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Abstract. We develop a theory for the dynamics of tilted hexatic phases in liquid-crystal films.

A renormalization-group analysis gives exponents for the softening of the optical-mode relaxation

rate near the hexatic-to-hexatic transitions. These exponents may be observable in experiments

on therrnotropic and lyotropic liquid crystals.

1. Introduction.

Liquid-crystal films often exhibit tilted hexatic phases, with at least quasi-long-range order in

bond and tilt directions but only short-range crystalline order. Tilted hexatic phases can differ

from each other in the relation between the local bond and tilt directions. Two recent

experiments have studied transitions among different tilted hexatic phases. Dierker and

Pindak [I] use light scattering to investigate thin tilted hexatic films Of thermotropic liquid
crystals. They Observe a weak first-Order transition from the hexatic-I phase, in which the

local tilt (azimuthal) angle is locked along One Of the six local bonds, to the hexatic-F phase, in

which the local tilt angle is locked halfway between two local bonds, 30° from each. Smith

et al. [2] use x-ray scattering to examine the Lp, phases of lyotropic liquid crystals, which are

probably hexatic but may have finite in-plane crystallites. They find three distinct

Lp, phases the Lp~ and Lp~ phases (analogous to hexatic-I and hexatic-F) and a new

intermediate Lp~ phase, in which the local tilt is locked at an angle between 0° and 30° away

from a local bond. The Lp~ Lp~ and Lp~ Lp~ transitions are second-order.

In earlier papers [3, 41 we presented a Landau theory with fluctuation corrections for

transitions among tilted hexatic phases in two-dimensional (2D) liquid-crystal films. Our

theory is based on the interaction potential

V(0 ~
=

h~ cos 6(0 ~ hj~ cos12 (0 ~ (l.I)

between the bond-angle field 0 and the tilt-azimuthal-angle field ~. Using the renormalization

group, we derive a phase diagram in the three parameters h~, hi~, and K_, the stiffness

constant for the 0_
w

0 ~ mode. This phase diagram exhibits the hexatic-I, -F, and -L
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phases as well as an unlocked tilted hexatic phase, in which the bond and tilt angles fluctuate

independently. Two cross sections of the phase diagram are shown in figure I.

The purpose of this paper is to extend the Landau theory to describe the dynamics of tilted

hexatic films near the hexatic-to-hexatic transitions. This paper complements the work of

Zippelius et al. [5] and Ostlund et al. [6], who have studied the dynamics of 2D systems near

the liquid-hexatic and hexatic-solid transitions, and Pleiner and Brand [7], who have studied

the dynamics of 3D stacked hexatic liquid crystals. In section 2 we derive a kinetic equation
for the 0_ (r, t mode using the potential (I,I), This kinetic equation can be solved easily if

one approximates il. I) by a harmonic potential. We show that the harmonic approximation is

self-consistent if and only if the restoring force at the minimum of the potential (a simple
function of h~ and h,~ is sufficiently large. This condition is satisfied in most of the phase

diagram, but it is not satisfied near the second-order transitions, and it may not be satisfied

near the first-order I-F transition.

In section 3 we use a dynamic renormalization-group technique (similar to the dynamic
renormalization group for roughening [8, 9]) to find the behavior when the harmonic

approximation breaks down. By integrating out the short-wavelength components of the

noise and rescaling distances and times, we transform all the parameters of the kinetic

equation. We iterate until h~ and h,~ either become large, in which case we can make a self-

consistent approximation, or else go to zero, in which case the problem is trivial. Using this

la) h,~ > O

HEXATIC-1

~-i ~-i
~12

HEXATIC-F

h6

16) h,~<O

HEXATIC-I

Kj

HEXATIC-F

Fig. I. Two cross sections of the theoretical phase diagram, for (al constant h12
~

and (b) constant

hi~ ~
0, as a function of h~ and the temperature-like variable K[ ~. The double fines represent first-order

and the single lines second-order transitions. The arrows labeled (1)-(4) indicate the transitions

discussed in section 3.



technique, we derive the relaxation rate of the 0_ (r, t) mode near each of the hexatic-to-

hexatic transitions in figure I. Our results are consistent with dynamic measurements near the

first-order I-F transition in thermotropics [I], and they could be tested by dynamic
measurements near the second-order I-L and L-F transitions in lyotropics.

