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Laboratoire Léon Bnilouin (CEA-CNRS), CEN-Saclay, 91191 Gif-sur-Yvette Cedex, France

(Recerved 5 September 1990, revised 4 December 1990, accepted 6 December 1990)

Résumé. — La décroissance en temps des corrélations de concentration dans les solutions semi-
diluées de polydiméthylisiloxane a été mesurée a I’arde du spectrométre a écho de spin de neutrons
au Laboratoire Léon Bnllown pour différentes valeurs du transfert de vecteur d’onde
L’expérience a été effectuée successivement sur un échantillon homogéne et sur un échantilion
composé de deux parts égales de chaines deutériées et non deutériées, 4 contraste moyen nul
Nous donnons les relations de dispersion associées au mouvement brownien des chaines, au
voisinage de 'inverse de la distance de maillage, 1/£. Pour des valeurs de ¢ supérieures a
1/, les résultats des deux expériences sont 1identiques, mais lorsque ¢ est inférieur a
1/¢, ils différent On observe alors un mode coopératif et un mode inter-diffusif Les valeurs des
coefficients mesurés sont comparées aux théories de miheu effectif et de solution diluée

Abstract. — Relaxation times of concentration fluctuations in semi-dilute solutions of polydi-
methylsiloxane, have been measured at several values of the reciprocal wave vector g, with the
neutron spin echo spectrometer of the Laboratoire Léon Brillouin The expernment has been
carried out successively on a solute of identical chains, and on a solute divided in equal parts
between labelled and non labelled chains at zero average contrast We report observations of the
dispersion relation associated with the Browman motion of the polymer chains, 1n the vicimity of
the inverse mesh size 1/¢ For values of ¢ which are greater than 1/£, the two experiments give
identical results but when g decreases below 1/£, the dispersion curves associated with each
experntment are different A bifurcation occurs at 1/£ and two distinct transport processes become
observable, which are related to cooperative diffusion and to inter-diffusion respectively. The
observed coefficients are compared with predictions of the effective medium and the dilute
solution theories

1. Introduction.

Polymers 1n semi-dilute solution form a characteristic state [1] of condensed matter, which has
been thorougly studied [2] during these last years. In particular, concentration diffusion has
received great attention because 1t obeys a simple Fickian law, and because 1ts coefficient has
interesting scaling properties. The dynamics of semu-dilute solutions 1s 1n fact a very rich field,
m which characteristic features of dilute solution and polymer melts are found [3]. On the

(*) CERMAYV, Domaine Umversitaire, Saint-Martin-d’Héres, 38400 Grenoble, France
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whole, three types of diffusion have been identified and characterized, namely cooperative
diffusion, self-diffusion and inter-diffusion A

Observation of these transport phenomena has been achieved 1n various ways * analysis of
the time dependence in the correlation function [4, 5] use of labelling techniques in forced
Rayleigh scattering [6] and in neutron scattering [7]

Recently, Benoit er al. {8] improved the observation techniques, using an appropriate
labelling strategy. Namely, dividing the solute in two fractions with different refractive index,
and matching the solvent index so as to be intermediate between the two solute indices, a
situation 1s obtained in which the average contrast 1s zero [9). Under this condition the inter-
diffusion process can be 1solated and detected 1n the scattering experiment.

This technique was applied with success to the deterrmunation of the inter-diffusion mode 1n
ternary systems. Duval et al. [10] studied mixtures of two homopolymers 1n a solvent, using
quastelastic ight scattering. Benoit er al. [11] studied dilute solutions of diblock copolymers
using neutron spin echo. As regards the experiment on the ternary polymer solution [10], the
radiation source was lght. the wave vector range is therefore limited to
g <Gmay=2x 1073 A-, and typically to g = 1/Rg, where R 1s the radus of gyration of the
polymer chain. An obvious extension of this investigation 1s to explore inter-diffusion at
higher wave vector, 1.e 1n the range gRg > 1, and especially around ¢¢ =1, where
£ 1s the mesh size of the solute in the semi-dilute solution It will be of interest to determine
what inter-diffusion exactly means at these higher values of ¢g. Obviously, as ¢ increases
beyond 1/¢, all diffusion processes merge 1nto the same process, associated with the motion of
the chain internal modes. However, as ¢ decreases below 1/¢, the chain overlap effects will
become dominant and the observed dispersion relation between relaxation time and wave
vector will depend upon the labelling structure

Experimental evidence for this process can partially be found 1n earlier observations [12}
made with the neutron spimn echo spectrometer, on samples containing a small fraction of
labelled chains.

