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Abstract. A new approach to the single-band Hubbard model is described in the general
context of many-body theories. It is based on enforcing conservation laws, the Pauli principle and

a number of crucial sum-rules. More specifically, spin and charge susceptibilities are expressed,
in a conserving approximation, as a function of two irreducible vertices whose values are found

by imposing the local Pauli principle in()
=

(nil
as well as the local-moment sum-rule and

consistency with the equations of motion in a local-field approximation. The Mermin-Wagner
theorem in two dimensions is automatically satisfied. The effect of collective modes on single-

particle properties is then obtained by a pararnagnon-like formula that is consistent with the

two-particle properties in the sense that the potential energy obtained from Tr LG is identical

to that obtained using the fluctuation~dissipation theorem for susceptibilities. Since there is

no
Migdal theorem controlling the effect of spin and charge fluctuations on the self-energy,

the required vertex corrections are included. It is shown that the theory is in quantitative

agreement with Monte Carlo simulations for both single-particle and two-particle properties. The

theory predicts a magnetic phase diagram where magnetic order persists away from half-filling
but where ferromagnetism is completely suppressed. Both quantum-critical and renormalized-

classical behavior can occur in certain parameter ranges. It is shown that in the renormalized

classical regime, spin fluctuations lead to precursors of antiferromagnetic bands (shadow bands)
and to the destruction of the Fermi-liquid quasiparticles in a wide temperature range above

the zero-temperature phase transition. The upper critical dimension for this phenomenon is

three. The analogous phenomenon of pairing pseudogap can occur in the attractive model in

two dimensions when the pairing fluctuations become critical. Simple analytical expressions
for the self-energy are derived in both the magnetic and pairing pseudogap regimes. Other

approaches, such as paramagnon, self-consistent fluctuation exchange approximation (FLEX),
and pseudo-potential parquet approaches are critically compared. In particular, it is argued that

the failure of the FLEX approximation to reproduce the pseudogap and the precursors AFM

bands in the weak coupling regime and the Hubbard bands in the strong coupling regime is due

to inconsistent treatment of vertex corrections in the expression for the self-energy- Treating the

spin fluctuations as if there was a Migdal's theorem can lead not only to quantitatively wrong

results but also to qualitatively wrong predictions, in particular with regard to the single-particle
pseudogap.
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1. Introduction

Understanding all the consequences of the interplay between band structure effects and electron-

electron interactions remains one of the present-day goals of theoretical solid-state Physics. One

of the simplest model that contains the essence of this problem is the Hubbard model. In the

more than thirty years [1, 2] since this model was formulated, much progress has been accom-

plished. In one dimension [3, 4], various techniques such as diagrammatic resummations [5],
bosonization [6], renormalization group [7, 8] and conformal approaches (9,10] have lead to a

very detailed understanding of correlation functions, from weak to strong coupling. Similarly,
in infinite dimensions a dynamical mean-field theory [11] leads to an essentially exact solution

of the model, although many results must be obtained by numerically solving self-consistent

integral equations. Detailed comparisons with experimental results
on

transition-metal oxides

have shown that three-dimensional materials can be well described by the infinite-dimensional

self-consistent mean-field approach [11]. Other methods, such as
slave-boson [12] or slave-

fermion [13] approaches, have also allowed one to gain insights into the Hubbard model through
various mean-field theories corrected for fluctuations. In this context however, the mean-field

theories are not based on a variational principle. Instead, they are generally based on expan-

sions in the inverse of a degeneracy parameter [14], such as the number of fermion flavors N,
where N is taken to be large despite the fact that the physical limit corresponds to a small

value of this parameter, say N
=

2. Hence these theories must be used in conjunction with

other approaches to estimate their limits of validity [15]. Expansions around solvable limits

have also been explored [16]. Finally, numerical solutions [17], with proper account of finite-size

effects, can often provide a way to test the range of validity of approximation methods inde-

pendently of experiments on
materials that are generally described by much more complicated

Hamiltonians.

Despite all this progress, we are still lacking reliable theoretical methods that work in ar-

bitrary space dimension. In two dimensions in particular, it is believed that the Hubbard

nlodel nlay hold the key to understanding normal state properties of high-temperature super-

conductors. But even the simpler goal of understanding the magnetic phase diagram of the

Hubbard model in two dimensions is a challenge. Traditional mean-field techniques, or even

slave-boson mean-field approaches, for studying magnetic instabilities of interacting electrons

fail in two dimensions. The Random Phase Approximation (RPA) for example does not sat-

isfy the Pauli principle, and furthermore it predicts finite temperature antiferromagnetic
or

Spin Density Wave (SDW) transitions while this is forbidden by the Mermin-Wagner theorem.

Even though one can study universal critical behavior using various forms of renormalization

group treatments [18-22] or through the self-consistent-renormalized approach of Moriya [23]
which all satisfy the Mermin-Wagner theorem in two dimensions, cutoff-dependent scales are

left undetermined by these approaches. This means that the range of interactions or fillings
for which a given type of ground-state magnetic order may appear is left undetermined.

