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Rksumk. Le mod61e de Berreman-de Gennes, qui ddcnt l'ancrage azimuthal d'un n6matique
onentb par une surface ondulbe est rediscutb Quand la pbnode des ondulations est plus courte

que la longueur de cohbrence ndmatique-isotrope, le ndmatique prbfire fondre que se courber

Ce mbcanisme explique la dkcroissance du paramdtre d'ordre observde sur des surfaces rugueuses

obtenues par Evaporation oblique de SIO.

Abstract. The Berreman-de Gennes model, descnbing the azlmutal anchonng energy of a

nematic material onented by a grooved surface, is revisited lvhen the groove wave-length is

shorter than the nematic-isotropic coherence length, the nematic should decrease locally its order

parameter to decrease the too large curvature energy induced by the boundanes. This curvature

induced surface quasi-melting could explain recent observations on the order parameter decrease

close to oblique SIO evaporated rough surfaces

1. Introduc60n.

The onentation of nematic liquid crystals (NLC) by solid interfaces is a problem of practical

and conceptual interest Many kinds of interactions can be invoked to explain these

orientating phenomena, including van der Waals and stenc forces [Ii Rubbed or grooved
surfaces are known [Ii to onentate NLC One of the most simple and popular model is the

one proposed long time ago by Berreman [2] and de Gennes [3] to explain th~s quasi-

geometrical onentation by a grooved surface In this model, (BG), the amsotropy of the

surface interaction is directly related to the elastic energy of the curvature distortion

geometncally induced by the surface on the NLC. This «valley» effect was invoked to

explain the onentations induced by SIO obliquely evaporated glass surfaces [4-6]. An

important feature of the BG model is that the order parameter modulus S of the NLC is

assumed uniform, only the mean orientation n of the NLC (the « director »
n~

=

I) vanes m

space, because of a purely geometrical constraint at the undulating solid boundary. Recently,

this constraint was partially released [7~, by the introduction of an additional local finite

anchonng energy at the interface, but the uniformity of S was not really discussed. It has been

shown, however, that the order parameter modulus Scan be very weak [8-12] close to a rough
solid interface like SIO evaporated glasses. It seems then not too realistic to use the BG model

to descnbe the effect of very short wave-length undulations on the nematic onentation. In th~s

paper we reconcile these points of view by showing that, when the wave-length of surface
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undulations becomes comparable to the coherence length f of the nematic~ isotropic

transition, a simple extension of the BG model leads also to a decrease of the surface order

parameter and eventually to a total isotropic melting.

2. The general model.

Assume a cyhndncally undulated solid surface defined by

z =
A sin (qx) (1)

where z
is the normal to the averaged surface

z =
0, and the NLC fills the z »

0 space.

q =
2 VIA is the wave vector of the undulation, of angular amplitude Aq « I, as m the BG

model. We also keep from BG the geometncal constraint to maintain the NLC director n m

the (x, z) plane and locally parallel to the interface Calling N the local normal to the surface,

this means

N n =
0

,

on the solid surface (2)

The NLC volume free energy density is wntten as [13] :

F
=

f (s~ + (3/4) Li (vs)2
+ (9/4) Lj s2(vo )2

,

(3)

where is the (n, x) angle F is wntten for simplicity m the one curvature elastic constant

approximation In this isotropic situation (L~
=

0, see Ref [13]) there is no direct coupling

term between VS and V@. The f(S) uniform part of F has a minimum at S
=

6~. The

S(x, z) and @(x,z) must m~ni~r~ze the total free energy G defined as G
=

F du, m~~
which the surface energy is assumed to be independent of S and @.