However, using the zero average contrast technique, the data which are presented here
should give an improved msight into the problem.

2. Description of the experiment.

We describe here the polymer samples, the spectrometer and the formalism used to interpret
the experiment.

2.1 The polymer solution 1s made of polydimethylsiloxane (PDMS) and toluene (T) The
molecular masses and the concentration are given 1n table I. Two samples are examined. The
first sample (no. 1) 1s a solution of (non deuterated) polydimethylsiloxane (PDMSy) chains of
N monomers, 1n deuterated toluene (Tg) The second sample (no. 2) 1s a solution made of a
muxture of fully deuterated polydimethylsiloxane chains (PDMSp,) and non deuterated chains
(PDMSy) (each of N monomers) in a blend of deuterated and non deuterated toluene
(Tp, Ty). The number of (PDMS) chains, N/2, 1s equal to the number of (PDMSy) chains,
the number N being the total number of chains in experiment 1, as well as 1n experiment 2.
The fraction a of deuterated toluene in sample 2, corresponds to the condition of zero-
average contrast of the solute. This 1s detailed 1n the next section.

2.2 SCATTERED INTENSITIES. — As a defimtion for the (coherent) scattered intensity
I(g, t) related to sample 1, we use the following relation :

I(g,t) =b>C*H(g, 1) )
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Table I. — Description of the samples and the polymer solutions Solvent . Toluene. Viscosity
ns = 0.59 x 1072 pose, Bn,=1.46 x 10" cm~3s Solute * Polydimethylsiloxane (PDMS).

Non deuterated Deuterated
M,, 45 000 44 000
p(= M,/M,) 1.22 1.22
N 610 550

Solution Polydimethylsiloxane i toluene

Sample 1 (100 % sample) Sample 2 (50 % sample)

Mass concentration pu =0.2g/cm® . pn = 01g/cm3
pp = 0.1 g/cm?

Solvent . deuterated toluene mixture of deuterated and
{ non deuterated toluene
(« (deuterated fraction) = 32 %)

Contrast of b b =17.06 x 1072 cm by =3.1x10"2cm
monomer 1n solvent | (zero average contrast condition)
Other important overlap concentration p* = 0 068 g/cm’?
characteristics Rg(p —0) = 73 A} from reference [22]
o XHD = 1 7 X 10—

where b is the contrast length between monomer and solvent molecules

Umonomer (2)

b= \‘Bmonomer - “Bsolvent
solvent

where C 1s the concentration 1n monomers, ¥, ..mer the partial molar volume of the monomer
and vy, that of the solvent molecule

NN
C= - 3

This 15 related to the mass concentration p (Tab.I) C = p% (#, Avogadro number,

m, molecular mass of the monomer).
The « intermediate » structure function H(g, ¢t) 1s defined by

N N N
H(q’ (NN)ZE,EIE fm by (qa t) (4)
faz,bj (qa t) = .‘RC((CXP {lq' (raz(O) _rbj(t))}>) (5)

JOURNAL DE PHYSIQUE II —T 1, N 3, MARS 1991 17
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where a, b are chain indices (a,b=1,....N )

where 1, are monomer indices fi, j=1 .,N)

where r,,(0) 1s the position vector of monomer : chain a, at time 7 = 0.
The vector q is characterized by the scattering angle ¢ and has a modulus

q = j4A—7T sin 8/2 ©)

which 1s the elastic momentum transfer (A 1s the wavelength of the incident neutron
radiation).
It will be useful to introduce the decomposition [2]

H(g,t) = H'(g,t) + H'(g, 1) Q)

where

Hl(q’t)_ Z Zfat b](q’t) (8)

(NN)za bi,;

is the self contribution to the structure function (the dynamical form function of the chain)
and where

HY%q, 1) = (NN)2 z 3 zb Sasy (4 1) ©)

1s the distinct contribution.

