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Rksunlk. Nous prksentons une Etude expkrimentale de la dynamique d'ktalement d'un ruban

liquide dkposk I cheval sur la discontinuitd chimique qui skpare deux surfaces solides diffdrentes.

Les mesures de ddplacements et d'angles de contact sur les deux bords du ruban perrnettent de

ddcrire en ddtail les diffdrentes phases du mouvement et en particulier un rdgime stationnaire

correspondant h une translation uniforrne. Ces rdsultats sont en accord qualitatif avec un moddle

thdorique, bien qu'ils mettent en dvidence;une ddformation du ruban par rapport au profil
circulaire constituant l'hypothdse couramment admise.

Abstract. We report an experimental study of the dynamics of a liquid ridgb straddliJig
a

chemical discontinuity which separates two different solid surfaces. Measuring the displacements

and c6ntact angles on both sides, we describe in detail the different regimes of motion and in

particular a stationary regime which corresponds to uniform translation. These results are in

qualitative agreement with a theoretical model, although we see a deformation of the drop shape

when compared to a
circular'profile, which is the currently admitted hypothesis.

1. In&odvcfion.

In previous articles [1, 2], we have described the preparation and interfacial properties of

mixed Surfaces I,e. Solid Surfaces which are partly hydrophilic, partly hydrophobic. These

Surfaces were prepared with the aim of obtaining amphiphilic Solid partifiles, which present

some analogy with the conientional amphiphilic molecules, when located it a liquid interface.

Within the framiwork of these itudies,
we have observed the behaiiour if

a liquid drop when

deposited oh the boundary between hydrophilic and hydrojhobic parts qf a plate. The most

striking feature iS that the drop translatej aS a whole tqward one or the other part, until it

covers .homogeneous area
if the Solid. Raphael has proposed a theoretical analysis of this

effict [3], in the convenient geometry of a liquid ridge, and has predicted~different regimes for

the motion, lye present iere, in the Same cylindrical geometry, an experimental study of this

dynamics of Spreading.

(*).CNRS URA 792.
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2. Motion of a liquid ridge across a Surface discontinuity.

2.I DESCRIPTION oF THE EFFECT. Let us consider a plate consisting of two parts with

different Surface properties. The preparation of Such plates iS described in detail in the

experimental Section. If a liquid drop iS deposited on the boundary line, one observqs that it

moves Spontaneously in one direction. ThiS global motion ends when the receding contact line

reaches the boundary between the two parts, where it remains anchored. The drop, which iS

then entirely on a homogeneous Surface, Spreads on it until it reaches its equilibrium position.
This behaviour has been observed with different liquids, in particular water and different

oils. The direction of the displacement is not a priori obvious if water systematicallj shifts

toward the polar surface, generally lipidic liquids, although apolar, also move toward the

hydrophilic part.
The characteristic time of this motion strongly depends on the viscosity of the liquids. In

particular, in the case of water the process is achieved in less than one second while it lasts a

few minutes for viscous oils. The kinetics is also dependent on the surfaces preparation but in

a less marked way.

2.2 QUALITATIVE INTERPRETATION. This phenomenon may be understood by considering
the energies of the interfaces involved in the problem, taking into account not only solid-

liquid but also solid-air energies. This can be expressed in terms of equilibrium contact angles
of the liquid on the two surfaces considered separately.

Let us consider the system represented in figure I. We refer to the hydrophilic part of the

solid by P (as Polar) and- to the hydrophobic one by A (as Apolar); oA~ and

op~ denote the equilibrium contact angles of the liquid on A and P surfaces respectively. We

assume op~
< oA~ which is the situation generally encountered experimentally. This inequality

implies that the liquid has a greater affinity for the P solid and is expected to move toward this

part of the surface.

~Ae ~
' '

6 6pe

blA .Y

A P

Fig. I. Schematic diagram of the system. o~~ and op~ represent the equilibrium contact angles on A

and P surfaces respectively. £ denotes the boundary line between A and P parts; £~ and

£p the two contact lines of the ridge.

It is impossible for the ridge to be at rest across the boundary with contact angles satisfying
the equilibrium conditions on both surfaces simultaneously. This would imply strong

deformations of the drop and therefore important pressure gradients within the liquid. Thus,
in a first approximation, we suppose that the ridge keeps its circular-profile and we refer to the

contact angle of the ridge (which is the same on both surfaces) by o.

In these conditions, the two edges of the ridge are not at equilibrium and are submitted to

non
compensated Young forces. The horizontal component of these forces is equal to

y(cos op~ cos o on the P part and to y(cos o cos oAe) on the A part (where y is the

liquid surface tension). The drop is thus expected to move.

