observed becomes very small : strong crossover

effects are expected, leading to an effective value of p intermediate between p =
1.5 and

p =
2 (normal diffusion).

A curious feature must be noted: at high CTAB concentration (~ loo mM), while

diffusion seems to be normal (p
=

2), the diffusion constant increases with concentration. In

our opinion, the reason is the following : for these concentrations, the CTAB network is

nearly a melt and thus the true monomer diffusion constant should saturate. The tracer

particle, however, should hop more easily from chain to chain for these concentrations

through transient cross links. The diffusion of the tracer on the network may thus start

contributing in this rkgime.

Rble of temperature and salinity.- The measured value of p versus temperature (for

c =
20 mM) is shown in figure 5. One can see that p rapidly approaches 2 as temperature

increases. This is easy to interpret since v~ varies extremely quickly (through an Arrhenius

exponential) with temperature [15] : a rise of 20° may well reduce the breaking time by a

factor 1000 (see Fig. 13 of Ref. [15]). The length of the chain will thus decrease by a factor

=
30 and thus L(r~/v~~)~'~ is only reduced by a factor

=
3. However,

t~~~ =

(g/L)~'~~
v~ is

divided by 105, while the experimental time scale is only a factor =200 shorter (see
Eq. (21)): the ergodic exploration of the size distribution is much more rapid. Hence,

condition (20) is very quickly violated, and normal diffusion recovered quite abruptly (see
Fig. 4). For these high temperatures where diffusion recovers its normal character, we predict
from equation (24) that, (or

« =

I/4, the diffusion constant should scale as ~~' with

y =
1.0 (since it appears that for the concentrations used, the correlation length f is of the

(4) No measurement was, perforrned at 40 °C and high salinities (I M KBr). However, 200 ms seems a

reasonable extrapolation of the data given in [30].
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same order as the persistent length i~, we took (
=

I). This is in good agreement with our

data at 55 °C see figure 6, where it is seen that y =
1.0 ± 0.05. This probably shows that the

assumption that
« =

I/4 is not unreasonable. Note that y was found equal to =1.35 in

lecithin in oil systems [29], which can be interpreted as a decrease of the (effective) exponent (
in this system.

The role of salinity can be understood similarly: adding'salt allows us to increase

significantly both the length of the chains L and the breaking time r~. The inequality

t~~~ m t~~~
is thus easier to reach at high salinities.'

,----------

O
~

TZ55°C
~ ' O

O <
"~

'
wI

' CJ

~
z

Ci o o
~

35 lo 45 50 55 60 65 70

~ 1° ~
o-1 lo loo 1000

Fig. 5.
~ ~"~~

Fig. 6.

Fig. 5. The value of the effective exponent ~c as a function of temperature, for CTAB concentration

equal to 20 mM and I MKBr. Note that ~c quickly recovers its normal value (~c
=

2 as the temperature

is increased.

Fig. 6. Dependence of the asymptotic diffusion constant
in concentration, for T

=
55 °C. Between

c =
5mM and 50mM, one observes D

=
4 ~'with y =1.0 ± 0.05, in good agreement with our

prediction (assuming that the chains are locally stretched, I-e- (
=

I, and that the exponent «
is equal to

I/4). Experimental errors are represented by the point sizes, except for 2 mM where a q~~ dependence

was hard to obtain.

Rble of the tracer concentration: Let us finally comment on the influence of the

concentration of fluorescent molecules used in the experiments. In the above discussion, we

have assumed the motion of two different tracers were independent. Each one performs an

independent Lkvy flight because the micelles carrying no tracers act as an infinite bath

from which the tracer randomly picks its next vehicle. This is justified if the tracer

concentration is very small, but is no longer the case if every chain carries many tracers

~proportionally to their length), since then breaking/recombination events merely swap the

tracers among chains of different lengths, without affecting the global distribution. The

equation goveming the evolution of small perturbations of tracer concentration b CT is thus

the usual diffusion equation, with a diffusion constant 5~ given by equation (21):
w

5~
=

dLP (L) D(L). In other words, since all chains, long or short, are visited by the

tracers from the start, all non stationary effects, and thus anomalous diffusion, disappear.
Diffusion is thus expected to by normal, with a diffusion constant given by the asymptotic

expression, equation (21).
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We have checked experimentally this curious feature. We have indeed found that the

effective exponent p rises from p =
1.5 to p =

1.8 when the concentration of tracers changes
from 1/200 to 1/45. Accordingly, the recovery time for small fringe separation is smaller in the

latter case, since short chains already fully contribute.

5. Conclusion.

We have thus seen that the essential ingredients which made possible the first experimental
observation of a Lkvy flight process in these CTAB systems are :

a) the polydispersity of the solution and the possibility for the tracer particle to probe the

full size distribution of the chains and

b) a strong dependence induced by reptation of the diffusion constant of the chains

on their length.

