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Abstract. We present the hydrodynamic and electrohydrodynamic equations for the liquid crys-
talline smectic CM phase. This phase, which is fluid in the layers, orthogonal and optically biaxial,
has recently been found experimentally in polymeric liquid crystals. We compare the macroscopic
properties of the CM phase with those of the classical fluid smectic phases, namely smectic A, which

is uniaxial, and the classical smectic C phase, that is tilted and biaxial. lAh predict that the in-plane
director in the CM phase can show flow alignment. We point out that the chiralized version of smectic

CM, C&, has electromechanical properties, that are qualitatively different from those of chiral smectic
C*, hut rather similar to those of a classical cholesteric phase. In contrast to C*, C& is not helielec-

tric and thus does not show a linear response to an externally applied spatially homogeneous electric

field, except for an electroclinic effect near phase transitions to a tilted phase. But similarly to C* and

cholesterics it is predicted to show piezoelectricity.

1, Intndoction.

The field of liquid crystalline (LC) polymers, materials combining the properties of liquid crys-
tals and of polymers, ha5 seen a very rapid development after thermotropic liquid crystalline
side-chain polymers have been synthesized first [I] in 1978. In the case of side~hain polymers

the mesogenic unit is attached to the polymeric backbone via a spacer group of variable length
(compare Refs.[~3] for a review of this new class of materials), lb obtain a thermotropic biaxial

nematic liquid crystal, side-on side-chain LC polymers have been synthesized and characterized

[4-7~. From these studies not only biaxial nematic phases emerged, but upon mixing with a low

molecular weight compound also a layered orthogonal~ fluid and optically biaxial phase [6,7~ was

found.

Such a phase has been predicted to occur two decades ago [8], but until very recently [6,7] there

has been neither a report of an observation nor of the theoretical evaluation of the macroscopic
properties of such a phase. In his textbook~ de Gennes [8] suggested to call this orthogonal, biaxial

and fluid smectic phase smectic CM, where M stands for Mcmillan [8]. This CM phase has a density

wave in the direction of the layer normal, fi, just like the classical fluid smectic phases, smectic A

and smectic C. In contrast to smectic A, however, which has complete two-dimensional fluidity
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Fig, I. a) Side.View of smectic CM: the board.shaped side-chains are stacked in layers (with normal fi)
and orientationally ordered within the layers (along di); the backbone is not shown, b) Side-view of smectic

C: the rod-like molecules are tilted away from the layer normal towards the I-direction.

inside the smectic layers and is thus transversely isotropic and optically uniaxial, smectic CM has a

preferred direction in the layer planes, which we denote by &. Smectic CM is thus anisotropically
fluid in the smectic layers and optically biaxhL In addition, the ground state of smectic CM is

invariant under the transformations fi
-

-fi and di
-

-diseparate§1. It has locally D2h symmetry

[9]: it is orthorhombic, has three orthogonal twofold axes and a horizontal reflection plane.

Its macroscopic properties can therefore be expected tc be qualitatively different bom those

of the smectic A phase dbcussed above and from those of the classical smectic C phase [8], which

has locally Cn symmetry. In the classical smectic C phase the molecules are tilted on average with

respect to the layer normal fi and this tilt b characterized by the director fi (different from fi). In

smectic C only the sbnultaneous replacements [10,11] d
-

-d and fi
-

-fi (t is the projection of

A onto the layers, cf. Fig. I) leave the ground state invarianL

The smectic CM phase is similar to the hexatic B phase with respect to the broken symmetries
and the number of hydrodynamic variables [12], but is difleren~ since the latter is uniaxial due

to the sixfold nature of the hexatic bond orientational order (in contrast to the twofold nature of

the nematic-like order in the CM phase). The tilted hexatic phases (smectic F and I) are biaxial

like the CM phase, but they have (in addition to an1h.like) also a t-like preferred direction in the

layers and are, thus, more similar to the smectic C than to the CM phase (compare Ref.[12] for a

detailed discussion of the hydrodynamic properties of hexatic B and smectic I and F).