2. Model of dynanfics.

We consider the Hamiltonian for a 2D tilted hexatic film [3, 4, 10]

~ =ld~(~K~<V0<~+~Ki<V~<~+gV0.V~+V(0-~)j. (2.I)
kBT 2 2

In the first three terms, K~ is a Frank constant for variations in the bond orientation

0(r, t ), K, is a stiffness constant for variations in the tilt azimuthal angle ~ (r, t ), and g is a

gradient cross-coupling. These 2D elastic constants are implicitly integrals of 3D elastic

constants across the thickness of the film. We neglect elastic anisotropy, which is irrelevant at

long length scales [3, 4, 11]. The function V(0 ~) is a general tilt-bond interaction

potential, which can be expressed in general as the Fourier series

V( 0 ~ )
=

jj h~
~

cos 6 n (0 ~ (2.2)

n =1

because of the local hexagonal symmetry. The first two terms of the series dominate near the

hexatic-to-hexatic transitions, and a qualitatively correct phase diagram may be obtained by
truncating the series to obtain the potential (I.1) [3, 4].

In this paper, we consider only tilted hexatic phases, in which disclinations in

0 (r, t and vortices in ~ (r, t ) are rare and are irrelevant to the statistical mechanics. Nelson

and Halperin [10] have shown that these defects are irrelevant when the renormalized

K~
>

72/w and the renormalized K, >2/w. Under these circumstances, we can treat both

0(r, t) and ~(r, t) as single-valued functions. We can then simplify the Hamiltonian by
defining the linear combinations [10]

0~ (r, t i
= a 0 (r, t + fl~b (r, t

,

(2.3a)

0_ (r, t
=

0 (r, t ) ~b (r, t
,

(2.3b)

where
a =

I fl
=

(K~ + g )/(K~ + K, + 2 g ). In terms of 0_ (r, t ), the Hamiltonian

becomes

~
=

d~ K~ <V0~ ~
+ K <V0 ~

+ V(0 )j
,

(2.4)
kB T 2 2

with K~
=

K~ + K, + 2 g and K_
=

(K, K~ g~)/K~. The average value of 0_ is 0° (mod
60) in the I phase, 30° (mod 60) in the F phase, and between 0° and ± 30° (mod 60) in the L

phase. By analogy with the terminology for phonons, variations in 0~ (r, t and 0_ (r, t ) can

be called «acoustic» and optical modes, respectively, with in-phase and out-of-phase
variations of bond and tilt angles [I].

In references [3, 4], the phase transitions of this model were studied by first using mean-

field theory and then examining the effects of fluctuations using the renormalization group.
We suppose that hi~ is fixed and h~ decreases from positive to negative values as a function of

temperature or humidity. In mean-field theory, the nature of the phase transitions depends on

the sign of h,~. In a material with h,~
>

0, there is a first-order transition from I to F at
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h~
=

0. In a material with h,~
<

0, there is a second-order, Ising-type transition from I to L at

h~
=

4 <h,~< and another second-order, Ising-type transition from L to F at h~
=

4 <h,~<.
When we analyze the effects of fluctuations using the renormalization group, we find that

mean-field theory is valid for K_
> K~_,~, where h~ and h,~ are both relevant parameters,

becoming large as the renormalization-group transformation is iterated. However, for

K~, ~ <
K_

<
K~,,~, the parameter h,~ is irrelevant, and there is a second-order transition from

I to F at h~
=

0. For K_
~ K~_ ~,

the parameters h~ and h,~ are both irrelevant, and there is an

unlocked phase. The critical initial stiffnesses K~
~

and K~
,~

depend on the initial values of

h~ and h,~ they are approximately K~
~ =

9/(2 w) and K~,,~ =18/w. The corresponding
renormalized stiffnesses are exactly 9/(I w) and 18/w. Figure I shows the phase diagram

derived using the renormalization group.

We now investigate the dynamic behavior of a tilted hexatic film. Following references [12,
8], we assume that the low-wave-vector, low-frequency dynamics can be described by the

simplest kinetic equations that relax to the correct static limit. In this problem there are no

conservation laws for 0~ or 0_ However, there is a reversible coupling between the

0~ mode and the transverse part of the momentum density, gT(r, t). The origin of this

coupling is that a local vorticity field causes 0~ to precess, and conversely, an inhomogeneity
in 0~ causes the fluid to move [5]. There is no such coupling between 0_ and

gT because the two angles 0 and ~ precess together in response to a local vorticity field, and

hence the difference 0_
=

0 ~ does not change. As a result, the kinetic equations for

0~ and gT can be written as [5]