Note that [2]
— | gdrea-r] LC() CO))
H(q,O)—J.dre" {——C2 1} (10)

where C(r) 1s the local concentration 1n monomers at point r.
For the case of sample 2, equation (1) writes
CZ
1(g, 1) = - {bb Hop(4, 1) + bfi Hun(q, ) + 2 bp by Hpu(g, 1)}
+ (Bra - Bp) a(1 —a) Hr(q, 1) (11)

Indices D, H refer to the deuterated, non deuterated monomer ; index T refers to the toluene
molecule. The contrast lengths are given by the equation
PDMS

bDH—$DH—(a~'BTD+(1—a)35m) (12)

The second term 1n (11) 1s the « Laue » contribution to the scattered intensity, caused by the
presence of two solvents, with different indices. (This contribution is neglected).
Following equation (4) we write

HDH"‘ (NN)2 Z 2 Z me,jb(q’t) (13)

aeD beHicajeb

Zero average contrast implies bp = — by = bz : this is obtamned when a =0.32 m (12).
Equation (11) now becomes

2 2

IZ(Q'J t) =

{Hpp(g,t)+ Hyu(g,t) —2 Hpu(q, 1)} . (19
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We 1ntroduce the decomposition (7), which writes here
Hpy = Hf, Spu + Hpy - 15)

The self contribution will be expressed in the normalized form
N
Hi(g, 1) = Zh(g 1) 16)

where h(g, t) 15 the dynamical form function of the polymer chains. It obeys the condition
h(0,2)=1.

We assume that this function 1s mndependent of labelling. Finally
C2
In(q.0) = b3 5 {25 ) + (o + Al -2 HB) .- a7

If we assume that the interaction between D and H chains 1s identical to the interaction
between D and D chains (and between H and H chains), then equation (17) simphfies and we
obtain

I7(g,1) = b3 CNh(g, 1)/2 . (18)

Thus with zero average contrast, the scattered intensity is directly proportional to that
scattered by a single chain, for static as well as for dynamic case.

Equation (18) will be used to interpret the data obtained with sample (2). The information
1s here complementary to the one derived in the first experiment. We note that
bz in (18) and 4 1n (2) have the same magnitude (see Tab. I).

2.3 NEUTRON SPIN ECHO SPECTROMETER. — The scattered intensities relative to samples (1)
and (2) are measured with the neutron spin echo spectrometer newly built in the Laboratoire
Léon Bnllowin. A detailed report of the experimental method 1s given in reference [13].
Polarised incident neutrons undergo Larmor precession while flying inside a first set of
magnetic couls, interact with the sample, are reversed 1n spin before flying 1n a second set of
coils. Interaction with sample produces a change of energy of the neutrons, that 1s a change of
speed. It leads to a difference between the number of precessions before and after the sample

as the field integrals J. H d¥ are exactly opposite on the two sides. The resulting orientation

8¢ of the spin 1s analysed on a mirror which gives an intensity P; = P, cos 8¢
For a given value of the wavelength A of the incident neutron, sum over all energy transfers
w gives :

Pi=P, J S(g, w )cos 8o dw = P, J S(q, w ) cos (wt(A)) de

a Fourier transform 1n time which can be wrntten -

_1(q, 1)
Pe= 14 0)

where the « Fourier time » is

t(A) {s} = 1.8635x 10" M3 (A} fde {Oem} . 19)
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The spin echo allows the use of a large distribution of wavelengths. The mean value is here
A =654A; with a scattering angle interval ;

2<b<5
this gives
33x1072A - '<g<85x10-2A-"}.

Here the half width of the wavelength distribution 1s AA/A ~ 8 % and the angular colimation
by two holes of 25 mm at 6 m give the g resolution : ’

Ag AA \2 [ A8 )2]1/2 ( 0.035 )1/2
— = —— —— = O. -
- [( > ) +( . 0064 + 223 (20)

The intensity scattered by the solvent alone is found to be neghgible for both samples.

3. Expected behaviours for semi-dilute solutions.

The time dependence of the dynamical structure functions H(g, t) (Eq (7)), 1s given by the
Brownman motion of the polymer chains. The diffusion coefficient related to a dynamical
process described by a function H(q, t), can always be defined formally by considering the
first cumulant approximation [16] :

H(q,1) = H(q,0)exp {—'T 1} @1)

where °I" 4 is the inverse of the relaxation time. We can write
T, ="Dq* 22)

which defines an apparent diffusion coefficient. This coefficient can be g dependent. In
polymer solutions, there are several diffusion processes, and to each of them a diffusion
coefficient 1s ascribed A detailed presentation is found in references [16) and [19]. Here we
give a summary of the important diffusion types of transport in semi-dilute solutions