It is the purpose of this paper to give a characterization of the hydrodynamic and the electro-

hydrodynamic properties of the smectic CM phase and to compare them with those of smectic

A and smectic C. In addition we will outline the propyrties of smectic C&, a helical phase that

is obtained when CM is chiralized. It turns out that the macroscopic properties of C& are quite
different from those of the helielectric [8,13] smectic C* phase, but that they are rather similar to

those of cholesteric liquid crystals [8] excep~ df course, for the presdnce of the smectic layering
j~ c*

M'

The goal of thb paper b to point out, how CM can be distinguished on the bash of its macro-

scopic properties from the other two fluid smectic phases, smectic A and smectic C. Very recently

[14] we have already given a mean field description of some phase transitions involving the smec.

tic CM phase. The characterization of the defect structures that can occur in the CM phase will be

given in detail elsewhere [15]. In this paper we dbregard for the dynamic aspects the polymeric

nature of the CM phase found in reference [7].
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2. Hydrodynamics of the smecdc CM Phase.

In this section we dbcuss the hydrodynamic properties of CM, I.e. the response to perturbations
of sullicientfy long wavelengths and low frequencies [10,11,16]. In a first step we have to deter-

mine the hydrodynamic varhbles. Aside from the conserved quantities, namely the density p, the

energy density e, and the density of linear momentum g, these are the variables associated with

the spontaneously broken continuous symmetries of the system.
In the last section we have already clarified the invariance properties of the ground state in

smectic CM. SitnilarJy as in smectic A and in smectic C, one has as an additional hydrodynamic
variable [17,10,tl~ll] the layer displacement in the direction of the layer normal

u = u fi. Inspect-
ing further the ground state of smectic CM it is also clear that one has one more degree of freedom

as a hydrodynamic variable, namely the deviation bm
=

(fi x di) .bm of the in-plane director from

its preferred direction in the plane. This varhble is the in-plane rotation angle characterizing the

broken rotational synlmetry in the layer planes.
After having clarified the question of the hydrodynamic variables applicable in the case of smec-

tic CM we make use of general synlmetry arguments ~behaviour under parity and time reversal,
Galilean invariance etc.) and linear irreversible thermodynamics [18] to derive the hydrodynamic

equations for smectic CM. Close to local thermodynamic equilwrium we have the Gibbs relation

Tda
=

de pdp v;dg; 4ldu hdm (2.1)

relating the entropy density a to the other hydrodynamic varhbles. This equation defines the ther-

modynamic conjugate quantities temperature T, chemical potential p, velocity v;, and the thermo-

dynamic forces related to the varhbles characterizing broken symmetries, namely the molecular

fields 4l and h. Using du and dm instead of the true hydrodynamic variables dV;u and dV;m (via
partial integration) simplifies the presentation and b sufficient for the present purposes.

The hydrodynamic variables satisfy the balance equations .

b + V; if
=

R/T (2.2)

# + V;g;
=

0 (2.3)

#; + V;a;;
=

0 (2.4)

& + Y'~
=

0 (2.5)

fi + X"
=

0 (2.6)

thus defining the currents if, g;, and a;; and the quasi-currents Y'~ and X" for the conserved

quantities and the variables associated with broken synlmetries, lb close the system of hydrody-
namic equations b then a two step procedure [10]. The statics provides the connection between

the thermodynamic forces defined via equation (2.I) and the hydrodynamic varhbles; and in the

dynamics the currents and quasi~urrents defined via equations (12) (2.6) are linked ~vith the

thermodynamic forces.

lb derive the statics it b convenient to start from the generalized energy F

F
=

Fo + /dr( if ((fi V)u)~ + (71bp + 72ba)(fi V)u

+
I' (Vi'l')(NJ'l') + DiJk (Vivi ")(Vk'l') (~'~)

+ ~(~~ (T7;T7;u)(T7k Vi u))
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where Fo contains all the contributions already present in a simple fluid. The property tensors

A;;ki, B;;, and D;; in equation (2.7) take the form

A;;ki
=

Aii;I;ikii + A2&;&;&k&1+ A3(I;I;&k&1 + (2.8)

B;;
=

Bi#;#; + 82&;&; + B3i;I; (2.9)

D;;k
=

D(I;&;#k + I;&k#; + I;&;#k + I;&k#; + ik&;#; + ik&;#;) (2.10)

where I;
=

(fi x &); and where stands for all the other combinations containing two l's and

two m's. In writing down equations (17) (2,10) we have confined ourselves to terms quadratic
in the variables (and thus to linearized hydrodynamics) and to lowest non-vanishing order in the

gradients. We now briefly compare the generalized energy of CM with that of smectic A and C.