~°~(~'~~=T~K~V~O~(r,t)+£2.VxgT(r,t)+T~ f~(r,t)+f~(r,t), (2.5a)

~~~~~'
=

K~ kB T(2 x V ) V~0~ (r, t ) + vV~gT(r, t +

+ up o
V~fT(r, ii + (T(r, 11

,

(2.sbi

and the kinetic equation for @_ becomes

~°~j~' =
r_ K_ v20_ (r, ii r_ v>(o_ (r, i j) + r_ f_ (r, i j + <_ (r, i j. (2.6j

In these equations r~ are kinetic coefficients [13],
v

is the kinematic viscosity of the fluid,

po is the equilibrium mass density, and f= (r, t ) and fT(r, t ) are extemal forces that couple to

0_ (r, t) and gT(r, t). The functions (_ (r, t) and jT(r, t) are independent Gaussian noise

sources satisfying

(<+ (q, ill
=

It- (q, ill
=

(<T(q, iii
=

o, (2.7a)

(t+ (q, ii f+ (q', i'II
=

2 r~ (2 w j2 (q + q' (i -1'), (2.7b)

It- (q, t ) (- (q', t'))
=

~ ~~ ~~ '~ ~~ ~ ~~ ~ ~' ~ ~~ ~'~' ~ j~' ~ ~'
(2.7c)

,

ot erwise,

1<T,(q, t <Tj(q', t'))
=

2 up o
kB Tq~

&,j
~'(~ (2 ar)~ (q + q'i (t t') (2.7d)

q

The parameter A is an ultraviolet cutoff (of order the inverse intermolecular spacing), which

we impose on the noise <_
,

as in reference [9]. We could impose a similar ultraviolet cutoff on

f~ and (T, but that is not necessary. Note that the kinetic equations are invariant under the



transformation 0~
-

0~ and gT- -gT, and independently under the transformation

0
-

0

The kinetic equations for the acoustic mode 0~ and the transverse momentum density

gT have been solved by Zippelius et al. [5]. They find that the linear response function has

poles at the eigenfrequencies

where j~ K~ kB T
D,

~ =
r~ K~ + v ± (r~ K~ v (2.9)

Po

If the quantity under the square root is positive, the two eigenmodes are purely diffusive, with

relaxation rates given by yi ~ =
D,

~
q~. If the quantity under the square root is negative,

2

the two eigenrnodes propagate but are heavily damped, with a relaxation rate of

y =
(r~ K~ + v) q~. The scaling of the relaxation rate with q~ is consistent with the

2

experiments of Dierker and Pindak [I]. These eigenmodes and eigenfrequencies do not

change as one passes through any of the hexatic-to-hexatic transitions.

The kinetic equation for the optical mode 0_ is nonlinear and hence cannot be solved

exactly. For an approximate, mean-field solution, we assume the thermal fluctuations are

small enough that 0_ (r, t always remains close to a particular minimum of V(0_ ) we will

later determine when this assumption is self-consistent. When this assumption is self-

consistent, we can approximate V(0_ by a harmonic potential about the appropriate
minimum. Tile minima of V(0_ are located at

°
(mod 60° )

,

if h~
> max (0, 4 h

,~

~ ~;~
30° (mod 60°

,

if h~
<

ruin (0, 4 h,~)
~~ ~~~

±
cos~' (h~/4< h,~ (mod 60°

,

if h,~
<

0 and
6

4 h,~
<

h~
<

4 h,~

We therefore approximate

V(0_ (r, t i )
=

V"(0n~~)( 0_ (r, t 0 n'~)~, (2. II

where

6 h~ + 144 h,~, ifh~
> max (0, 4 h,~) ;

36 h~ + 144 h,~
,

if h~
~

min (0, 4 h,~)
V " 0 f~~)

=
~ ~

(2. 12)
(144 h,~ 9 h~)/<h,~

,

ifh,~
~

0 and

4<h,~< <h~
< 4<h,~<

The kinetic equation (2.6) now becomes linear and can be solved easily. For any particular
realization of the noise f_, we find that the Fourier transform of &0_

w
0_ 0f~~ is

0- (q,
W

)
=

GaF(q,
w

)~f_ (q,
w +

r='i_ (q,
w )1

,

(2.13)
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with the linear response function

GffF(q,
w

)
=

j- iwr=i
+ K_ q2+ v"(Olin)j-' (2.14)

The imaginary pole of this response function shows that the optical-mode relaxation rate is

Y ff~(q
=

r (K_ q
2

+ v « o ?~n) ) (2.15)

in the mean-field approximation.
Equations (2.15) and (2.12) give the relaxation rate near the first-order I-F transition in a

material with h,~
>

0. Near this transition, we can wRte h~ cc (T TjF), and we have