3.1 DIFFUSION OF A MASS POINT. — Self diffusion of a mass point 1s defined by the velocity
v(?) autocorrelation function

D=7 f: dr (v(0) - ¥ (1)) 23)

This defimition applies 1n particular to the center of mass of a polymer chain. For semi-dilute
solutions the expression for the center of mass self diffusion is [19]

1
6 71, BRy(C/C*)@-*IG»-1

(24)

Dself =

where 7, 1s the solvent viscosity, Ry the hydrodynamic radius, » the sweling exponent and

C* the overlap concentration (C* = where Rg is the radius of gyration at zero

212 RY’
concentration). This coefficient 1s determined by scattering experiments in the range
qRH < 1 )

The case of a mass point belonging to a flexible polymer chain requires a more detailed
analysis. Here namely the mass point belongs to a fractal structure and this structure diffuses
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1n Euclidean space. A geometrical transformation 1s required and this imphes a formulation of
the diffusion constant in combination of elementary units which is different from the
conventional one. In the free draiming limit (« Rouse » regime), one defines the coefficient
[16]

R}
T BIN

where ¢ is the friction coefficient of a monomer. In the case where the solvent hydrodynamic
mteraction 1s important (« Zimm » regime), one defines a coefficient [18]

1
T 6mn, B

D m umts (cm?/s) 5)

i units (cm/s) (26)

These coefficients appear naturally 1n the incoherent cross section. They are also found 1n the
coherent cross section which we consider here.

3.2 RELAXATION OF THE POLYMER FORM FUNCTION. — Here we consider asymptotic
behaviours and first cumulant approximations.

In the range ¢¢ <1, excluded volume and hydrodynamic interactions are screened. We
expect, for sample (2) and gRg > 1

h(g, 1) = h(g, 0) exp -, 0] 272)

where
R 4
r,=9q9".
In the first cumulant approximation (21), I’y = Rp .
In the range g¢ = 1, the observed mass points behave as 1f they belonged to an isolated

chain 1n the dilute regime The hydrodynamic interaction 1s here fully developed. We expect
for sample (2)

h(q,t) = h(g,0) exp {—135(*I, 1)**} Q27b)
where
qu = ﬂ)qS

In the first cumulant approximation (21), I, = *T’,.
Equation (27b) also modelizes the dynamics of sample (1) for g¢ = 1, and we write

CH(q,t) = Nh(q,t)
The other diffusion processes involve more than one chain and are therefore cooperative.

3 3 COOPERATIVE DIFFUSION SOLUTE AGAINST SOLVENT — The concentration diffusion of
the total monomer concentration 1s characterized by a diffusion coefficient [18, 19]
1am 1

- 2
D oop = 73C = Ern EiB 1n units (cm “/s) 28)

where 15 the friction coefficient and 7 the osmotic pressure, £y being the hydrodynamic
mesh size.
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With sample (1), and for g¢éy =< 1, we expect to observe
H(q,t)=H(g,0)exp(-T,1) (29)

with Fq=Dooopq2’

as for a « Fickian » process.

3.4 INTERDIFFUSION, — This is the object of our complementary experiment (sample (2)).
The quantity given by (17) 1s actually the Fourier transform of

([Cu(r=0,t=0) - Cp(r=0,1=0)] [Cu(r, 1) -~ Cp(r,1)]) (30)

where Cy(r, t) and Cp(r, t) are the local concentration of monomers of species H and D
respectively at time ¢ Interdiffusion 1s exactly described by this expression [20] In the limit
g — 0, 1t is characterized by a diffusion coefficient, which gives the flux associated with the
concentration gradient of a given solute fraction It will be of interest to observe what the
interdiffusion process means 1n the vicinity ¢ = 1/¢.

Since however we consider here that both polymer species are physically identical, 1t 1s easy
to see that interdiffusion amounts to self-diffusion . ;

4. Results.

We first report the results of small angle scattering experiments aimed at the determunation of
the static structure function of samples (1) and (2). These results are of interest by themselves,
but they also give us an experimental proof that sample (2) satisfies the zero average contrast
condition (14).

Subsequently, we give the time dependences of the dynamical structure functions observed
on samples (1) and (2), which is the main purpose of this paper.