The terms in the first line of equation (2.7) are identical to those [8] present in smectic A and

C. Due to the nonexistence of an orientational degree of freedom the terms in the second line

of equation (17~ do not exist in smectic A ~ltef.[8]); in smectic C the tensors B and D have four

and two coefficients [19,10,8], respectively, reflecting the fact that the synlmetry of the classical C

phase b lower (monoclinic), when compared to that of the CM phase (orthorhombic). The last

term of equation (2.7) contains in smectic A one term only, since the system b uniaxial, whereas

in smectic C there b an equal number of terms (3) [20] due to the restriction to in-plane gradients
(gradients along the layer normal already occur to lower order, cf, first line of Eq.(2.7)).

The thermodynamic conjugates can be obtained from the generalized energy by taking varia-

tional derivatives, for example, for the molecular fields 4l and h

bfj (211)°
j~

and *

bF
(2.12)~

bm

where the ellipses indicate that all other hydrodynamic varhbles are kept fixed while taking the

varhtional derivative with respect to one varaible.

lb close the system of hydrodynamic equations we have to link the currents and quasi~urrents
to the thermodynamic forces. We do thb for the reversible parts (superscript R) of the currents

(giving rise to vanbhing entropy production, R
=

0) and for the irreversible parts (superscript D)
of the currents ~yielding positive entropy production, R > 0) separately. We obtain

Y'~~
=

A;;V;v; (2.13)

and
a(

=
A;;h (2.14)

where

iii
= -)e;>k#k (>(iii> + iii;) (2.15)

We thus see that we have one flow alignment parameter in smectic CM, whereas there are two in

classical smectic C ~ltefs.[10,21]). Analyzing equations (2.14) and (2.15) we find that flow align-
ment as a consequence of balancing torques on the director field is posslle in smectic CM and we

find for the flow alignment angle

CDS(2e)
=

(2.16)
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for a shear flow inside the layer planes (I;&;V;v;
=

const) aligning the in-plane director &.

Equation (l16) looks structurally [8] identical to the expression for flow alignment familiar from

uniaxial nematic liquid c1ystaIs. Intuitively one can view the situation encountered to be that of

a two-dimensional nematic as long as the layers are kept fixed. Thb b the first time that the
posslility of flow alignment emerges for a fluid orthogonal smectic phase, lb demonstrate flow

alignment in smectic CM experimentally, it will be probably most convenient to use the geometry of

a freely suspended film, a geometry that has already been found to be useful for the demonstration

of flow alignment in the classical tilted smectic C phase [22].
lb derive the dbsipative contrlutions to the currents, we start from the entropy production R.

We have for R in smectic CM

2R
=

/
dr(q;;kiA;;Aki + «;; (V;T)(V;T) + 7/~h~ + (lb~ + 2f4l(fi V)T) (2.17)

where A;;
=

)(V;v; + V; v;). In writing down equation (2,17) we have focussed on the terms to

lowest order in the gradients. As in smectic A there b one cross~oupling term bebveen temper-
ature gradients and the force associated with the layer displacemenL In smectic C there are two

such terms. The contribution of heat diffusion («;; to R has two coelli dents in a smectic A phase
[8,10] (uniaxial symmetry), tlwee in a smectic CM (orthorhombic synlmetry) and four in smectic

C (monoclinic synlmetly) [10]. Similarly the vbcous tensor q~;ki has five coefficients in smectic A

~ltef§.[8,10]), nine in CM and thirteen in smectic C (Ref.[10]). Director relaxation brings along
only one dissipative coefficient in C as well as in CM. Viscous cross~oupling terms of the molecu-

lar field assochted with the in-plane director to temperature gradients and to the molecular field

of the layer dbplacement occur only as higher order gradient terms of the type VhVT. Other

higher order gradient terms can be constructed easily along the lines of reference [23].
lb get the dbsipative parts of the currents one takes a variational derivative of the entropy

production, for example for Y'~° and X"°

Y'~°
= ()(... (2.18)

and

~~
JR

(2.19)~
b4l~"'

where the ellipses indicate that all other thermodynamic forces are kept constant, except the one

~vith respect to which the variational derivative b taken.