In the situation represented in figure I, that is to say when o lies between op~ and

o~, the two forces are in the same direction, which explains the global motion observed
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experimentally. This situation is the most usual in practice because if the two equilibrium

contact angles are different enough, the initial contact angle always lies between these two

values.

The behaviour explained above no longer applies when the receding contact line reaches

the boundary line. We then have a contact line between four phases so that the Young
equation is not valid anymore. The contact angle may take any value between op~ and

o~~. This angular interval, called the canthotaxis sector, applies each time the surface presents

a chemical or geometrical discontinuity. In our case, this can be understood by considering
that the discontinuity is in fact, at a microscopic scale, a transition zone with surface

properties varying continuously between the A and P-like surfaces. The contact line can thus

accommodate in this microscopic region in order to verify the Young equation locally while it

seems fixed at a macroscopic scale. This explains the anchoring of the contact line on the

boundary line.

Once the receding line is fixed on the boundiry, the whole drop is on the P surface. The

free edge of the strip may then spread until the drop reaches its equilibrium contact angle

op~.

2.3 THEORETICAL PREDICTIONS. On the basis of this general ideas, a detailed model has

been developed by Raphadl [3]. The fundamental hypojhesis is that, in the thick part of the

liquid, pressures reach equilibrium in times much shorter than the times involved in the

motion of the drop [4]. The profile of the ridge is then always an arc of circle, the curvature of

which is given by Laplace condition. The contact angles of the ridge on both sides of the

surface are thus supposed to be identical.

Moreover, hysteresis effects are neglected in this theoretical development I.e. the

equilibrium contact angles have unique values o~~ and op~ respectively. This implies very
hoHogeneous surfaces with no sigliificant defects.

Within the framework of these hypotheses it is possible to get the equations of motion

x~(t) and xp(t) of the two contact lines [5]. They are obtained- by balancing the work of the

forces applying on the lines, the expression of which are given above, and the viscous

dissipation in the liquid edges. For o « I, one gets

dxA
~ ~

~ =
VA

=

v* 0 (0
A~

0 j (11

~
=

Vp
=

V* o (o~- o(~). (2)

In these formulae V*
=

/~ where y is the surface tension of the liquid, ~ the viscosity
6 ~

and f
a logarithmic factor depending on the maximal and minimal scales of the dissipative

zone.
f is usually taken to be of the order of12,[6, 7].

The volume conservation permits to couple the two equations (Ii and (2) so that we get a

differential equation for the angle o

~~
=

~ ~'~
o ~'~(o ~ #~) (3)

dt Lo o/'~

where Lo is the initial width of the ridge, oo the initial cbntact angle and

0(
+ 0i~ 1/2

o
=

~ (4)
~
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The analytical solution of equation (3) is quite complex, The important point is that the

contact angle o tends exponentially towards #. In this asymptotic limit the two velocities

V~( ii and Vp( ii
are equal so that the drop moves without deformation at a constant speed'