Amongst the recently developed theoretical methods for understanding both collective and

single-particle properties of the Hubbard model, one should note the fluctuation exchange
approximation [24] (FLEX) and the pseudo-potential parquet approach [25]. The first one,

FLEX, is based on the idea of conserving approximations proposed by Baym and Kadanoff

[26,27]. This approach starts with a set of skeleton diagrams for the Luttinger-Ward functional

[28] to generate a self-energy that is computed self-consistently- The choice of initial diagrams

however is arbitrary and left to physical intuition. In the pseudo-potential parquet approach,

one parameterizes response functions in all channels, and then one iterates crossing-symmetric

many-body integral equations. While the latter approach partially satisfies the Pauli principle,

it violates conservation laws. The opposite is true for FLEX.
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In this paper, we present the formal aspects of a new approach that we have recently de-

veloped for the Hubbard model [29, 30]. The approach is based on enforcing sum rules and

conservation laws, rather than on diagrammatic perturbative methods that are not valid for

interaction U larger than hopping t. We first start from a Luttinger-Ward functional that

is parameterized by two irreducible vertices Usp and Uch that are local in space-time. This

generates RPA-like equations for spin and charge fluctuations that are conserving. The local-

moment sum rule, local charge sum rule, and the constraint imposed by the Pauli principle,
(n()

=
(n~) then allow us to find the vertices as a function of double occupancy (n~n~) (see

Eqs. (37, 38)). Since (n~n~) is a local quantity it depends very little on the size of the system
and, in principle. it could be obtained reliably using numerical methods, such as for example
Monte Carlo simulations. Here, however, we adopt another approach and find (n~n~) self-

consistently [29] without any input from outside the present theory. This is done by using an

ansatz equation (40) for the double-occupancy (n~n~) that has been inspired by ideas from the

local field approach of Singwi et al. [31]. Once we have the spin and charge fluctuations, the

next step is to use them to compute a new approximation, equation (46), for the single-particle
self-energy- This approach to the calculation of the effect of collective modes on

single-particle
properties [30] is similar in spirit to paranJagnon theories [32]. Contrary to these approaches
however, we

do include vertex corrections in such
a way that. if E(~l is our new approxima-

tion for the self-energy while G(°) is the initial Green's function used in the calculation of the

collective modes, and (n~n~) is the value obtained from spin and charge susceptibilities, then

)Tr [E(~lG1°1) =
U (n~n~) is satisfied exactly. The extent to which )Tr [E(~)Gl~l) (computed

with Gl~l instead of G1°)) differs from U (n~n~) can then be used both as an internal accuracy

check and
as a way to improve the vertex corrections.

If one is interested only in two-particle properties, namely spin and charge fluctuations,
then this approach has the simple physical appeal of RPA but it satisfies key constraints that

are always violated by RPA, namely the Mermin-Wagner theorem and the Pauli principle.
To contrast it with usual RPA, that has a self-consistency only at the single-particle level,

we call it the Two-Particle Self-Consistent approach (TPSC) [29, 30, 33j. The TPSC gives a

quantitative description of the Hubbard model not only far from phase transitions, but also

upon entering the critical regime. Indeed
we have shown quantitative agreement with Monte

Carlo simulations of the nearest-neighbor [29] and next-nearest neighbor [34] Hubbard model

in two dimensions. Quantitative agreement is also obtained as one enters the narrow
critical

regime accessible in Monte Carlo s1nlulations. We also have shown [33j in full generality that

the TPSC approach gives the n ~ oo l1nlit of the O (n) model, while n =
3 is the physically

correct (Heisenberg) l1nlit. In two dimensions, we then recover both quantum-critical [19] and

renormalized classical [18] regimes to leading order in i In. Since there is no arbitrariness in

cutoff, given a microscopic Hubbard model
no parameter is left undetermined. This allows us

to go with the same theory from the non-critical to the beginning of the critical regime, thus

providing quantitative estimates for the magnetic phase diagram of the Hubbard model, not

only in two dimensions but also in higher dimensions [33].

The main limitation of the approach presented in this paper is that it is valid only from

weak to intermediate coupling. The strong-coupling case cannot be treated with frequency-

independent irreducible vertices, as will become clear later. However, a suitable ansatz for

these irreducible vertices in a Luttinger-Ward functional might allow us to apply our general

scheme to this limit as well.

Our approach predicts [30] that in two dimensions, Fermi liquid quasiparticles disappear

in the renormalized classical regime (AFM o<
exp(const/T), which always precedes the zero-

temperature phase transition in two-dimensions. In this regime the antiferromagnetic
correlation length becomes larger than the single-particle thermal de Broglie wave length
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(t~(= vF/T), leading to the destruction of Fermi liquid quasiparticles with
a concomitant

appearance of precursors of antiferromagnetic bands ("shadow bands" with no quasi-particle
peak between them. We stress the crucial role of the classical thermal spin fluctuations and low

dimensionality for the existence of this effect and contrast our results with the earlier results

of Kampf and Schrieffer [35] who used a susceptibility separable in momentum and frequency
x~[