3. Electrohydrodynamlcs of the CM Pham

Until now all electrical effects have been discarded. However, to describe electromechanical ef-

fects and also electrohydrodynamical insta§ilities a coupling to the equations of electromagnetism
b important. We concentrate here on the effect of electrical fields in the macroscopic domain, that

is long wivelengths and low frequencies. But in contrast to pure hydrodynamics we also keep the

electrical variables relaxing in a large, but finite time rc, which we assume to be long compared to

all microscopic collision times. We follow the procedure outlined in references [8, 24, 25].
First we discuss the influence of static electric fields in the generalized energy given in equation

(2.7). We find the following additional contributions FE to the generalized energy

FE
" /dr((;;kE;V;VkU+($E;V;m+e;;E;E;) (3.1)
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where the flexoelectric contrwutions assodated with the layering ((;;k) and with the in-plane di-

rector ((Q ) take the form

(ijk
"

(I#I#j #k + (2#I fi; fik + (3#it; ik + (4(#j I;ik + #ki;I; + (5(#j fi;fik + #kfi; fi; (3.2)

and

~ ~ ~(ij (I 'l'i~j ~ (2 'l'j~i (~.~)

In the electrostatic limit, where curl E
=

0, only the symmetrical forms of (;;k and (Q enter

(3,I) and one can put (2
=

(5, (3
=

(4, (?
=

(i' without loss of generality. Thus, only three

combinations of the l's (and one of the l'~'s are truly flexoelectric coefficients, while the others

are related to tempor%I changes of magnetic fields. The dielectric tensor e;; in equation (3,I) h of

orthorhombic form and has thus three different eigenvalues. The discussion of the consequences
for the orientation in an external static electric field is thus identical to that given for rectangular
discotics and orthorhombic biaxial nematics [26]. Comparing these results with those for smectic

A and C we note that there are three (two) flexoelectric coefficients associated with the layering in

smectic A ~Ref.[17~) and ten (six) in smectic C (Ref. [27]), whereas the CM phase has five (three),
where here and in the following sentence the numbers in brackets refer to the number of the truly
flexoelectric coefficients, which are the only ones in the electrostatic approximation, curl E

=
0.

We find two (one) flexoelectric coefficients associated with the in-plane director in CM, which is

also the case for smectic C ~ltef.[24]) and for unhxial nematics [8], while for bhxial nematics

(where three varhbles of the m type exist), one has six (three) [27~.
lb incorporate electric effects into the dynamics, the GWbS relation (2,I) has to be supple-

mented by the term ) D;dE; on the right hand side. The conservation law for the charge density
reads

#ei +17;j;
#

0 (3.4)

and; discarding the effects of magnetic fields in the following, we have from Maxwell's equations

V;D;
=

4«p~i (3.5)

V x E
=

0 (3.6)

16 lowest order in the gradients we find no a§ditional reversible currents, whereas for the entropy
production R we have for the terms assochted with electric effects the contribution RE

2RE
=

/ dr(a(E;E; + xi; E;V;T + ~#;E;4l + ~fi~(&;I; + &;I;)hV;I; (3.7)

The second rank tensors for the electric conductivity'(a() and for Peltier-type effects. («);) are

isostructural tc that of thermal conductivity («;;). We find that an electric field couples dbsi-

patively in the same way to the molecular field of the layering as in smectic A (Ref. [10]). As in

smectic C ~ltef. [24] ), we find a dissipative cross-coupling between spatially inhomogenous electric

fields and the molecular field of the in-plane director characterized by one coefficient (~f) within

the approdmation curl E
=

0.
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4. Macroscopic Prope«lesofthec~ Phase.

