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Abstract. The first moments of the magnetization mz of the d
=

2, S
=

j quantum Heisenberg
antiferromagnet with nearest neighbor interactions on the square lattice are computed for T

=
0 vta

path integral Monte Carlo Simulations. The results for the ratio R
=

(mf / (ml )~ show a cross-over

at a system size of N m 100 to the classical behavtor, hmN-m R
=

9/5. This supports the arguments
that the long range order in the ground state is reached by a spontaneous symmetry breaking, just as

in the classical case.

1. Intmduction.

It seems that an agreement has been reached in the literature on the existence of long range order

in the ground state of the mo-dimensional nearest neighbor S
=

) hotropic ant#erromagnetic

quantum Heisenberg model on the square lattice, e,g. [1-8], and probably on all regular unfrus-

trated lattices in mo dimensions [9]. The question has a long history and the interest in it has been

revived recently by the discovery of the new high-Tc materials.

More precisely, the consensus is that the quantum fluctuations, althrough they reduce the long

range order in the ground state, are not strong enough to completely destroy iL There is no con-

sent however, on the precise value of the magnetization at T
=

0 (although a clear majonty favors

about 60ib of the classical value), or on the mechanism by which the long range order is built up.
Some reports of computer simulations quote rather low numerical values, but this discrepancy
stems from a numerical factor which is omitted with the argument that the usual (classical) sym-

metry breaking scenario is not applicable here [3]. This is_because the order parameter vector will

have fluctuations in its length for quantum mechanical reasons, as it has been argued subsequently
[10]. In this case one would not be permitted to anticipate in finite systems the effects of spon-

taneous symmetry breaking in the usual way [3]. In a different study it has been even explicitely
argued that the long range order is reached without symmetry breaking [4].

Symmetry breaking occurs, of course, in the thermodynamic bmit only. Hence, the correct

definition of the order parameter in finite systems simulates the effect of spontaneous symmetry
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breaking by applying an infinitesimal symmetry breaking field, taking the thermodynamic limit

in the presence of the field and letting thb field tend to zero as the last step. unfortunately, this

procedure b impractical for most systems because the range of sizes that can be studied is too

small. One argues instead, that for large systems without external fields the dbtribution of the or-

der parameter vector will be strongly peaked at a particular value of the magnitude, but otherwise

rotationally invarianL The application of an external field, prodded it is infinitesimal, will merely
fix the direction of the order parameter vector. Therefore the magnitude of the order parameter
is the correct measure of order in finite systems.

It has been pointed out recently [10] that this argument is only valid if implidt assumptions
about the lack of fluctuations in the magnitude of the order parameter vector are fulfilled. The

authors of [10] argue that they are not fulfilled for quantum anfiferromagnets. This would place
quantum ant#erromagnets into a different class from quantum ferromagnets and classical mag,

nets.

The hsue raised has both theoretical and practical importance. Firstly, if the quantum antifer-

romagnet is so different, it is difficult to understand the apparently excellent agreement with spin

wave theory [2, 8, 11], as well as the mounting evidence that this system's behavior is essentially
classical [12-14]. Secondly, if the order parameter is not a classical vector and the conventional

symmetry breaking scenario is not applicable, it is very difficult to interpret the results of the

Monte Carlo simulations, which supply rotationally invariant correlation functions of one com-

ponent of the order parameter only [5, 9], typically the magnetization mz. The results of the

simulations and the spin wave theory are in good agreement with the experimental results [9].
The purpose of the present study was to test the violation of the above mentioned assumptions

in the mo-dimensional nearest neighbor S
=

isotropic antiferromagnetic quantum Heisenberg
model on the square lattice. We follow the proposition of [10] and study the ratio of moments of

the magnetization distribution

j~4
~

~
z

(~'))~

If the order parameter m =
(m~, my, mz is a classical vector of fixed length and lids an isotropic

distribution, then in 3 dimensions one obtains R
=

9/5 by performing two simple integrals in

spherical coordinates.

The previous results for R, that showed a monotonic increase with increasing system size to

a value of about 1.9 and led to the conclusion that the classical value of 9/5
=

1 8 will not be

reached, were obtained from simulations on very small systems (N < 20). Since this behavior

was surprising and the issue raised very importan~ it was clearly of interest to check whether the

above trend continues for much larger system sizes.

2. The method.

The simulations were carried out using the world-fine path integral Monte Carlo technique, as

described in earlier work [5, 9]. The computations were quite demanding, since it is more difficult

to determine higher moments of the order parameter with comparable statistical errors than lower

moments. Fortunately, however, one does not need very high accuracy to find the correct ~end of

the data as a function of system size.