4.1 STATIC STRUCTURE FUNCTION. — Scattered intensities were measured at the spec-
trometer PACE of the Laboratoire Léon Brillouin. In figure 1, after substraction of the
background, intensities 7 (g, 0) (Eq. (1)) and I,(q, 0) (Eq. (18)) are plotted against ¢g. These
two curves correspond respectively to sample (1) and (2).

The form of I,(q,0) matches a « Debye» function, with one unknown parameter,

R, the radius of gyration. (This function reads x%(e”‘— 1 +x), x=g*R3) We find

The form of the function I (g, 0) 1s Lorentzian, with one unknown parameter, the screening
length £ (The function reads (g%+ £~2)~') The best fit gives £ = 10 = 1 A,
The ratio 7(q, 0)/1;(q, 0) satisfies a sum rule, which writes [2]
b%I(Q—'OsO)_(C)3v—1 1 (§)3 A1)
b*I;(g—0,0) N 3v Fga T
where v, F,, I are characteristic universal coefficients and where b, b7 are given 1n table 1.
The theoretical value of the above ratio 1s 0 092 In order to test equation (31) we have to
normalize 7 and I; with respect to each other. This was achieved by superimposing the tails
(g > 0.1 A~'). The value of the ratio (31) obtained 1n this manner is 0.085 + 0.02. Thus the
results displayed 1n figure 1 prove that sample (2) satisfies zero average contrast.



N3 POLYMER DYNAMICS IN SEMI-DILUTE SOLUTIONS 389

Illl|lll‘l I LI

1{q,0)

0 002 004 006 008 010 .012
qt ATy

Fig 1.— Results of the small angle scattering expernment Intensities I,(g, 0) corresponding to
measurements obtained 1n two different ¢ ranges (symbols O and +, (77)) and I(g, 0) (symbol e, (1)) are
plotted against ¢ 1n arbitrary units The full ine 1s the Debye function which fits the data for the zero
mean contrast solution (sample 2) while the dashed line 1s the Lorentzian form which fits the data of
sample 1. The solution 1s semi-dilute both 1n cases 1 and 2. The quantities derived from these fits are
respectively the radius of gyration R of one chain and the screening length £ at the same concentration
p=02gcm™3

4.2 DYNAMIC STRUCTURE FUNCTIONS TIME DEPENDENCE OF THE CORRELATION FUNC-
TIONS. — The correlation functions tend to zero as ¢ — oo : the nature of the decay reveals the
dynamics of the polymer chains. Depending on the diffusion process, the decay may be
represented by a single exponential, a sum of exponentials or a stretched exponential

We represent the results (g, £)/I(q, 0) as a function of 7 in different ways, 1n order to point
out the specific behaviours which are observed. Differences arise in relation to the nature of
the samples 1) and 2), and the wave vector range (¢¢ <1 or =1).

Figures 2a, 2b display :

a) the relaxation function 7(q,t)/I(q,0) = H{(q,t)/H(g,0) associated with the total
monomer concentration diffusion mm the range g€ <1 (sample (1), Eq.(1)). In these
conditions the relaxation corresponds to a Fickian diffusion process [19]. We therefore expect
this function to be exponential and 1n this case, log I(g, ¢) is a linear function of ¢ (see
Eq. (21));

b) the relaxation function observed on sample (2), at the same values of ¢ 1s not of the
exponential type It 1s expected [19] to that the dynamics of the single chain 1n the solution is
described by a « Rouse »-like motion mn an effective medium (see Eq. (27a)) Therefore, the
data are compared to a stretched exponential decay, with exponent 1/2.

Figure 2c displays the relaxation functions which are observed on samples (1) and (2), for
g = 0.074 A ! (in the range g¢ > 1). The observation is now made at a scale within the mesh
size £ We expect to observe, in both samples, the diffusion of the polymer internal modes .
here H'(g, t) does not contribute and as a consequence

1(q,){1(q,0) =1(g, ). (32

Equation (27b) predicts a stretched exponential decay of h(q, ¢) with an exponent 2/3 for
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q=0042 A
10 g , ;
%(‘_q% “\\.J\\{ 100% PDMS(H)
q. Tre
05 —
t/
03 X N
1'] \l\ t T
05 50% PDMS (H) £ —
50% PDMS (D) 0
q=0.07% A
03 ia 115 2 I t)m ! l
2q.t) o
2 t(ns) fq 01 100 % PDMS (H)
q=0067A" ]
10@{\ T T
Ha.t) [ 100 % PDMS (H)
1tq.0) g
05— Sk . T ~
T\\I‘\-L.
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1\ L L
01 : . 10 1 ;
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"ll\ 50% PDMS (H) 50% PDMS (D)
> 50% PDMS (D)
N 05— _
05— —
N
02 -
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P
\ | A
Ul“ 2% 01 8 16 24

t(ns)
<)