=

f(q)g(~a). The latter form of x~p =

f(q)g(~a) leads to an artifact that dispersive precur-

sors of antiferromagnetic bands can exist at T
=

0 (for details see [36]). We also contrast our

results with those obtained in the fluctuation exchange approximation (FLEX), which includes

self-consistency in the single particle propagators but neglects the corresponding vertex cor-

rections. The latter approach predicts only the so-called "shadow feature" [36, 37] which is an

enhancement in the incoherent background of the spectral function due to antiferromagnetic
fluctuations. However, it does not predict [38] the existence of "shadow bands" in the renor-

malized classical regime. These bands occur when the condition w ek E~(k, ~a) + /1 =
0 is

satisfied. FLEX also predicts no pseudogap in the spectral function A(kF, ~a) at half-filling [38].
By analyzing temperature and size dependence of the Monte Carlo data and comparing them

with the theoretical calculations, we argue that the Monte Carlo data supports our conclusion

that the precursors of antiferromagnetic bands and the pseudogap do appear in the renormal-

ized classical regime. We believe that the reason for which the FLEX approximation fails to

reproduce this effect is essentially the same reason for which it fails to reproduce Hubbard

bands in the strong coupling limit. More specifically, the failure is due to an inconsistent

treatment of vertex corrections in the self-energy ansatz. Contrary to the electron-phonon

case, these vertex corrections have a strong tendency to cancel the effects of using dressed

propagators in the expression for the self-energy-

Recently, there have been very exciting developments in photoemission studies of the High-Tc
materials [39, 40] that show the opening of the pseudogap in single particle spectra above the

superconducting phase transition. At present, there is an intense debate about the physical
origin of this phenomena and, in particular, whether it is of magnetic or

of pairing origin.
From the theoretical point of view there are a lot of formal similarities in the description
of antiferromagnetism in repulsive models and superconductivity in attractive models. In

Section 5 we use this formal analogy to obtain a simple analytical expressions for the self-energy
in the regime dominated by critical pairing fluctuations. We then point out on the similarities

and differences in the spectral function in the case of magnetic and pairing pseudogaps.
Our approach has been described in simple physical terms in references [29, 30]. The plan

of the present paper is as follows. After recalling the model and the notation, we present our

theory in Section 3. There we point out which exact requirements of many-body theory are

satisfied, and which are violated. Before Section 3, the reader is urged to read Appendix A that

contains a summary of sum rules, conservation laws and other exact constraints. Although
this discussion contains many original results, it is not in the nlain text since the more expert
reader can refer to the appendix as need be. We also illustrate in this appendix how an

inconsistent treatment of the self-energy and vertex corrections can lead to the violation of a

number of sum rules and inhibit the appearance of the Hubbard bands,
a subject also treated

in Section 6. Section 4 compares the results of our approach and of other approaches to Monte

Carlo simulations. We study in more details in Section 5 the renormalized classical regime at

half-filling where, in two dimensions, Fermi liquid quasiparticles are destroyed and replaced
by precursors of antiferromagnetic bands well before the T

=
o phase transition. We also

consider in this section the analogous phenomenon of pairing pseudogap which can appear in

two dimensions when the pairing fluctuations become critical. The following section (Sect. 6)
explains other attempts to obtain precursors of antiferromagnetic bands and points out why
approaches such as FLEX fail to see the effect. We conclude in Section 7 with a discussion
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of the domain of validity of our approach and in Section 8 with a critical comparison with

FLEX and pseudo-potential parquet approaches, listing the weaknesses and strengths of our

approach compared with these. A more systematic description and critique of various many-
body approaches, as well as proofs of some of our results, appear in appendices.

2. Model and Definitions

We first present the model and various definitions. The Hubbard model is given by the Hamil-

tonian

H
=

~j t~,j (c)~cj~ + cj~cw) + U~jn~~n~~. (i)

<v>a ~

In this expression, the operator ci~ destroys an electron of spin a at site I. Its adjoint c)~ creates

an electron and the nunlber operator is defined by nw =
c)~cw. The symnletric hopping matrix

t~,j determines the band structure, which here can be arbitrary. Double occupation of a site

costs an energy U due to the screened Coulomb interaction. We work in units where kB
=

i,
h

=
1 and the lattice spacing is also unity,

a =
i As an example that occurs later, the

dispersion relation in the d -dimensional nearest-neighbor model is given by

d

ek "
-2t ~j (cos k~) (2)

~=1

2.I. SINGLE-PARTICLE PROPAGATORS, SPECTRAL WEIGHT AND SELF-ENERGY. We will

use a "four"-vector notation k w (k, ikn) for momentum-frequency space, and 1 e
(ri, 71) for

position-imaginary time. For example, the definition of the single-particle Green's function

can be written as

G~ 11, 2) ~ (T~ci~ jTi) cj~ jT~)) m jT~c~ 11) cjj2)j j3)

where the brackets () represent a thermal average in the grand canonical ensemble, T~ is the

time-ordering operator, and
7 is imaginary time. In zero external field and in the absence

of the symmetry breaking G~(1, 2)
=

G~(1-2) and the Fourier-Matsubara transforms of the

Green's function are

P

G~ (k)
=

~e~~~ ~~ d7 e~~n°G~ (ri, 71) + d(i)e~~~(~lG~(1) (4)

~

G~(1)
=

( ~j e~~l~)G~(k). (5)

As usual, experimentally observable retarded quantities are obtained from the Matsubara ones

by analytical continuation ikn ~ ~a + ii~. In particular, the single-particle spectral weight
A(k, ~a) is related to the single-particle propagator by