Yf'~(q
=

o j
=

r_ (36j h~< + 144 hi~j (2.16)

As T- Ti~, the relaxation rate y~~(q
=

0 decreases linearly toward a nonzero limit.

We must now determine when the mean-field, harmonic approximation is self-consistent.

From equation (2.13), if the extemal force f_
=

0, the thermal fluctuations in 0_ are given

by

(r, t )~
=

ln +

~~ ~
(2,17)

4 wK_

"(@f~)

The mean-field, harmonic approximation is valid if and only if the fluctuations remain well

inside one ofthe parabolic wells of V ). As a rough criterion, we require ( 6 (r, t ) )~
<

l/4 w, and hence the approximation is valid for

K_ A~
V"(@~'")

>
~ ~~

(2,18)

e
~' l

For K_ s 36, this criterion simplifies to

V"( @f'~~) m 36 A ~ (2.19)

This criterion is satisfied in most of the phase diagram, whenever h~ is large. It may be

satisfied near the first-order I-F transition if h,~ is of order A~. It is definitely not satisfied near

the second,order I-L and L-F transitions, where V"(0f'~) vanishes. Furthermore, it is not

satisfied near the second-order I-F transition, where h,~ is irrelevant, or in the unlocked

phase, where h~ and h,~ are both irrelevant. To understand the dynamics in all the regimes
where the cRterion (2.19) is not satisfied, we must use the dynamic renormalization group of

section 3.

3. Renornlalizafion-group analysis.

In the regimes where we cannot solve the kinetic equation (2.6) directly, we can use the

renormalization group to transform it into an equation that can be solved. In the

renormalization-group calculation, we exploit an analogy between the dynamics of tilted

hexatic phases and the dynamics of roughening, which has been investigated by Chui and

Weeks [8] and Nozidres and Gallet [9]. Equation (2.6) for 0_ (r, t is almost equivalent to the

kinetic equafiion for the height of an interface. The tilt-bond interaction potential

V(0_ ) corresponds to the pinning potential that tends to fix the height of the interface at an

integral number of lattice spacings. The only difference is that V (0 ) is the sum of two cosine

terms, but the potential studied in references [8] and [9] is a single cosine term. In this section,



we generalize the dynamic renormalization group for roughening to treat the potential
V(0_ ), and then we use the renormalization group to study the dynamics of 0_ (r, ii near

each of the hexatic-to-hexatic transitions.

To derive the recursion relations, we follow the procedure of Nozidres and Gallet. We first

transform the differential equation (2.6) into the integral equation

@_ (r, t
= ld~rj dt, G1°~(r r,, t t,)~f_ (r,, ii) +

rj'j_ (rj, ii) V'(0_ (r,, t,))],

(3.1)

where

G(°I(q,
w

)
=

[- iw Tj + K_ q~]~'
,

(3.2a)

By iterating this integral equation, we solve for 0_(r,t) to second order in h~ and

h,~. We then average over the Fourier components of the noise j_ (q, t) in the range
e~~ A

< <q ~
A, thereby obtaining a « partially averaged » solution for 0_ in terms of the

extemal force f_ and the unaveraged components of j_ (q, t ), with <q <
e~ A. Note that

the averaging procedure does not eliminate any components of f_ or 0_ The partially
averaged solution @_(r,t) satisfies an integral equation similar to (3.I), and hence a

differential equation similar to (2.6), to second order in h~ and h,~. Using some approxi-
mations _described by Nozidres and Gallet, we put the new differential equation into a form

equivalent to (2.6), but with different parameters in place of h~, h,~, K_, and r_ As a final

step, we rescale distances by a factor of e~ and times by a factor of e~~. We obtain the

following differential recursion relations, valid to second order in h~ and h,~.

dh6(I)
9 c, h~(I) h,~(i)

I
~