It is interesting to note that our experimental results in fact fully confirm that CTAB

micelles really behave as one might think that is, as a semi-dilute, polydisperse solution of

breakable polymers.
A priori, those ingredients should be also present in other systems examples of living

polymers» are not only provided by worm like surfactant micelles. One may think for

example of1iquid sulphur around 160 °C the time scale for observing anomalous diffusion is

however much shorter in this case and other experimental techniques should be used.

This superdiffusive behaviour could also be seen in usual polydisperse polymer solutions : if

the tracer particles are not too strongly bound to the chains more precisely if these tracer

particles may hop from chain to chain at a rate r such that rv~~~ « I, the above mechanism

will again operate.
Very recently, M. Cates [31] has suggested that the same effect could be seen in the angular

relaxation of entangled rigid rods indeed, the angular diffusion constant of such objects
varies widly with their size (D~~~(L

=
L ~). Unfortunately, anomalous diffusion on a sphere

is much more difficult to detect since'all the relaxation functions of this process remain pure
exponentials in the anomalous regime only the relaxation time is affected [32, 31].

Let us finally emphasize that non trivial values of the exponents «, fl are needed to explain
anomalous diffusion. An independent confirmation could be reached by studying the

spreading of a drop of living polymers : if one could monitor the local concentration of living
polymers in the speading drop (using e-g- interferometry) to obtain the time dependent
(singular) concentration profile, one could try to deduce the non linear diffusion equation
governing the problem, which reads, for ~ « l

a~~b
=Da~(~b~~a~~b)

where 0 is an exponent related to fl and ( (0
=

3/2 if fl
=

I, (
=

I). Work in that direction is

underway.
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Appendix A. Sunas of broadly distributed variables and Lkvy's stable laws.

Let us consider the following sum

Z
=

£ x; (A. I)

, i,N

where the x, are random variables distributed according to a symmetric probability
distribution p(x)

=
p(-x), decaying for large

x as p(x) =Ax~~~". For large N, the

generalised central limit theorem states that the rescaled variable z =

Z/(AN )~ is distributed

according to a stable law L~(z) with

* For p m
2 : v =

1/2 and L~(z) is the Gaussian G(z)
=

(fi)~
exp (z~/2 «).

* For p ~
2

v =

lip and L~ (z) is the Lkvy (symmetric) law of order p, defined through
its Fourier transform (which we observe directly experimentally) :

+ w

L~ (z )
=

1/2
ar dk exp ikz k " (A.2)

w

which takes a finite value at z =

0 :

L~ (o)
=

(ar» )- r(i/») (A.3)

and decays asyn~ptoticafly with the same power law as p(x) :

L~ (z)
=

sin (aTp/2) F( I + p )/z~ + " (A.4)

The case p =
I corresponds to the Cauchy distribution :

Li(Z)
"

(I/") I/(I + X~) (A.5)

For more details on these laws, and for asymmetric Lkvy Laws, see [12] and [I, Appendix 2].
The scaling Z

=
N ~'"

can be interpreted as follows the largest value taken by one of the N

variables x; is itself of order N~'" and this value completely dominates the sum Z. One may

express more precisely: the probability P~~~(u, N) that the largest term in the set

u N

(x,) is equal to u is given by P~~~(u, N )
=

Np(u) p~y) dy The most probable
~-

w

value of u (which maximizes P~~~(u, N )) may be computed and is found to be

(x~)"
=

AN/(i + » ) (A.6)

which shows that indeed x~ =

N~'" In order to see that this extreme event dominates the

whole sum, one may ask how the quantity

Z~
=

£ xl (A.7)

1, N

reflects the value of the xf. In particular, the weight lJ§ of a given term, defined as

ll~
=

xl12j
=

x)/(B
+

xl) is a random variable distributed according to :

p w~ ~p w- (aj2)~ j ~(»j2) ~ ~~
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This distribution diverges both for W
=

I (if p ~
2) and for W

=
0. One may characterize this

distribution by the quantity Y
=

( W~) /( Wl
=

£ lJ~' which is of order I if a few W share the

whole weight, and of order I/N(- 0) if all W get an equal share. From (A.8), one obtains :

Y
=

(»/2) (»
~

2)

Y=0 (pm2)

which gives a precise meaning to the fact that, for p ~
2, only a finite number of terms (the

largest ones, which are of order N~'") contribute significantly to the sum. One should note

[35] the deep analogy between the above discussion and the problem of spin glasses [36], in

particular the random energy model [36] where the partition function is also distributed, in

the low temperature phase, according to a Lkvy stable law [37, 35].

Appendix B. Sew diffusion measurements by FRAP.