I given by

I
=

V* # ~~~

~

~~~
(5)

~ ~

Thus, this modil predicts that the drop reaches, in a time eitimated
to be t

=

~

,
a

~ v* #3

stationary state where it
moves at a constant velocity. The value of this velocity is a function of

the liquid and surfaces chiracteristics.

Note that this descripjion is valid as long as the initial contact angle oo lies between

@p~ and @~~. Other less usual cases are described in Raphadl's original paper.

3. Experimental section.

3. I PREPARATION oF THE SURFACE. As a first step, we render glass slides hydrophobic by
chemical grafting of octadecyltrichlorosilane (silahisation). Half of the slide is then protected

by an adhesive tape and the whole is exposed to UV rays in an oxygen atmosphere [8]. This

treatment, called ozonisation, progressively removes the hydrocarbon chains from the free

surface. We obtain, on this part of the slide, a homogeneous surface the property of which can

be adjusted between strongly hydrophobic and strongly hydrophilic by changing the exposure
time to UV. By removing the adhesive tape, one obtains a surface with two different parts,
the discontinuity between the two being a straight line. According to the notation introduced

in part II, we refer to the hydrophilic part of the slide, I,e. that which has undergone the UV

treatment, by P and to the other one by A. The surface energies of A and P phrts are fixed by
the conditions used for the silanization and for the ozonisation respectively. These surfaces

may be characterized by contact angle measurements. Using the same liquids as those in the

experiments described below, we find that the hysteresis is approximaiely 8° on P surfaces and

about 5° on A surfaces. Thus, we determine for each surface the static advancing and receding
contact angles of the considered liquid, noted o~~~ and o~ respectively.

3.2 LIQUID RIDGE. The liquids used are immersion oil and castor oil. The viscosity and

surface tension of these liquids are measured by conventional methods I.e. Poiseuille flow and

ring tensiometer respectively. We find that these liquids have about the same surface tensions

(see Tab. Ii. They present a situation of partial wetting on all the A-type or P-type surfaces

studied. On the contrary, their viscositibs differ by one order of magnitude.
The ridges are obtained by depo§iting on the boundary line .£ a glass cylinder coated by the

liquid. The liquid flows from the cylinder to the surface by capillary effects and reaches an

equilibrium position when it is uniformly distributed along the boundary. When removing the

glass cylinder, slowly enough to avoid important hydrodynamic perturbations, we get on the

plate a strip with straight edges (cf. Fig. 2). This method permits us to obtain ridges of

different widths L controlled by the size of the glass cylinder used. In our experiments, L

varies from one to three millimeters a value which is of the order of the capillary length

K~ (K~
=

2 mm). Note that these ridge sizes are small enough that one can ignore, in a

reasonable approximation, the gravity effects compared with capillary ones.

3.3 DIRECT OBSERVATION oF THE MOTION. We observe the ridge through a microscope.
The image is vidbotaped, thus permitting to obtain a quantitative determination of the motion
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Fig. 2. Photograph of a ricin oil ridge I mm wide.

of the two contact lines limiting the ridge. Generally we observe that the two strip boundaries

move while keeping straight and parallel. We then determine and plot the two displacements

x~ and xp for the A and P parts, as a function of time. In rare cases, for very small

displacement speeds, undulations appear leading to transversal instability. This will be

discussed later.

3.4 MEASUREMENT oF THE CONTACT ANGLES. The contact angle§ irk measured by using
the method presdnted in reference [9]. It consists in illuminating the sample by a large,

collimated laser beam and detecting on a screen the light refradted by the lens constituted by
the liquid on the solid substrate (Fig. 3). The figure obtained is a rectangle, the width of which

is given by the beam size and the length related to the contact angle. From the experimental
determination of the refraction angle o " (tg o "

=
d/h ), one can determine the contact angle o

via the formula :

~
l (n~ sin~ o ")~'~

where n is the refraction index of the liquid.
This method is suitable to the present situation the contact angles oA and op of the two

edges on A and P surfaces, may be determined separately on the same image by using the

shadow of the ridge as a reference to measure the length d (Fig. 3). Besi(es, filming and

registering the refracted spot on the screen allows us to determine the variations of

oA and op with time.

It is important to note that, using this method, the contact angles are not measured locally
but along a length of ridge of about one centimeter (size of the incident beam). This permits

us to verify that the bahaviour is homogeneous at this scale which is large compared with the

strip width. When this condition is verified the uncertainty on the contact angle value is less

than 2[
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glass
slide

h

screen

d

Fig. 3. Measurement method of the contact angles : the part of the incident beam refracted by the

liquid gives an image whose dimension d is a function of the contact angle o.

4. Results and discussion.

4.I EXPERJMENTAL DATA. We have measured the displacements x~ and xp of the two

edges of the ridge, and the values of the corresponding contact angles o
~

and op, for different

liquids and different surface treatments of the A and P parts of the plate. _Note that for

technical reasons, we cannot measure x and o simultaneously. These determinations are

achieved successively on each sample under the same conditions.

4.I.I Contact line displacements. Typical data for the evolution of x~ and xp with time are

given in figure 4. We observe that after a transitory regime, the system reaches a stationary

state where the two contact lines move with the same velocity. Assuming that this corresponds