In a cholesteric liquid cqstauine phase [8] chiral molecules spiral in a helical fashion about a

preferred axis, the Mb of the helix. The director i1 and the Mb of the helix fi are orthogonal and

general symmetry considerations do not allow for the occurence of a macroscopic polarization in

any plane perpendicular to the helical axis.

The situation changes when a smectic C phase, in which the molecules are tilted on average
with respect to the layer normal, are chiralize@. In this case a local synlmetry argument [28,8]
shows that within each smectic layer a macroscopic polarization arises in smectic C°. In C° both,
the tilted director fi and the macroscopic polarization P spiral in a helical fashion around the

helical axis, which is parallel to the layer normal fi. As a consequence, smectic C° is uniaxhl on

length scales large compared to the helical pitch and has no spontaneous polarization.
After these introductory remarks about the cholesteric and chiral smectic C° phases, we will

now characterize the macroscopic properties of the chiral smectic C~ phase. As discussed above,
CM has locally D2h synlmetry and represents a fluid, orthogonal and optically biaxial smectic

phase. Upon chiralization we assume the in-plane director fir, which is perpendicular to the layer
normal, to rotate in a spiraling fashion around the helical axis, which is parallel to the layer nor-

mal [29]. Local symmetry arguments do not allow for a macroscopic polarization P -in the layer
planes in this case. Therefore smectic C~j does not show an effect that is linear in an externally
applied spatially homogeneous electric field in contrast to smectic C°. Correspondingly the fast

switching process between two states of different optical contrast observed for chiral smectic C*

in thick samples [30] does not exist in smectic C~j.
We note that near the phase transition to a tilted smectic phase an external static electric field

can produce an electroclinic effect, I,e, it can induce a transition to a tilted phase, in materi-

als composed of chiral molecules. Since we are dealing throughout the present paper with bulk

properties of the phase away from any phase transitions, we do not consider electroclinic effects

any further.

The introduction of the helix in Cj~ is thus rather similar to the helix in cholesterics. Corre-

spondingly we find that the macroscopic properties of C~j are essentially a supejposition of those

of cholesterics (due to the helix) and of those of smectics A (due to the layering).
We present here a brief summary of the hydrodynamic equations for smectiq Cj~ valid on length

scales large compared to the pitch. Macroscopic equations applicable on length scales small com-

pared to the pitch, on which Cj~ is biaxia( can also be written down using the local approach as it

has been applied before to cholesteric [31-33] and to smectic C° (Ref§. 34, 33] liquid c1ystaIs.
We discuss first the purely hydrodynhmic equations without the coupling to electric fields. In

this case we have, in addition to the conserved quantities density p, density of linear momentum g;,
and energy density e, two variables characterizing spontaneously broken continuous synlmetries,
namely the combined displacemint of the smectic layers and the helix, uA

=
#; vt, and the

displacement of the helix only, UC + #; uf. We note that both varhbles are identical to the

corresponding variables in smectic t° (reference [24]). As in cholesterics and in smectic C° a

rotation of the helix about its axis is equivalent to a translation along this axis.

From this analysis it emerges, that the hydrodynamic variables without the coupling to electric

fields are identical in smectic C° and in smectic Cj~. We thus conclude that section 2 of reference

[24], giving the hydrodynamic equations for smectic C°, applies equally well to smectic Cj~ and

can thus be taken over unchanged.
This situation changes, when we take into account the effect of electric fields. Then the discus-

sion given for smectic C° in section 3 of reference [Ml must be modified. First we discuss static

electromechanical effects, I,e, changes of the generalized energy F, FE> due to electric fields. We
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find for FE

FE
=

/ dr(((~E;V; Vk uA + ((~E;V; Vk UC + (;;E;V; UC + e;; E;E; (4.1)

where the flexoelectric tensors ((~ and ((~ assochted with combined displacement and the helix

dbplacement, respectively, take the form

(~i
"

(l~~#I#j#k + (#~~#ibj~ ~ (~'~(#j~(I + #k~~) (4.2)

with the transverse Kronecker symbol b(j = b;; #;#;. In the limit curl E
=

0, only the combina-

tions ()>~ + (#'~ enter equation (4.2). The piezoelectric tensor £;; contains only one coefficient