G~(k, ikn)
=

/ ~° [~~'~°~
(6)

7T ~
n

ld

A~jk,~o)
=

-2i~nGjjk,~o). j7)

The self-energy obeys Dyson's equation, leading to

~"~~'~~"~
ikn (ek

L~
E~(k,ikn) ~~~
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It is convenient to use the following notation for real and imaginary parts of the analytically
continued retarded self-energy

zjjk, ik~ ~ ~o + i~j
=

xi jk, ~o) + izj jk, ~o). j9)

Causality and positivity of the spectral weight imply that

E$(k, ~a) < 0. (10)

Finally, let us point out that for nearest-neighbor hopping, the Hamiltonian is particle-hole
symmetric at half-filling, (ck« ~

cl ~~~; c[~ ~ ck+Qa) with Q =(x,x), implying that

/1 =

U/2 and that,

G~ jk, ~)
=

-G~ jk + q, -~) (ii)

X
(k,ikn) ~j =

E
(k + Q, -ikn) ~j (12)

2 2

2.2. SPIN AND CHARGE CORRELATION FUNCTIONS. We shall be primarily concerned with

spin and charge fluctuations, which are the most important collective modes in the repulsive
Hubbard model. Let the charge and z components of the spin operators at site I be given

respectively by

P~17) % n~t17) + n~i17) i13)

Si
+ n~t17) n~i17). i14)

The time evolution here is again that of the Heisenberg representation in imaginary time.

The charge and spin susceptibilities in 1nlaginary time are the responses to perturbations
applied in imaginary-time. For example, the linear response of the spin to an external field

that couples linearly to the z component

e~~~
~

e~~~T~ei~~~~(~~)~f(~~) (is)

~~ ~~~~~ ~~

x~~jr rj ~~ n)
-

~iilil~
=

(TrS/17~)Si17~)1. ~~~~

In an analogous manner, for charge we have

xchlr~ rj,7~ 7j)
= ~j(1)))~ =

lTrP~17~)Pj17j)1 n~. (ii)
~ ~

Here n m (p~) is the filling so that the disconnected piece is denoted n~. It is well known

that when analytically continued, these susceptibilities give physical retarded and advanced

response functions. In fact, the above two expressions are the imaginary-time version of the

fluctuation-dissipation theorem.

The expansion of the above functions in Matsubara frequencies uses even
frequencies. Defin-

ing the subscript ch, sp to nlean either charge or spin, we have

xch,sp(q,iqn)
=

/ ~~°'X$h,splq,ta~)

~ ~' i~n
(18)

xlhlq,t)
=

llPqltl, P-qlojjj xlplq, t)
=

[S(lt), Sfql°)]) l19)
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The fact that x[[
~~

(q, ~a') is real and odd in frequency in turn means that xch,sp(q, iqn) is real

/ d~d' 1°'X$h,sp(qi L°')
(20)x~~'~~l~~ ~~~~

~ (~°')~ + lqn)~

a convenient feature for numerical calculations. The high-frequency expansion has i/q(
as

a leading term so that there is no discontinuity in xch,sp (q,7)
as 7 ~ 0, contrary to the

single-particle case.

3. Formal Derivation

To understand how to satisfy as well as possible the requirements imposed on many-body
theory by exact results, such as those in Appendix A, it is necessary to start from

a general non-

perturbative formulation of the many-body problem. We thus first present a general approach

to many-body theory that is set in the framework introduced by Martin and Schwinger [42],
Luttinger and Ward [28] and Kadanoff and Baynl [26, 27]. This allows one to see clearly the

structure of the general theory expressed in terms of the one-particle irreducible self-energy
and of the particle-hole irreducible vertices. These quantities represent projected propagators
and there is a great advantage in doing approximations for these quantities rather than directly

on propagators.
Our own approximation to the Hubbard model is then described in the subsection that

follows the formalism. In our approach, the irreducible quantities are determined from various

consistency requirements. The reader who is interested primarily in the results rather than in

formal aspects of the theory can skip the next subsection and refer back later as needed.

3. I. GENERAL FORMALIS~I. Following Kadanoff and Baym [27], .we introduce the gener-

ating function for the Green's function

In Z [#]
=

In (T~e~~(~)~~(~)~~~'~) (~~)

where, as above, a bar over a number means summation over position and imaginary time

and, similarly, a bar over a spin index nleans a surf over that spin index. The quantity Z is

a functional of #~, the position and imaginary-time dependent field. Z reduces to the usual

partition function when the field #~ vanishes. The one-particle Green's function in the presence

of this external field is given by

Ga iii 2;141)
=

()
'() 122)

and, as shown by Kadanoff and Baym, the inverse Green's function is related to the self-energy
through

G~~
=

Gp~ # E. (23)

The self-energy in this expression is a functional of #.
Performing

a
Legendre transform on the generating functional In Z iii in equation (21) with

the help of the last two equations, one can find a functional 4l [G] of G that acts as a generating
function for the self-energy

~"~~'~' ~~~~

~~~~1)
~~~~

The quantity 4l [G] is the Luttinger-Ward functional [28j. Formally, it is expressed as the sum of

all connected skeleton diagrams, with appropriate counting factors. Conserving approximations
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11
l