to the stationary regime predicted by the model, we may determine the limit velocity
I

=

V~
=

Vp. This regime is extended enough to permit the measurement of I with a good

accuracy. The values of I
are independent of the width of the ridge with a reproducibility of

about 10 %. On the contrary, they strongly depend on the liquid and surface characteristics.

The corresponding results are reported in table I and will be discussed later.

In the early transitory stage, we note that the contact line on the P surface does not move.

This is due to hysteresis effects as evidenced by contact angle measurements (see below).
Finally, we observe a third regime where one of the edges is fixed (x~ constant) while the

other one continues to move, This corresponds to the spreading of the ridge on the P surface

when one edge is anchored, by the canthotaxis effect, on the boundary line.

I.1.2 Contact angle measurements. An example of the evolution of o~ and op as a function

of time is plotted on figure 5. We note that, after a transitory regime, the contact angles

regularly increase and reach constant stationary values i~ and ip. We have to emphasize that

these limit values are not identical; they differ by about two degrees. This difference is
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Fig. 4. Plots of the contact lines (£A and Lp), displacements xA (A) and xp (.), as a function of time in

the case of immersion oil ridge (L=1.smm) on two different surfaces characterized by : al

oArec "

35.2° op~~
=

26.7° b) oArec
"

38° op~dv
"

19.21 Note that we have brought the two curves

nearer by a vertical shift in order to put into evidence the parallelism of the two curves in the stationnary
regime.

Table I. Experimental features of the liquids (y,~) and of the solid surfaces

(oArec, o p~~~), measured values ofthe limit velocities I and corresponding values off (see text).

0p~d~ (°) 0Arec (°) (mm/minj f

Immersion oil

y =

37.I1 ri1N/m 19.2 38 20 13.5

~ =

98 cP 23 35.4 13.6 12.8

Castor oil 24.8 37.9 1.6 12.7

y =
35.17 mN/m 21.4 29.3 0.6 12.4

~ =

950 cP 19.5 32.5 1.2 12.6

systematically observed in all our experiments. In order to verify that this is not an artifact due

to the experimental method, we have realized the same contact angle measurements in the

case of ridges deposited on homogeneous A or P surfaces in these cases, the contact angles

are found to be identical. Thus, we conclude that, in the experiments reported above, the

ridge does not keep a circular profile but is deformed during its translation. However, we
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Fig. 5. Plot of contact angles, oA (A) and op (.), as a function of time in the case of a ricin oil ridge
(L

=

2.5 mm) on a surface characterized by o~~
=

32.5° op~dv
#

19.51

stress that this deformation remains small and is not expected to modify the predictions in a

significant way.

At longer times, the contact angles o~ and op decrease and tend asymptotically toward a

constant common value o which corresponds to the advancing angle on the P surface

op~~~ (measured independently). This value has also some importance in the early stage of the

phdnomenon: when the contact angle op reaches the value of op~~~, we observe a

discontinuity of the slope in the op curve, while the contact angle o~ begins to increase from

the value it has taken quasi instantaneously at the start of thg motion.

4,1.3 Ridge instabilities. As already mentioned, the use of liquid ridges can lead to the

appearance of instabilities [10], as currently observed in cylindral geometries in order to

lower their surface energy, they break into droplets with a diameter of about L, in a typical
time to of the order of LV*~ oj ~. In principle, we expect that this time is of the same order

of magnitude as the duration of the motion of the ridge on a mixed surface I,e.

r=Lli=L(V*i~~~~
~~)j

~

However, in our experiments, we have nearly always observed that
r ~ To which means

that the motion is undisturbed by the growth of instabilities. This may be verified by
incorporating small solid particles with the liquid in order to put into evidence the flow lines

when instabilities begin to appear these lines are no longer perpendicular to the ridge axis but

become longitudinal. This happens only when the two surfaces have very close surface

properties which corresponds -to a small velocity I. The results obtained under these

conditions cannot be taken into account.

On the contrary, we have observed that if the surfaces have different enough properties, a

ridge anchored on the boundary remains stable while it would be instable on the

homogeneous P or A surfaces. From this experimental observation, we conclude, without any
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definitive theoretical explanation, that instabilities are less perturbating in a heterogeneous
geometry than expected.

4.2. DESCRIPTION oF THE AiOTION. On the basis of the results presented above we are able

to describe the whole dynamics of the drop. This is conveniently done by schematically
representing on a same graph, the plots of both x~ p

and o~
p

evolutions in a common time

scale (see Fig. 6).
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Fig. 6, Schematic plot of both xA P
(full line) and 6A

p
(dotted line) as a function of time.

In a first stage ~phase I), the contact line £p is fixed by hysteresis while the other line

£~ moves with a constant angle. Wher~ the angle op reaches the advancing angle

op~~~, £p begins to move. After a transitory regime ~phase II) where the width of the strip
diminishes, the system reaches a stationary state ~phase III) : the ridge moves at a constant

velocity, with a small deformation when compared to a circular profile. The angle of the

advancing edge is found to be smaller than the receding one. After the anchoring of

£~ on the boundary by canthotaxis effect, the ridge spreads on the P surface (phase IV). At

the end of the motion, the strip is at equilibrium on the P surface with both contact angles
equal to the advancing angle on P surface op~~~.

4.3 DIscussIoN. The results presented above permit a detailed description of the motion