Fig. 2 — Observed time decay of correlations in polymer concentration fluctuations a) Observations
on sample (1) and (2) at a same value of ¢ (0 042 A-1). () observed values of In 7 (g, ¢)/I(g, 0) plotted
against ¢, ) exponential decay , (- -) stretched exponential decay with exponent 1/2. The model
curves which are superposed to the data tend to show that the exponential decay better fits the data on
concentration diffusion (sample (1)), and that the stretched exponential (exponent 1/2) better fits the
data on ter-diffuston (sample (2)) b) Observations on sample (1) and (2) at a same value of g
(0 067 A“) Same remarks as 1n la) c) Observations on sample (1) and (2) at a same value of ¢
(0074 A-1) (o) observed values of In I (g, ¢)/I(g, 0) plotted against ¢, ( ) exponential decay, (---)
stretched exponential decay with exponent 2/3 There is a change 1 behaviour with respect to a) and b)
The model curves which are superposed to the data tend to show that the stretched exponential with
power 2/3 best fits the data associated both to sample (1) and (2)
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1(q.0) o ' '
9.0 Y 50% PDMS (H)]
o5l 50% PDMS (D) {
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]
02 ' X . °
61 L | i 4
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10 B T T T ﬁ
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-4 U 1 1 1 1
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Fig 3. — Observed time decay of correlations in polymer concentration fluctuation Sample (2)
g = 0.083 A~ Here we try to determuine the power law associated with the stretched exponential decay
of the correlations a) Plot of In I (g, ¢)/I(g, 0) against ¢ (e) observed values , ( ) exponential decay
b) Plot of In I(g, t)/I(g, 0) against ¥ (®) observed values; (——) stretched exponential decay with
power 2/3 ¢) Double loganthmic plot. The slope « 1s found to be 0.73 + 0 05.

g¢ > 1. We therefore represent In (Z(g, t)/I(g, 0)) as a function of +?3 and, for comparison,
as a function of ¢ (Fig. 3).

We find that 1t 1s thus possible to discern the specific ime correlation decay functions,
which are associated with each type of polymer Brownian motion. In the next sections, we test
in more detail the quantitative predictions of the models.

4.3 DISPERSION CURVE OF THE RELAXATION TIMES — The decrease of the correlation
function with time ¢ 1s characterized by one or several relaxation times. The relaxation times
depend on the wave vector transfer ¢, and this dependence forms the dispersion relation. We
wish to show, on a single figure, the dispersion relations obtained from experiments on the
two samples. For this, we fit the data to the first cumulant approximation (Eq. (21)) which
appears to be the only unified description, by taking the slope at the origin.

In figure 4 we plot ‘T q/qz against ¢ The quantity "I’q/q2 has the dimension of a Fickian
diffusion coefficient. We note in figure 4 three characteristic domains for the dispersion
relations.
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1) The domain, limited by ¢g&¢ <1, of the results obtained with sample (1). Here
"I’q/q2 is a constant. It 15 associated with the concentration diffusion (Eq. (29)) and it is
identified with the cooperative diffusion coefficient, D,

2) The domain, hmited by g¢ = 1, for the results obtained with sample (1) and sample (2).
We notice that the experiments carried separately on the two samples, coincide. In this range,
° I‘,,/q2 increases with g following equation (27b).

3) The new complementary result is found in data obtained with sample (2) (the zero
average contrast sample), for ¢¢ < 1, .where equation (27a) is predicted. This is in agreement
with the fact that in figure 4 the upper part of the dispersion curve, g¢ < 1, splits into two
branches as g€ = 1. ’

%icm Isec)

= )
b 0!

qlAl)

Fig 4 — Dispersion relation of the relaxation times observed on samples (1) and (2) Observed values
of °I' q/qz are plotted agamnst ¢ (x) sample (1) PDMS(H), (O) sample (2) PDMS(D) + PDMS(H)
A, B: guide to the eye, C: dispersion curve esimated from formula (27a). Branches A, B correspond
to I(g,0) 1 figure 1. Branches C, B correspond to I;(g,0) m figure 1.