~~~~~ ~
A~ '

~~ ~~~

dK_ (I c~ h~(I)~ + c4 hi~(I )~

fit A~ '

~~ ~~~

dr_ (I) ics h6(ii~
+ C6

h12(ii~i l~- (ii
~~ ~~~i ~4

The
c

coefficients are dimensionless functions of K_ that can be calculated explicitly by the

method of Nozidres and Gallet. We do not need their exact expressions for the purposes of

this paper.
In the renormalization-group transformation, we change the kinetic equation (2.6) into an

equation with the same form but with different parameters. It is straightforward to relate the

linear response function G_ for the original equation to the linear response function for the

transformed equation. Because distances and times are rescaled but the field @_ (r, t is not

rescaled, we obtain the generalized homogeneity relation,

G_ (q,
w

h
~,

h,~, K_, r_
=

e2i G_ (et
q, e

2i
w

h~(I), hi~(ij, K_ (I), r_ (I)). (3.4)
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The static susceptibility x_ (q) defined by

lo- (q, t ) @= (q', t ))
= x- (q)(2

ar )~ (q + q' ) (3.5)

satisfies a sinfilar relation,

x_ (q h
~,

h,~, K_
=

e~
x (e~ q h ~(i ), h,~(i ), K_ (I) (3.6)

The recursion relations (3.3) show that h~ is relevant for K_ >K~,~=9/(2 w) and

h,~ is relevant for K_
>

K~
,~ =

18 In. If h~ and h,~ are both irrelevant then we can iterate the

recursion relations for I -'oJ.
In this case h~ and h,~ are both dRven to 0, and the problem of

determining G_ or x- becomes tRvial. On the other hand, if either h~ or hi~ is relevant, then

we must stop iterating when I
=

I* such that max ( (h~(I*)
<,

<hi~(I*) )
=

O(A~) [14]. At

that point the recursion relations (derived for small h~ and h,~) cease to be valid, and we must

match onto some approximation for G or x- that is valid for large h~ or h,~. We consider the

dynamic behavior in four regimes, which are indicated by the arrows in figure I.

(I) If K_
~

K~
~,

then h~ and h,~ are both irrelevant. The system is in the unlocked phase,
with independent'fluctuations of bond and tilt angles. The linear response function is given by
equation (3.4) the right-hand side can be evaluated for I

- oJ using equation (3.2a). We

obtain

G_ (q,
w =

i- iwrf -'+ Kf q2j-'
,

(3.7)

where the renormalized coefficients r~ and K~
are defined by

rf
=

rim r_ (I)
,

(3.8a)
1-

«

Kf
=

lim K_ (I) (3.8b)
I

- w

The argument of references [8, 9], in the context of roughening, shows that these Emits are

finite. The optical-mode relaxation rate is therefore

Y- (q)
=

ri Ki q~ (3.9)

By a similar argument, the static susceptibility is

x- (q)
=

iKf
q ~i- ' (3- lo)

At the critical stiffness K~_~, the coupling h~ becomes relevant, and there is a « lock-in »

transition from the unlocked phase to the I phase (if h~>0) or the F phase (if

h~
<

0). This transition is exactly analogous to the transition from the rough phase to the

smooth phase in the theory of roughening, and the results of references [8] and [9] can be

carried over directly. In particular, both K~ and r~ have square-root cusps at the transition.

(2) If K~, ~ <
K_

<
K~,,~, then h~ is relevant but hi~ is irrelevant. The system has a second-

order I,F transition at h~
=

0. Near the transition, we can write h~ cc (T T~~). We use the

recursion relations (3.3) to iterate up to the length scale I* where <h~(I*)<
=

O(A~). A

characteristic value for K_ (I) during the iteration is K~, which is between 9/(2
w ) and 18/w.

The flow of h~(I) is approximately

h~(I)
=

h~ e~~ ~'"~~

,

(3.I1)
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and I* is therefore given by