2=-
~2+

2
3

3~ 3~
3 5

lj~flj_2= i~ 2 + 5 4~ i~
] 2

Fig. i. The first line is a diagrammatic representation of the Bethe-Salpeter equation (26) for the

three point susceptibility and the second line is the corresponding equation (27) for the self-energy. In

the Hubbard model, the Fock contribution is absent, but in general it should be there. Solid lines are

Green's functions and dashed lines represent the contact interaction U. The triangle is the three point
vertex, while the three-point susceptibility xii, 3; 2) is the triangle along with the attached Green's

function. The usual two-point susceptibility is obtained by identifying points i and 3 in the Bethe-

Salpeter equation. The rectangular box is the irreducible four-point vertex in the selected particle-hole
channel.

start from a subset of all possible connected diagrams for 4l [Gj to generate both the self-energy
and the irreducible vertices entering the integral equation obeyed by response functions. These

response functions are then guaranteed to satisfy the conservation laws. They obey integral
equations containing as irreducible vertices

dE~(1, 2; (Gj) d~4l [Gj
p>r, (4, 3; 2, 1). (25)P~a/ (~? ~i ~? ~~

~ dG~/ (3, 4) dG~ (2, 1)dGa/ (3, 4) ~ ~

A complete and exact picture of one- and two-particle properties is obtained then as fol-

lows. First, the generalized susceptibilities x~~/ (1, 3; 2) e -dG~ (1, 3) /d#~i (2+, 2) are cal-

culated by taking the functional derivative of GG~~ and using the Dyson equation (23) to

compute dG~~ /d#. One obtains [27j

x~~/(1, 3; 2)
=

-G~(1, 2)d~,~/G~(2, 3) + G~(1, §)P$y(§, I; T, $)xa~/(T, $; 2)G~(I, 3) (26)

where one recognizes the Bethe-Salpeter equation for the three-point susceptibility in the

particle-hole channel. The second equation that we need is automatically satisfied in an exact

theory. It relates the self-energy ti the response function just discussed through the equation

~?(~? ~)
"

~"-«~(l 2) + UG«(1, 2)T$«/ (2, 2i 4, 5)X«?
-a

(4, 5;1) (27)

which is proven in Appendix B.

The diagrammatic representation of these two equations (26, 27) appearing in Figure 1 may

make them look nlore familiar. Despite this diagrammatic representation, we stress that this

is only for illustrative purposes. The rest of our discussion will not be diagranlmatic.
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Because of the spin-rotational symnletry the above equations (26, 27) can be decoupled into

symmetric (charge) and antisymmetric (spin) parts, by introducing spin and charge irreducible

vertices and generalized susceptibilities:

;~ ;~ ;~ ;~PCh
"

Pit + Ptt ASP "

Pit Ptt (~~)

Xch £ 2lXij + Km XSP ~ 21X~~ Xi j). 129)

The usual two-point susceptibilities are obtained front the generalized ones as

x~p,ch(1, 2)
=

xsp,ch(1,1+; 2). The equation (26) for the generalized spin susceptibility leads to

xsp(1, 3; 2)
=

-2G(1, 2)G(2, 3) rsp(§, I;1,$)G(1,§)G(I, 3)xsp(1,$; 2) (30)

and similarly for charge, but with the plus sign in front of the second term.

Finally, one can write the exact equation (27) for the self-energy in terms of the response
functions as

E«li, 2)
=

Un-«ah 2) +
(

imp II, 2; Ii S)xsp Iii Ii1) + rchls, 2; Ii S)xchll, S; i)lG« Iii1). 130

Our two key equations are thus those for the three-point susceptibilities, equation (30), and

for the self-energy) equation (31). It is clear from the derivation in Appendix B that these

equations are intimately related.

3.2. APPROXIMATIONS THROUGH LOCAL IRREDUCIBLE VERTICES

3.2.I. Conserving Approximation for the Collective Modes. In formulating approximation
methods for the many-body problem, it is preferable to confine our ignorance to high-order
correlation functions whose detailed momentum and frequency dependence is not singular and

whose influence on the low energy Physics comes only through averages over momentum and

frequency. We do this here by parameterizing the Luttinger-Ward functional by two constants

P( and P(~. They play the role of particle-hole irreducible vertices that are eventually deter-

mined by enforcing sum rules and a
self-consistency requirement at the two-particle level. In

the present context, this functional can be also considered as the interacting part of a Landau

functional. The ansatz is

4l [Gj
=

G~ (T, T~) r)Ga (T, T~) + G~ (T, T~) rj_yG-~ (T,
T~ (32)

As in every conserving approximation, the self-energy and irreducible vertices are obtained from

functional derivatives as in equations (24, 25) and then the collective modes are computed from

the Bethe-Salpeter equation (30). The above Luttinger-Ward functional gives a momentum

and frequency independent self-energy [43], that can be absorbed in a chemical potential shift.