(;;
=

#o(#;#; (4.3)

with qo =
2«/po where po is the pitch of the helix in smectic Cj~. The piezoelectric term is thus

isomorphic to that of cholesteric [Ml and smectic C° (Ref. [24]) liquid crystals. The dielectric

tensor e;; is of uniaxhl form, since Cj~ is uniaxhl on length scales large compared to the helical

pitch. We note the absence of the term P E in smectic Cj~, since there is, in contrast to smectic

C°, no in-plane equilibrium polarization.
lb incorporate dynamic effects due to electric fields we proceed in analogy to section 3 far

nonchiral smectic CM. Equations (3.4) (3.6) and their treatment can be taken over unchanged.
As in sections 2 and 3 we deal With the reversible and the irreversible parts of the dynamics sepa-
rately. For the reversible contributions to the currents we find (in the approximation curl E

=
0)

it
=

(;>kqoi7kv; (4.4)

and

aij "
(kij~0Ek (4.5)

with

(;;k
=

(i#;#;#k + +(2(#;b][ + #kb[J + (3#;bS (4.6J

Thus, as in the case of smectic C° ~Ref.[24]), there are reversible coupling terms between the

electrical current and velocity gradients and vice versa between electric fields and the stress tensor.

We note that the coupling terms are of the same structure as for C°.

For the part of the entropy production RE associated with electric field effects we have

2RE
=

/ dr(a(E;E; + «(; E;V;T + ~fiA#;E; WA + ~fiCfi;E; WC) (4.7)

where the electric conductivity tensor (a( and the tensor containing Peltier-type effects («(; are

of uniaxial form, and where WA" and WC are the thermodynamic conjugate forces to uA and UC,
respectively. As in sections 2 and 3, the dissipative currents can be obtained by taking the proper

varhtional derivative of the entropy production. From the description oftheelectrohydrodynamic
properties of smectic C~j we conclude that these are shnilar to those of cholesterics, except for the

additional degree of freedom due to the smectic layering. Since in smectic C& the displacement
of the helix UC is not coupled rigidly to rotations of the polarization P (as for smectic C* ), both

the helix displacement and the polarization are independent macroscopic varhbles.
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5. Discussion and conclusions.

We have discussed the hydrodynamics and electrohydrodynamics of the smectic CM phase and

we have found that it is in between that for the smectic A and that for the smectic C phase. As

a rather interesting result it turns out that smectic CM can show flow alignment and that it is the

first orthogonal and fluid smectic phase to offer such a posslility.
lb distinguish experimentally on a macroscopic scale, whether one has a smectic CM phase or a

classical tilted smectic C phase, it is convenient to chira&e the material either by adding a chiral

agent or by attaching an asymmetric carbon to the molecule in question. In contrast to smectic

C*, smectic C& does not show a response that b linear in an applied spatially homogeneous elec-

tric field, since its synlmetry does not allow for an in-plane polarization that could be oriented.

Correspondingly we predict that smectic C~ does not s~vitch like smectic C° in thick samples [30].
We have also pointed ou~ that smectic C~j is piezoelectric, a property that it shares with both,

cholesteric [24] and smectic C°. Since piezoelectricity has been demonstrated to be easily ex-

perimentafly detectable in cholesteric [35] and chiral smectic liquid crystalline elastomers [Ml, it

seems most interesting to crosslink a po1ynler showing the smectic C~j phase and to investigate
its electromechanical properties. In this connection we note, that the extension of hydrodynam-
ics and electrohydrodynamics to polymeric [37,38] and elastomeric [39,40] systems has started

only recently. We will use thb approach for the description of the dynamic properties of smectic

po1ynleric and elastomeric liquid crystals such as polymeric smectic CM ~Refs.[6,7]) in the near

future.

Another interesting possibfiity to distinguish experimentally a smectic CM phase by polarizing
microscopy from smectic A and smectic C are the defect structures, which turn out to be qualita-
tiveJy difierenL A detailed exposition on this topic will be given elsewhere [15].
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