FRAP [25] (Fluorescence Recovery After fringe pattern Photobleaching) experiments use

fluorescent molecules incorporated to the objects one wants to study. These molecules have

aliphatic tails, the length of which can be varied to change the residence time of the tracers

within a micelle. This has been used to check that tracers are always bound to the micelles and

that free diffusion does not affect the observations.

When illuminated by a high intensity laser flash, thesi molecules irreversibly lose their

fluorescent properties they are « bleached ». A non uniform concentration of active tracers

is created by bleaching and its relaxation is monitored by a second low intensity beam. The

diffusion constant of the objects under study can usually be extracted from the recovery time.

In order to improve the signal to noise ratio and to simplify the theoretical interpretation, one

uses sinusoidal fringe pattern bleaching, produced by two crossed laser beams:
I(x)

=

iB[ I + cos (qo x)], where x is the axis perpendicular to the fringes. The relaxation of

the concentration profile is then monitored with the same fringe pattern, but of reduced

intensity :
fM(x)

=

efB[I
+ cos (qo x)], with

e « I. The total fluorescence intensity during

recovery is given by

F(t)
=

d~rim(r) CT(r, t) (B.I)

where CT(r, t) is the local concentration of active (unbleached) tracers (B.I) simply means

that the fluorescence intensity is proportional to the number of active tracers and to the

exciting intensity.
In general, CT(r,t) evolves according to the diffusion equation: aCT(r,t)tat=

D ACT (r, t), where D is the asymptotic diffusion constant of the objects carrying the tracers.

More generally, in the case of Lkvy flights, the Fourier transform of CT(r, t) satisfies

equation (28) : aCT(q, t )tat
=

flq" CT(q, t ). p =

2 corresponds to the usual case and fl is

a generalized diffusion constant. Using Fourier transforms, equation (B.I) thus reads :

F(t)
=

d3qi~(- q) c~(q, t
=

o ) exp(- nq " t) (B.2)

Using iM(-
q )

=
EiB16 (q ) + (1/2) ib (q qo) + b (q + qo)i i,

one finds :

F(t)
=

ei~jc~(q
=

o, o ) + c~(qo, o) exp(- nqt t)j (B.3)
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Our experimental setup is slightly more complicated since the monitoring intensity is

modulated, and the modulated fluorescence signal is detected by a lock-in amplifier. This is

both to improve the signal to noise, and to check for the presence of convection during the

experiments. We have :

i~(x, t)
=

ei~ I + cos (qo x + u cos w t )] (B.4)

and hence :

F(t)
=

ei~jcT(q
=

0, 0 + CT(qo, 0 ) cos (u cos wt exp (- flqt t)j (B.5)

which can be decomposed into an harmonic series of the modulation frequency :

F(t)
=

£ f~(t) cos nwt (B.6)

n=0,w

In the absence of convection, only even harmonics are generated.
Furthermore, the constant term CT(q

=
0,0) appearing in (B.3) is only present in

fo, We thus measure f~(t)
=

2 et
~

CT (qo, 0 J~(u ) exp (- flq$ t), for which there is no base-

fine problem. J~(u ) is the Bessel function of order 2, and the value of u is chosen to maximize

J~. From the decay time of f~(t) we measure Dqt, and thus a (scale dependent) diffusion

constant D(qo)
=

flqt ~~

The fringe spacing is typically between 2 and 100 ~cm, which allows to measure within

reasonable observation times diffusion constants in the range 10~ ~° to 10~5 cm~/s.

Appendix C. Role of a size dependent lifetime.

Let us rapidly explore the consequence of a strongly size dependent life time for short

micelles. Suppose for example that a short, mobile chain of size L does not break or

recombine before a time v(L)
= To

L~~~ We now define P(L) as the probability for the

tracer to choose a chain of size L. Using an ergodicity hypothesis, the a priori probability for a

given monomer to belong to a chain of size L, is L~(L) (cf. (14)), and is also proportional to

v(L) P(L). Hence P(L) =L~+~~ ~~' Now, let us define N as the number of different

breakage/recombination events experienced by the tracer. The elapsed time is given by :

t
=

£
v

(L;)
=

N dLP (L)
v

(L). (C.I)

,
j,N

~

The travelled distance is given by :

wR2(N)
=

£ D(L,)
v

(L;)
=

N dLP (L) D (L)
v

(L) (c.2)

, =1,~ Lm,n

w

where L~~~(N) is determined as usual as N dLP(L)=I. Assuming that
L_

w

dLP (L) v(L)
=

(v) is finite (I.e, that
« ~

l), one finds instead of equation (27) :

R(t)
=

t~'"' (c.3)

with p'= 2(1+
a

«)/(fl + a
). Note that p'= p when

a =
0.
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