From the Luttinger-Ward functional, one also obtains two local particle-hole irreducible vertices

T$~ and T)_~

We denote the orresponding local spin and charge irreducible rtices as

Notice
now that there are only two ual-t1nle, ii.

e. local) orrelation
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completely determined by the Pauli principle and by the known filling factor, while U(n~n~)
is the expectation value of the interaction term in the Hamiltonian. Only one of these two

correlators, namely U(n~n~), is unknown. Assume for the moment that it is known. Then,

we can use the two sum rules (Eqs. (A,15, A,14)) that follow from the fluctuation-dissipation
theorem and from the Pauli principle to determine the two trial irreducible vertices from the

known value of this one key local correlation functions. In the present notation, these two sum

rules are

Xch (I, l~)
"

) ~ ~ Xch(q, 'Qn)
"

("t) + ("II + 2 ("t"1) "~ (35)

q ~~n

Xsp (i,1+)
=

~ ~j ~jxsp(q, iqn)
=

(n~) + (n~) 2 (n~n~) (36)
~

q ~qn

and since the spin and charge susceptibilities entering these equations are obtained by solving
the Bethe-Salpeter equation (30) with the constant irreducible vertices equations (33, 34) we

have one equation for each of the irreducible vertices

~
T ~ Xo(q)

(37)
" + ~("t"~~

"
N

~

i + )UchXo(ql'

T ~ Xo(q)
(38)n

2(n~n~)
= j iu ~~jq)

I ~ ~~

We used our usual short-hand notation for wave vector and Matsubara frequency q =
(q, iqn).

Since the self-energy corresponding to our trial Luttinger-Ward functional is constant, the

irreducible susceptibilities take their non-interacting value xo(q).
The local Pauli principle In()

=
In~) leads to the following important sum-rule

~ ~ iXsp(q,'qn) + Xch(q,ion))
~

2Tl Yl~, (39)

q ~qn

which can be obtained by adding equations (38, 37). This sum-rule implies that effective

interactions for spin Usp and charge Uch channels must be different from one another and hence

that ordinary RPA is inconsistent with the Pauli principle (for details see Appendix A.3).
Equations (37, 38) determine Usp and Uch as a function of double occupancy (n~n~). Since

double occupancy is a local quantity it depends little on the size of the system. It could be

obtained reliably from a number of approaches, such as for example Monte Carlo simulations.

However, there is a way to obtain double-occupancy self-consistently [29j without input from

outside of the present theory. It suffices to add to the above set of equations the relation

Usp
= go lo) U; go lo) + j)j()~j 14°)

Equations (38, 40) then define a set of self-consistent equations for Usp that involve only
two-particle quantities. This ansatz is motivated by a similar approximation suggested by
Singwi et al. [31j in the electron gas, which proved to be quite successful in that case. On

a lattice we will use it for n < 1. The case n > can be mapped on the latter case using
particle-hole transformation. In the context of the Hubbard model with on-site repulsion, the

physical meaning of equation (40) is that the effective interaction in the most singular spin
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channel, is reduced by the probability of having two electrons with opposite spins on the same

site. Consequently, the ansatz reproduces the Kanamori-Brueckner screening that inhibits

ferromagnetism in the weak to intermediate coupling regime (see also below). We want to

stress, however, that this ansatz is not a rigorous result like sum rules described above. The

plausible derivation of this ansatz can be found in references [29, 31j as well as, in the present

notation, in Appendix C.

We have called this approach Two-Particle Self-Consistent to contrast it with other conserv-

ing approximations like Hartree-Fock or Fluctuation Exchange Approximation (FLEX) [24j
that are self-consistent at the one-particle level, but not at the two-particle level. This ap-

proach [29] to the calculation of spin and charge fluctuations satisfies the Pauli principle
(n$)

=
(n~)

=
n/2 by construction, and it also satisfies the Mermin-Wagner theorem in

two dimensions.

To demonstrate that this theorem is satisfied, it suffices to show that (n~n~)
= g~~ (0) (n~) (n~)

does not grow indefinitely. (This guarantees that the constant C appearing in Eq. (A.21) is

finite. To see how this occurs, write the self-consistency condition (Eq. (38) in the form