Hence, no attempt has been made to obtain smaller stansncal errors in the final estimates than

sufficient to establish the right trend. The inherent1ystemanc errors of the method due to finite

temperature and finite lYotter-dimension in the simulation were kept under control in the same

fashion as described by [5, 9]. The simulations were performed for lattice sizes of 2 x 2, 4 x 4,
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8 x 8,10 x 10 and 12 x 12. The temperature T used upto linear system size L
=

10 was T
=

0.I,

a value that guarantees temperature independent (T
=

0) results for these system sizes. For

L
=

12 the value p
=

T-1
=

15 was used. The number of "time slices" were bemeen 100 and

200, for L
=

12 between 100 and 4tXl. Several different values were used to perform a quadratic
fit, from which the extrapolated value for infinite lYotter-dimension was obtained. For the largest

system size 500000 MCS/spin were needed, out of which 200000 MCS/spin were discarded for

equilibration. 5-7 MC runs were averaged to estimate statistical errors.

The simulations were carried out on a multi-processor lYansputer machine containing 88 pro-

cessors ~T800j20). The existing code [~ was parallelimd using geometrical decomposition in the

lYotter-dimension (this b the obvious choice, since it is an order of magnitude larger than the

space-like dimensions). In this scheme the processors are connected into a ring topology to com-

ply with periodic boundary conditions and the adjacent processors update the spin variables in

neighboring blocks of "time slices". One feeds rather sophisticated communication between the

processors to ensure detailed balance. Despite of this, an overall parallel efficiency of 80fb could

be achieved.

3. Results.

The results are shown in figure I. The ratio of moments (ml) / (m))~ is plotted against I IN
Some of the data of [10] (upto N

=
20) are also included (open circles). Note that the z-axis

is I IN in contrast to [10] where I /N~ h used, which h justified for the infinite range Lieb-Mattis

model only. The present choice enables one to plot all the available data in a single figure. Clearly,

the conclusion is not influenced by thin choice in any way.
For small system sizes we reproduce the results of [10], where available. The ratio is mono-

tonically increasing upto N
=

M. For larger system slurs it decreases again and approaches the

classical limit of 9/5. The error bars in the latter region are shown.
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Fig, I. The ratio of moments R
=

ml / (ml )~ of the magnetization of the nearest neighbor S
=

1/2

Heisenberg antiferromagnet on the square lattice ve~sus 1IN Some of the results of [lo] are also included

(open circles). A cross-ever to the classical value of 9/5 is observed for N m 100 The error bars are shown

in this region Only.
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4. Discussion.

The non-mbnbtonic behavior of R h somewhat unusual and has to be contrasted with the results

for the Lieb-Mattis model [15], which does not exhkit this behavior, but rather converges mono-

tonically to the classical value [10]. The Lieb-Mattis model is, however, an infinite range Heisen-

berg model. It has been itudied in detail, the exact solution h known [16]. One can explicitly
examine its finite size behavior and find the following [16, 17~: There b spontaneous symmetry

breaking in the thermodynamic limi~ where at T
=

0 all states with different values of the to-

tal spin become degenerate. The same scenario has been demonstrated for the infinite range
XY-model [18]. The ratio R can be easily computed analytically [17~. It approaches the classical

value monotonically from below, in agreement with the results of the simulations [10]. Moreover,

one can derive the dhtribution function of the magnetization P (mz
,

which b uniform since the

ground state has long range order. The on~/ finite size effect in P (mz is the discreteness of the

posskle values of mz, but all values have the same weight, I.e. the distrkution h sharp for all

sizes.

On the other hand it is obvious that in the short range model there will be an additional finite

size effect: The rounding of the shape of P (mz) for smaller system sizes. This has also been

explicitly demonstrated in simulations, see figure 10 of [9]. There is a presumably complicated
interplay between the two effects, which can lead to the cross-ever behavior found in figure I. In

the thermodynamic limit P (m, becomes sharp and the classical value of R is restored. It is clear

that all states with arbitrarily large angular momentum are contained in the ground state in this

case, too (for numerical evidence see [19]). The ground state of the model is a symmetry broken

state.

A detailed understanding of the non-monotonic behavior of R, however, is still missing and is

clearly an interesting question.

5. Conclusion.

In conclusion, the above results show that the nature of the order parameter in quantum antifer-

romagnets h indeed classical in the sense that the fluctuations in its magnitude disappear in the

thermodynamic limit, in other words the order parameter m is an hotropically distributed classical

vector. It is correct to think about the spontaneous symmetry breaking in this model in the same

fashion as in classical spin systems: in finite systems the rotationally invariant expression of the

order parameter (magnitude) is the appropriate measure of order.

Hence, in this respect, the quantum Heisenberg antiferromagnet belongs to the same class of

models as the quantum ferromagnetic Heisenberg model, as well as the classical counterparts.
This result is in agreement with other studies which find tha~ although this is a quantum system,
its behavior is essentially classical [12-14].
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