Ths splitting 1s also consistent with the prediction [14]

DSC
e = 1S (1—“”;Nh(q)) @33)

where ¢ is the volume fraction of the chains (¢ = 0.2). The parameter x (Tab. I) accouni. ior
the specific H-D interaction. The quantity ¢ y N/2 1s here of the order of 0.1 (see Tab. I) and
we shall neglect the effect of this interaction. As a result .

D Doy
r 2 _ self (= sel
= \" 2

We now study the vicimty of £~ ' in greater detail.

(@Re)% qR > 1 ) (34)



N3 POLYMER DYNAMICS IN SEMI-DILUTE SOLUTIONS 393

4.4 EVALUATION OF THE DIFFUSION COEFFICIENTS. — Here we abandon the first cumulant
approximation for more precise definition of diffusion coefficients, each one corresponding to
a specific case.

The relaxation associated with cooperative diffusion is correctly given by the exponential
decay function. Here the values ° I"q/q2 should be independent of ¢ and this is not
incompatible with the data (Tab. II). Averaging the experimental values we find :

Degop =T ,/q* = 1.63 x 10~ cm?s™! . (3%

For the relaxation process related to the internal diffusive modes (g€ > 1), we use the
interpolation formula (27b) and we find by averaging values of table II :

1

—_ ~152x%x10"Bcem?s ! 36
67 B (36)

“Iyq’ =D =

For the interdiffusion or self-diffusion in the range ¢¢ =< 1, related with sample (2), we use
the formula (27a) and (25).

Table II. — Experimental results

Inverse relaxation times

q 33 42 67 7.5 83 [102 A1)
T,/q* 1.7+034 1.59 +0.16 16+02
x 10~¢ cm? s~!'ix 10~ cm? s~!|x 106 cm? s-!
“r,j@# =" 147023 | 167x0.21

x 1013 cm? s7{x 10~13 cm?’ 5!
Rrjg*="D 3.052+07 | 213+0.28
x 1072 cm* s x 10-2 cm* s-!

1
P~ §mn, BE
Self and nter-diffusion : Dgy(p —0) = 2.1 x 1077 cm?s™' [40]
 Da(p = 0) =52 %1077 cm?s™! [41]
e — -3y _ -8 2 -1
Dgip =02gem™?) =57 x 10~ 3 cm?s™! [29]

Cooperative diffusion : D =163x10"%cm?s™!

From the relation ®I" /g* = D = R% ®D and table II, we expect the value of RDyy, the
center of mass diffusion constant in the « Rouse » regime :

RDe(p =02 g/cm?®) =57 x 10" 8 cm? s~ !

5. Discussion.

Our main results are shown n figures 2, 3, 4 which account for the dynamics of the polymer
solution 1n the vicinity of £~ !. The new complementary mformation is given by branch C in
the dispersion relation and the corresponding time dependences of the correlation function
(Fig. 2a, b). We now examine the consistency of these results with theoretical prediction.
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5.1 TIME INTERVAL ASSOCIATED WITH STRETCHED EXPONENTIAL BEHAVIOUR.— In the
theory [19] of polymer dynamics in dilute solutions, the decay of the correlation function
appears as a stretched exponential, in an interval

(Fq)‘l <1 S\/}RZ/DSCH' . (37)

In the « Rouse » regime, 1.e. for sample (2) and g = 6.7 x 102 A, thus condition becomes
(see tab. II)

RE;U(=10"%s) <1 <1075, (38)

In the « Zimm regime », 1.e for samples (1) and (2), and g = 7.5 x 10-2 A~ this condition
becomes

r;i(=10%s) <1 <10"°s

The fact that stretched exponentials are observed in the time intervals of figures 1 and 2, is
therefore not 1n contradiction with theory. However we notice that the fits are good on larger
ranges than predicted by (37) and (38).

5.2 The dispersion relation 1n figure 4 displays a cross-over between characternistic behaviours
in semi-dilute and dilute regimes (branches A and B in Fig. 4). The cross-over takes place at
an mverse distance, 1/&y, which 1s smaller than the result 1/£ defined from the static structure
function. Also, the cross-over 1s much sharper than predicted by the calculations based on the
mode decoupling theory [19].

This astomshing fact, already observed mn several experiments, has not received any
explanation.