n
~jn~n~j

j j
~~jijj) ~

~~~~~
141)

~
~ ~~ ~

Consider increasing (n~n~) on the right-hand side of this equation. This leads to a decrease of

the same quantity on
the left-hand side. There is thus negative feedback in this equation that

will make the self-consistent solution finite. A more direct proof by contradiction has been

given in reference [29j: suppose that there is a phase transition, in other words suppose that

(n~) (n~)
=

)U(n~n~)xo IQ)- Then the zero-Matsubara frequency contribution to the right-
hand side of equation (41) becomes infinite and positive in two dimensions as one can see

from phase-space arguments (See Eq. (A.21)). This implies that (n~n~) on the left-hand

side must become negative and infinite, but that contradicts the starting hypothesis since

(n~) (n~)
=

(U(n~n~)xo(Q) means that (n~n~) is positive.
Although there is no finite-temperature phase transition, our theory shows that sufficiently

close to half-filling (see Sect. 4.3) there is a crossover temperature Tx below which the system

enters the so-called renormalized classical regime, where antiferromagnetic correlations grow

exponentially. This will be discussed in detail in Section 5.1,i.

Kanamori-Brueckner screening is also included as we already mentioned above. To see how

the screening occurs, consider a case away from half-filling, where one is far from a phase

transition. In this case, the denominator in the self-consistency condition can be expanded to

linear order in U and one obtains

g~~jo)=
intnil

~

i

("ml ("ii i + Au
142)

Where

~
=

~ T ~ x~iq)2. 143~
n N

Clearly, quantum fluctuations contribute to the sum appearing above and hence to the renor-

malization of Usp = g~~ (0) U. The value of A is found to be near o.2 as in explicit numerical

calculations of the maximally crossed Kanamori-Brueckner diagrams [44j. At large U, the

value of Usp
= g~~ (0) U

+~
i IA saturates to a value of the order of the inverse bandwidth

which corresponds to the energy cost for creating a node in the two-body wave function, in

agreement with the Physics described by Kanamori [2j.
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Fig. 2. Dependence on U of the charge and spin effective interactions (irreducible vertices). The

temperature is chosen so that for all U, it is above the crossover temperature. In this case, temperature

dependence is not significant. The filling is n =
1.

Fig. 3. Crossover temperature at half-filling as function of U compared with the mean-field tran-

sition temperature.

To illustrate the dependence of Usp,Uch on bare U we give in Figure 2 a plot of these

quantities at half-filling where the correlation effects are strongest. The temperature for this

plot is chosen to be above the crossover temperature Tx to the renormalized classical regime,
in which case the dependence of Usp and Uch on temperature is not significant. As one can

see, Usp rapidly saturates to a fraction of the bandwidth, while Uch rapidly increases with U,
reflecting the tendency to the Mott transition. We have also shown previously in Figure 2

of reference [29j that Usp depends only weakly on filling. Since Usp saturates as a function

of U due to Kanamori-Brueckner screening, the crossover temperature Tx also saturates as a

fmiction of U. This is illustrated in Figure 3 along with the mean-field transition temperature
that, by contrast, increases rapidly with U.

Quantitative agreement with Monte Carlo simulations on the nearest-neighbor [29j and next-

nearest-neighbor models [34j is obtained [29j for all fillings and temperatures in the weak to

intermediate coupling regime U < 8t. This is discussed further below in Section 4. We have also

shown that the above approach reproduces both quantum-critical and renormalized-classical

regimes in two dimensions to leading order in the i In expansion (spherical model) [33j.
As judged by comparisons with Monte Carlo simulations [45j, the particle-particle channel

in the repulsive two-dimensional Hubbard model is relatively well described by more standard

perturbative approaches. Although our approach can be extended to this channel as well,

we do not consider it directly in this paper. It manifests itself only indirectly through the

renormalization of Usp and Uch that it produces.

3.2.2. Single-Particle Properties. As in any implementation of conserving approximations,

the initial guess for the self-energy, E1°), obtained from the trial Luttinger-Ward functional



N°11 NON-PERTURBATIVE APPROACH TO HUBBARD MODEL 1321

is inconsistent with the exact self-energy formula (Eq. (31)). The latter formula takes into

account the feedback of the spin and charge collective modes actually calculated from the

conserving approximation. In our approach, we use this self-energy formula (Eq. (31)) in an

iterative manner to improve on our initial guess of the self-energy. The resulting formula for an

improved self-energy Eli) has the simple physical interpretation of paramagnon theories [46j.
As another way of Physically explaining this point of view, consider the following: the bosonic

collective modes are weakly dependent on the precise form of the single-particle excitations, as

long as they have a quasiparticle structure. In other words, zero-sound or paramagnons exist,
whether the Bethe-Salpeter equation is solved with non-interacting particles or with quasipar-

ticles. The details of the single-particle self-energy by contrast can be strongly influenced by
scattering from collective modes because these bosonic modes are low-lying excitations. Hence,

we first compute the two-particle propagators with Hartree-Fock single-particle Green's func-

tions, and then we improve on the self-energy by including the effect of collective modes on

single-particle properties. The fact that collective modes can be calculated first and self-energy
afterwards is reminiscent of renormalization group approaches [8, 47j, where collective modes

are obtained at one-loop order while the non-trivial self-energy comes out only at two-loop
order.

The derivation of the general self-energy formula (Eq. (31)) given in Appendix B shows

that it basically comes from the definition of the self-energy and from the equation for the

collective modes (Eq. (30) ). This also stands out clearly from the diagrammatic representation
in Figure 1. By construction, these two equations (Eqs. (30, 31)) satisfy the consistency
requirement jTr EG

=
U (n~n~) (see Appendix B), which in momentum and frequency space

can be written as

lim ~j E~(k)G~ (k)e~~~n~
=

U (n~n~) (44)
r-o-

~

The importance of the latter sum rule, or consistency requirement, for approximate theories

should be clear from the appearance of the correlation function (n~n~) that played such an im-

portant role in determining the irreducible vertices and in obtaining the collective modes. Using
the fluctuation dissipation theorem (Eqs. (36, 35) this sum-rule can be written in form that

explicitly shows the relation between the self-energy and the spin and charge susceptibilities

( ~j lEalk) Un-«I G«lk)
=

) ) ~j lxchlq) xsplq)1. 145)

To keep as much as possible of this consistency, we use on the right-hand side of the self-energy

expression (Eq. (31)) the same irreducible vertices and Green's functions as those that appear

in the collective-mode calculation (Eq. (30)). Let us call G(°I the initial Green's function

corresponding to the initial Luttinger-Ward self-energy E1°1 Our new approximation for the

self-energy Eli) then takes the form

xii ik)
=

un-~ +
( ( ~ iuspxspiq) + uc~x~~iq)1G1°1ik + q). 146)

q

Note that Ei~ (k) satisfies particle-hole symmetry (Eq. (12)) where appropriate. This self-

energy expression (Eq. (46)) is physically appealing since, as expected from general skeleton

diagrams, one of the vertices is the bare one U, while the other vertex is dressed and given
by Usp or Uch depending on the type of fluctuation being exchanged. It is because Migdal's

theorem does not apply for this problem that Usp and Uch are different from the bare U at one

of the vertices. Usp and Uch here take care of vertex corrections [48j.
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The use of the full G~ (k + q) instead of G$ (k + q) in the above expression (Eq. (46 would be

inconsistent with frequency-independent irreducible vertices. For the collective mode (Eq. (30)
this is well known to lead to the violation of the conservation laws as was discussed in detail in

the previous subsection. Here we insist that the same is true in the calculation of the effect of

electronic collective modes on the single-particle properties. Formally, this is suggested by the

similarity between the equation for the susceptibility (Eq. (30)) and that for the self-energy
(Eq. (31)) in terms of irreducible vertices. More importantly, two physical effects would be

absent if one were to use full G and frequency independent irreducible vertices. First, upper

and lower Hubbard bands would not appear because the U~/~a high-frequency behavior in

equation (68) that is necessary to obtain the Hubbard bands would set in too late, as we discuss

in Sections 1.2 and 6.i. This result is also apparent from the fact that FLEX calculations in

infinite dimension do not find upper and lower Hubbard bands [49j where the exact numerical

solution does. The other physical effect that would be absent is precursors of antiferromagnetic
bands, Section 5 and the pseudogap in A(kF> ~a), that would not appear for reasons discussed

in Section 6. We also will see in Section 4 below that FLEX calculations of the single-particle
Green's function, significantly disagree with Monte Carlo data, even away from half-filling, as

was
already shown in Figure 1 of reference [30j.

The chemical potential for interacting electrons /1 is found from the usual condition on

particle number

" ~j ~~~ ~~~ ~~~~ ~~~~ ~j
i~an