By taking into account that F
=

F(S,VS,V@), tnvial calculations give for the first

variation of G

where v is the volume of the nematic sample bounded by the surface 2. By taking into

account that m a reonentational problem the 3 operator commute with the V,operator, 3G

can be classically rewritten as

~~"
l)j~lls~~°Al~~~ l~~°Al~°l~~+

~i~~'lA~~~A~°l~~

In the event m which n is fixed on the surface, 3 (2)
=

0, and the surface contribution to

3G reduces to

Li (N VS) 3 S d2

where equation (3) has been taken into account
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In our case m which S is not fixed by the surface, 35(2) is an arbitrary quantity. By

imposing 3G
=

0 for every continuous functions 35 and 3@, one deduces

iF
~

iF
~0 I(VS)

(3')

~
iF

~
i(V@)

for the bulk, and

N.VS=0 (4)

on the surface Equation (4) is the transversality condition Of course m the case m which a

surface energy f~ imposing some values of S on the surface is present, boundary condition

(4) becomes

(3/2) Lj VS N + I f~lis
=

0 (4')

In the BG model, S was implicitly assumed to be uniform and equal on the surface to its bulk

equihbnum value S~ whatever may be S~ In our model, S is now a continuous function

S(z). We must also remember that S is physically defined by volume averag~ng over a size f
defined properly later. In pnnciple, we could assume that the surface would impose a well

defined value S~ of S(0), leading to a finite surface normal VS to reach the bulk value

5~. In fact, we must chose for S~ a boundary condition which matches the BG one, i-e-

S~ =
S~, m the limit of weak curvature This condition must be valid for any 5~ The only way

to fullfill these constraints is to assume that f~ is independent of S. This results m the

transversabty condition (4)

This condition has also the advantage to demonstrate that curvature alone is able to

decrease the surface ordenng Our free boundary condition is different from the Sheng one,

who postulated [14] an S dependent surface energy. More generally other hypotheses on the S

anchoring could have been made. We expect them to g~ve the same general result, since the

averaging procedure previously descnbed erases the unphysical details of the S(z) behavior.

By substituting equation (3) into equation (3') we obtain the Euler-Lagrange equations

AS (2/3 Li) (df/ds~ + 3 S(V@ )~]
=

0
,

(5)

2 S(VS) (V@ +
S~ ho

=
0 (6)

These two coupled differential equations are non-linear and need m general a numencal

integration
Before trying to solve equations (5) and (6), we can directly understand what happens close

to a rough surface, from the simple inspection of the free energy density F g~ven by (3). At

constant S, a surface induced curvature q@o creates an increase of F of the order of

Li S~q~ @(. On the contrary a surface melting, releasing the undulation, increases F by,
approximatively, Lj S~f~~, by definition of the usual coherent length f[3] (redefined

properly later) One immediately sees that, for q~ @jf~» I i-e- for a « rough »
surface, it

costs less energy to melt than to undulate the nematic onentation. Let us try to estimate this

melting »
effect, m the two possible limits, the weak and the strong roughness cases.
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2 THE WEAK ROUGHNESS CASE (q6
o

f
~

l ). In th~s case, One expects S not to vary too

much, i-e- s =
S S~ <

I. In th~s limit equation (6) always g~ves

ho
=

0
,

(7)

since s « S. ThJs g~ves the solution

0 (x, z)
=

Aq cos (qx) exp (- qz )
,

(8)

where Aq is the maximum surface tilt go previously defined, as in the standard BG model.

The linearized equation (5) is now written as

As- 1<-2+3(vo)21s
=

3(vo)2s~ (9)

where f is defined as usual, by

t 2
=

(2/3 L
j
) d2f/ds2)

~~ ,

i o)

from the known curvature of f(S) around S
=

5~.
The 0 curvature, wh~ch has been propagated m the bulk up to the distance 2 w/q, now gives

two effects. First it decreases the melting temperature, since from equation (10), the term

3(V0 )~ m the I-h-s- of (9) can be associated with a decrease 9 Li (V0 )~/2 a
of T~ (a is the usual

first coefficient of the Landau expansion of the free energy of the nematic phase [13]) In

addition, (V0 )~ appears m the r-h s. of equation (9) as the source of spatial variation for S.