5.3 The last part of the discussion concerns the values of the diffusion coefficients derived
from experimental data.

If we admut that the viscosity of the solvent does not effectively change as concentration
increases, then the correlation length £ can be derived from the cooperative diffusion
Dooop (Eq. (28))

1

D = = -6 2 -1
w0 = G BEn 163 x10"°cm*s (39)

and this gives £y = 22 A. This result 1s different from observations of the static correlations
length, which 1s ¢ = 10 A. Introducing this value mto (39) gives

D, =36x10"%cm?s!.

coop

Another discrepancy is found 1n the values of the inverse of the internal mode diffusion. We
have dertved from the data

D="Tjg*=15%x10""cem’s™". (40)
whereas the calculation gives

1

=2 g = 1
D=1 =5 B

=36x10"2cm’s!. 41)

We note that this discrepancy and the preceding one are similar The introduction of the
hydrodynamic length ¢,; and Ry should thus correspond to the introduction of an effective
viscosity 7 which replaces 1, in equation (41)
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Finally we discuss values of the seif-diffusion coefficient extrapolated from data. In the
range gf =< 1, and 1n semi-dilute solution, the dynamical structure function of the single chain
has a characteristic behaviour, different from the one observed in isolated chains. Our data
are consistent with the prediction that the hydrodynamic interaction is screened [15, 19], and
that the chain moves 1n an effective medium [19] . 1t obeys a « Rouse » equation in the tume
interval (37). (This 1s at variance [21] with earher results [12].)

Now, for times longer than considered in (37), entanglements are predicted to characterize
the diffusive motion. This effect can be evaluated, by comparing the self-diffusion in the
effective medium to the self-diffusion of the chain in pure solvent. For this we determine

r

De(p - 0) ~—3—q . Ri Using for %I'j/q> either equation (40) or (41), we obtain the two
q G

values, given 1 table I, from the data of branch B i the dispersion curve. Using also the

value of Dy(p = 0.2 g/cm?) the data of branch C, we expect (Eq (24)) the ratio -

Dyi(p -0) ( C )7/4 6.6
Dy(p =02g/em®) \ C* o

This number 1s not far from the two experimental values obtained from table II.

In conclusion, the observations made on the two semi-dilute solutions at same polymer
concentration but at different 1sotopic fractions, show distinct transport behaviours on each
side of the inverse of the « dynamic » mesh size g = ¢ g'.

Inter-diffusion exists as such not only in the natural range gRg = 1, but also 1n the entire
interval g€ < 1. In this experiment inter-diffusion coincides with the self-diffusion. The
situation will be different in a bidisperse system, made of longer and shorter chains

Finally, it 1s of interest to compare the effects of repulsive and attractive interactions on the
dispersion curve of the inter-diffusive mode. In the repulsive case, which we have discussed
here, the inter-diffusive branch is below the cooperative branch. On the contrary, in the
attractive case of copolymer, which are attached together and represent a kind of attraction
(Ref [11]), the inter-diffusive branch 1s above the « cooperative » branch.
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Note added in proof. — A comparison with former data can first be made directly of the
lower plots of figures2a and 2b with figure 9 of reference [12], corresponding also to
measurements of H'(g, t) with a solvent of similar viscosity. For concentrations ca 20 %, the
decays are simular Parameter © = I q/q4 (Eq. (27a)) can be compared within a factor 36, to
parameter of Wa* (Eq. (2) of Ref. [12]). W 1s an elementary frequency and o an elementary
time, but conceptually the relevant quantity in the Rouse model is the product Wo?. 1t 1s
found equal to 3 x 102 A%s~! = 30 x 107 cm*s™' mn pure melt, 100 x 10 ® cm*s™! for
50 % polymer, and 650 x 10~ cm*s™! for 20 % using the ¢~ % law found by the authors
between 100% and 50% Dividing by 36 gives a value 6times larger to our
D=3x10"Pcm*s! Values in the Zimm regme [12] of g’ =150 peVA3 =
23 x 10" B em®s™! corresponds to 1.5x 10" cm®s™' given here for D =7*I'/q
(w.~"T, = ZI'}). Values of D, can be found in reference [23] : 4 x 10~® cm®s™ " for 20 %,
to be compared with our value 2 x 10~ % cm? s~ !, shghtly lower. The crossover value between
the regime A and B, ¢~ ! 1s the same one.
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