of a liquid ridge deposited on the boundary line between two different solid surfaces. The

whole behaviour is reasonably understood ; in particular, we observe a stationary regime
corresponding to a uniform translation, as predicted by the theoretical model in its asymptotic

limit. However, a more careful analysis indicates some disagreements with the model the

two contact angles are not -exactly equal during the stationary regime so that the drop is

deformed when compared to circular profile. This provps that the pressure is not uniform

within the liquid, in opposition to one of the hyp9theses of the model which assumes an

infinitely rapid pressure equilibrium. In order to check this interpretation, it is important to
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determine the order of magnitude of the characteristic time involved in the pressure
equilibrium. With that aim, we have prepared a sample with an appropriate geometry : the

ridge is deposited so that its contact line £~ is very close to the boundary £. Thus, the line

£~ anchors on £ before the contact angle op reaches the advancing angle op~~~. We thus obtain

a deformed ridge, the two edges £~ and £p of which are fixed by canthotaxis and hysteresis
respectively. The time needed to obtain identical contact angles on both sides is then only due

to the pressure balancing within the drop. We find that, in the case of ricin oil, few seconds

are necessary to reach pressure equilibrium I.e. identical contact angles o~ and op. This time

is of the order of those involved in the motion of the ridge, this explains the deformation of

the ridge during the motion.

Other phenomena that interfer in these experiments and are not taken into account in the

simple theoretical desqription, are the hysteresis effects. A first consequence of this effect has

already been mentioned the line £p does not move at the beginning of the process because

the ingle £p has not reached the advancing angle op~~~. Hysteresis may also have another less

evident consequence if we try to verify quantitatively the validity of the expression of

I
as a function of liquid and surface characteristics the contact angles which appear in

formula (5) are equilibrium angles while the only ones available experimentally are static

advancing or receding angles. In the case of surfaces with hysteresis, there exists no

theoretical expression of the dynamic contact angle as a function of the velocity of the contact

line. In the following, we use the relationships obtained for a surface without hysteresis given
in the theoretical section, but replace the equilibrium contact angles by the static angle
corresponding to the direction of motion of the line considered I,e, advancing angle

£p and receding one for £~.
It is possible to modify the theoretical model by introducing the non circular profile of the

ridge. Thus, we consider a ridge with two edges of contact angles i~ and ip. We then balance

the work of the forces acting on the two edges and the total viscous dissipation. We get :

p ~~ j,
°(rec °lady

~ j, ~ ~
2

W~~~~ #f ~A ~ ~P

~

o~ op
and ho

= 2

Note that this expression of I takes into account the modifications due to hysteresis effects.

We may then compare the experimental values of the velocity measured during the stationary
regime and those obtained by this formula. This can be done for different values of the liquid
viscosity and surface tension, and for different surfaces characterized by contact angles. The

results are reported in table I. We find a reasonable agreement for all our data and a unique
value of the only adjustable paranieter f. The value off for which the experimental measures

and theoretical calculations coincide is

f =13 ± 0.5.

An accurate theoretical estimate of this logarithmic factor is delicate ; from previous results

[I Ii in a situation of partial wetting comparable to the present one, we have deduced
I =12. Consequently, the order of magnitude of the value of I obtained from our data

appears to be reasonable.
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£ Conclusion.

We have reported an experimental study of the behaviour of a liquid droplet when deposited

on the boundary line between two different solid surfaces one observes that, due to

unbalanced Young forces on the contact lines, the droplet shifts toward one of the two

surfaces. Choosing a convenient cylindrical geometry, we have measured, under the same

experimental conditions, the displacements of the two contact lines and the corresponding

contact angles. These coupled measurements permit a detailed description of the motion of

the liquid ridge which exhibits several regimes. The whole results are qualitatively well

understood. In particular, we observe a stationary regime where the ridge moves with a

constant velocity, in good agreement with a theoretical prediction [3]. However, one of the

main conclusions of this study is that the ridge does not exhibit a circular profile during the

motion. From the evidence of this deformation, even during the stationary regime, we may
conclude that the pressure within the drop does not reach equilibrium in times infinitely short

as usually assumed. Moreover, we have been able to measure the order of magnitude of the

characteristic time involved in the pressure balancing. Another surprising result concerns the

growth of instabilities of the ridge we have observed that they develop more slowly than

expected from similar experiments on homogeneous surfaces where a ridge tends to split in

spherical droplets. In the same way, a ridge may remain stable for a very long time (several
weeks) when anchored on the boundary line by canthotaxis effects (if the two parts of the

plate have different enough surface properties). This provides additional evidence of the

specific properties of a line of chemical discontinuity as already observed in the case of

amphiphilic solid particles [1, 2].
For the sake of comparison, it would be interesting to extend this study to situations where

the surface properties vary in a continuous way, as for instance in chemical or thermal

gradients.
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