e~*= ~~
~~~~~~~~~

~~

(3.12)
'~6'

By integrating the recursion relations for K_ (I) and r_ (I) from I
=

0 to I*,
we obtain

Kf K_
=

(
" ~j~ l

~

,

(3.13a)
2 "K- 9 A

r§
c~ wK§ Al

In
=

(3.13b)
~- 2 2 wKf 9 A~

Note that K~ and r~ do not have singularities as h~
-

0.

At the length scale I*, the cRteRon (2.19) is satisfied, and hence we can use the mean-field

theory of section 2 to evaluate the fight-hand side of equation (3.4). The linear response
function is therefore

h 2 rKf/(2 «Kf 9)

G_ (q, w =
iwr ~ ~'+ K~ q~ + 36 A~ ~

,

(3.14)
A~

and the optical-mode relaxation rate is

h~, 2 «Kfi(2 «Kf 9)

y_ (q
=

r~ K~ q~ + 36 A~
~

(3.15)
A

Similarly, the static susceptibility is

h 2 «Kf/(2 «Kf 9)

x- (q)
"

K~ q~ + 36 A~
,

(3.16)
A

and the correlation length f diverges as

f cc h~
"~~'~~ "~~ ~~ (3.17)

These results can be summarized by the critical exponents

y =

2
v =

~'~~~
,

(3.18a)
2 wK_ 9

7~ =
0

,

(3.18b)

z =
2. (3.18c)

The results could be tested by experiments on liquid-crystal films with the appropriate
stiffness K_. Note that K~

i~
is about a factor of 5 less than the stiffness of the five-layer films

studied by Dierker and iindak [1].
(3) If K_

>
K~

,2
and hj~

>
0, then h~ and h,~ are both relevant, and the system has a first-

order I-F transition at h~
=

0. Close to the transition, h~ cc (T- T~~) is small. If the initial

value of h,~ is of order A~, we can use the mean-field theory of section 2 directly otherwise,
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we must use the recursion relations (3.3) to iterate up to the length scale I* where

h,~(i*)
=

tJ(A~). Near the tricritical point, as K_
-

K/,~, we obtain

I*
cc (K_ -K~,~)~~'~ (3.19)

by the method of Kosterlitz [15]. At the length scale I*,
we can use mean-field theory to

evaluate the right-hand sides of equations (3.4) and (3.6), and hence we obtain

G_ (q,
w

)
=

[- iw r~ ~'
+

K~ q~ + 36 h~ e~ ~~~- ~~ ~~~
~~~

+ 144 A~ e~ ~~~~~ ~. ~~~
~~]~'

(3.20)

and

x_ (q)
=

[K~ q~ + 36 h~<
e~~~~~ '~~. ~~~ + 144 A~ e~~~~~~ '~.~~~ ' ]~' (3.21)

The optical-mode relaxation rate is therefore

y_ (q)
=

r~ [K~ q~ + 36 h~ e~~~~~ ~. ~~~~~~~
+ 144 A~ e~~~~~~ ~~~~~~~~~]

(3.22)

Note that y_(q =0) decreases linearly with <h~< cc <T- T~~<, and it has a nonzero

minimum value at the transition. This minimum value vanishes with an essential singularity at

the tricritical point, where K_
-

K/,~. Note also that y_ (q) has the conventional quadratic

dependence on q (contrary to Eqs.(5.3) of Ref. [4], which are incorrect because

h~ and h,~ are evaluated at an incorrect length scale). The behavior of y_ (q as a function of

(T- T~~) and as a function of q is consistent with the expeRments on thermotropic films by
Dierker and Pindak [1].

(4) If K_
>

K~
i~

and h,~
<

0, then h~ and hi~ are both relevant, and the system has second-

order I-L and L-F transitions. We can use the recursion relations (3.3) to iterate up to a length
scale I* where h~(I * and hi~(I * are large. However, we cannot use mean-field theory close

to the I-L and L-F transitions, because Vl'~(@ ff~)
=

0 there. Instead, we must use an analogy

with the Ising model. The renormalized potential Vi~(@_ consists of a series of valleys with

Ising-type intemal structure. If h~(I*) and hi~(I*)
are of order Al then fluctuations in

are confined to one valley, and our problem becomes equivalent to a 2D continuum Ising
model with fluctuations. Because there are no conservation laws, the dynamic universality
class is model A of Hohenberg and HalpeRn [12]. From dynamic scaling, we have

Y-(q)
=

f~~n(f<q<) (3.23)

near the second-order transitions. The relaxation rate y_ (q
=

0) therefore vanishes as

<
h~ h(~ ~~

near the I-L transition
Y- (q

"
°) CC f~ CC

~~ ~_

(3.24)
h~ h~

,

near the L-F transition

For the 2D Ising model,
v =

I exactly and z =
2.18 in the'e-expansion [12]. In the lyotropic

films studied by Smith et al. [2], h~ can be adjusted by varying either the chemical potential of

water (a) or the temperature. Near the I-L transition, (h~- h(~)cc (p-a~~) or

(T- Tj~) ; a similar result holds near the L-F transition. The power law (3.24) could

therefore be tested by dynamic measurements near the I-L and L-F transitions in lyotropic

films.
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