From (8), (V0 )~ is :

(V0)~
=

A~q~exp(- 2 qz)
=

(1/3 fj)exp(-2qz) (iii

where fp~
=

3 A~q~ Note that (V0)~ is now independent of x It will then induce (from
Eq. (9) an order parameter vanation s depending only on z Equation (9), by taking into

account equation (11), is wntten as

d~s/d~ f ~
+ f I ~

exp (- 2 qz ) s =
f p ~ exp (- 2 qz S~ (12)

Furthermore, since s =
s(z) only, boundary condition (3) implies

ds/dz
=

0, at z =

0. (13)

In our weak roughness case, fo
»

f. In th~s hm~t equation (12) becomes

d~s/dz~ f ~
s =

f p ~ exp (- 2 qz S~
,

(14)

whose solution, satisfying boundary condition (13) is

S(z)
=

(f/fo)~/l(2 qf )~ l s~jexp (- 2 qz 2 qf exp (- z/f)j (15)

This order parameter vanation extends on the th~ckness
z =2w/q where the angular

distortion appears. s is of order (f/fo)~,
i e neglig~ble, as expected. Whence S is practically

uniform and the purely elastic BG model is valid.

2 2 THE STRONG ROUGHNESS cAsE (q00 f l ) We are now interested to estimate what

happens m the « large » roughness limit Aq~ f l With our assumption of weak surface tilt
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_

(z)
~l Aq2(<1

a*~l/q ~

a)

s(z)~
Aq2(>1

z

b) A

Fig I. Sketch of the order parameter dependence for a) The weak rougliness case (Aq ~ f
<

I ) b)
Strong roughness case

(Aq~ f
>

I ). The maximum surface angle 90
=

Aq is the same for the two cases.

The only difference is the wave number q In both cases, there exists a surface layer z <
z*

< q where

the curvature and the S vanation are concentrated

go
=

Aq « I, this implies qf m I We now expect S to become weak at the surface, and to

increase toward S~ far from the surface. To solve (5) and (6), the standard procedure would be

to decompose S and 0 in Founer components nq (n
=

0, 1, ) along x At first sight, these



656 JOURNAL DE PHYSIQUE II M 6

components are coupled, without any apparent cut-off for large
n.

This is due to the chosen

free energy density (3), which is valid only m the qf
<

I limit, inadequate for our purpose
Higher order m~ssmg gradient terms would force this cut-off It is a generally accepted,
although an incorrect procedure, to guess the shape of the boundary profile by keeping the

form (3) In th~s approx~mation, (3) can just descnbe the coupling of the lowest order Fourier

components S(q
=

0 and 0 (q), assun3ing all other components to be zero Physically, this is

equ~valent to work only with an x-averaged S order parameter. S is now a function of
z

only
In equation (6), the first term (VS). (V0 remains to zero close the surface, since

the only
component of VS is zero, from equation (4). 0 (x, z) remains then harmonic (ho

=
0 ). As we

expect S to be small close to the boundary, we rewnte equation (5) as

d~s/d~ f ~
+ f I ~ ~XP (- 2 qZ S

"
° (~ 6)

There exists now a boundary layer of thickness =*, defined by

f~~
=

fp~ exp(- 2 qz* ), i-e- z*
=

(I/q) In (f/fo) (17)

For z »
z* equation (5) is written as

d~s/dz~ f ~
s =

0
,

where s can become as large as S
~

(l 8)

Equation (18) represents an exponential relaxation of S, from some low value S* close to the

surface, toward 5~ imposed by the thermodynam~cs in the bulk. For z « z*, on the other

hand, equation (16) becomes

d2s/dz2 fp2 s
=

o, (19)

since the curvature is the dominant contribution In th~s boundary, the solution is

s(z)
=

s~cosl~ (zio), (20)

where S~ is the unknown weak surface order parameter To fix S~, we must match this solution

to the one of the curvature free region z »
z* We now use equation (5), where we neglect the

curvature term 3(V0)~ An obvious integration g~ves

I(dS/dz)~l=
=~ =

(2/3 Lj)l~f(S*) f(6l))1 (21)

In practice, m the limit of small S* the r-h-s is approximately (2/3 Lj) f(S~) +
S) b/f~.

This shows that the slope (dS/dz)~~~~ is the same as that of an exponential decay from

S
=

0 toward S
=

5~ From equation (21) we find for S~ the estimate

Ss
"

(fo/f) Sb/Smh (z*/fo) S~/13 A ~ q~ f In ((l(o)] (22)

For large roughness, S~ would tend towards zero Note, of course, that this estimate is itself

rough », as the assumptions made, but the decreases of S~ follows the expected trend. The

new result is that the surface melting appears inside a melting boundary layer of thickness

z* q~ ~. The general trend of S(z) is sketched m figure1

3. Surface energy.

We now calculate the total surface energy, G, as the sum of the energies of the two boundary

layers 0
< ± < z

* (G
j
) and z »

z* (G~)
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3.I WEAK ROUGHNESS For a weakly rough surface (Aq~ f
<

I ), using equation (15) m

equation (3), we find

G,
= j~ F d= (3/2) A ~ q~ L, S), (23)

o

~

for the curvature layer, and

lwG~
=

F dz 0 (24)
z*

for the S-damped transition region Gj is, obviously, the classical BG elastic energy. The

quadratic dependence in S results from our hypothesis that the undulated surface acts only on

the director orientation

3 2 STRONG ROUGHNESS. For a rough surface we find, for z <
z*, that S(z) is g~ven by

equation (20), m which S~ is g~ven by (22) For z »
z*, S(z) is found to be

s(z)
=

s~ (6~ s*) exp i- (z z* )/~1 (25)

where, as follows from matching conditions, 5~ S* S~ Hence, we have now :

Gi
=

(3/8)(L, sllio) smh (2 z*/<o)
=

(3/4)(L, si/~)(i/q<) in (</<o)
,

(26)

if we take equation (22) into account

For large roughness, G,
~

0 This is normal, since it is the energy of the isotropic phase By

using (25), G~ is then found to be

G~
=

(3/8) Lj(5~ s*)2/f
=

(3/8) Lj s~/f (27)

G~ is now independent of the curvature source, since it represents only the surface energy of

an isotropic-nematic interface

4. Application to real surfaces.

To apply this model to a real rough surface, we can Founer decompose the surface

irregulanties Each mode of wave vector q can be charactenzed by an amplitude
A (q) Let us discuss simply the isotropic case A (q)

=
A (q) In this case, one can estimate a

melted boundary layer thickness z* defined by :

f ~
=

~ fi ~(q) exp (- 2 qz* ) (28)

q

where fp~(q)
=

3 A ~(q) q~ Each mode adds its curvature contribution to the surface order

quasi melting.
For practical cases, S is observed to be nearly zero at the surface, as shown m references [9,

12, 15, 16] and )VS) S/f We are now m a situation comparable to that of a nematic-

isotropic interface, already discussed [17]. One can then expect the onset of an order electric

polarization, proportional to VS The electric energy associated with the order electnc

polarisation is minimum for a tilt angle of the order of the « magic » angle. This g~ves nse in

the nematic onentating surface energy to a new term describing the attraction towards the

magic angle cone This term has been used to explain the continuous change of orientation
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observed on SIO surfaces, versus the surface roughness [18] since, m th~s case, the amplitude

and the period L/2 w of surface irregulanties, (l 000/2 w) I
compares vith f 100-200 I

The observed anisotropy of the alignment on SIO evaporated surfaces is probably as much

related to the surface roughness anisotropy as to the «
valley » effect of the BG model.

S. Conclusion.

In conclusion, we have resumed the Berreman-de Gennes model which discusses the

onentating effect of a grooved surface on a NLC liquid crystal. We have shown that when the

surface undulation becomes rapid enough (Aq~f
~

l ), a nematic constrained to undulate

would better melt Of course, if the real surface were a smooth cylinder, this melting would

never occur, since the nematic would just onentate itself along the grooves of the cylinder. In

the case of a rough surface, on the other hand, there is no possibility to escape by a uniform

rotation the crossed and disordered undulations associated with the roughness. A more or less

large surface melting of the nematic order parameter is the only way to release curvature

energy The mean onentation of the partially melted nematic depends on the anisotropy of

the bidimensional surface undulation modes. For an isotropic distnbution of strong

roughness, a total melting is expected, with an azimuthal degeneracy This allows for a conical

anchonng of the nematic liquid crystal, because of the order electnc energy In all cases, we

find the reasonable physical result that the isotropic phase wets a rough solid surface.
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