~~~~~~~~E~ll
(k, kn) ~~~~

This chemical potential /1 is, of course, different from /1o but the Luttinger sum rule

~fl(-ek + /1- E(~l)
= n~ is satisfied to a high accuracy (about few percent) for all fill-

ings and temperatures Tx < T < W. As usual this occurs because the change in /1(° /1o

is compensated by the self-energy shift
on the Fermi surface El~)(kF, 0). For T < Tx there is

some deviation from the Luttinger sum rule which is due to the appearance of the precursors of

the antiferromagnetic bands below Tx (Sect. 5) which develop into true SDW bands at T
=

0.

It is important to realize that G(°I
on the right hand side of the equation for the self-energy

E cannot be calculated as
G(°)

=
1/(~a ek + /1(~l ), because otherwise it would not reduce to

zero-temperature perturbation theory when it is appropriate. As was pointed out by Luttinger,
(see also Sect. A.4) the "non-interacting" Green's function used in the calculation for E should

be calculated as G~°1
=

1/(~a-ek- E(~l (kF, 0) + /1("~), where /1(") is calculated on the same level

of accuracy as
E(") (kF, 0), I.e. from equation (47) with E(") (k, ikn). In our calculation below,

we approximate /1(~) E(~)(kF, 0) by /1o because for the coupling strength and temperatures
considered in this paper (U < W/2

,

Tx < T « W) the Luttinger theorem is satisfied to high

accuracy and the change of the Fermi surface shape is insignificant. In addition, at half-filling
the condition /1- E(kF, 0)

= /1o is satisfied exactly at any U and T because of particle-hole
symmetry. For somewhat larger coupling strengths and away from half-filling, one may try to

improve the theory by using G(°)
=

1/(~a ek E(~)(kF, 0) + /1(~)), with E(~) and /1 found

self-consistently. However, the domain of validity of our approach is limited to the weak-to-

intermediate coupling regime since the strong-coupling regime requires frequency-dependent
pseudopotentials (see below).

Finally, let
us note that, in the same spirit as Landau theory, the only vertices entering

our theory are of the type To and rm, or, through equation (34), Usp and Uch. In other

words, we look at the problem from the longitudinal spin and charge particle-hole channel.

Consequently, in the contact pseudopotential approximation the exact equation for the self-

energy (Eq. (31)) reduces to our expression (Eq. (46)) which does not have the factor 3 in
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the front of the spin susceptibility. This is different from some paramagnon theories, in which

such factor was introduced to take care of rotational invariance. However, we show in Ap-
pendix E.1 that these paramagnon theories are inconsistent with the sum-rule (Eq. (45)) which

relates one and two-particle properties. In our approach, questions about transverse spin fluc-

tuations are answered by invoking rotational invariance x[(
=

x(J
=

x((. In particular, one

can write the expression for the self-energy (Eq. (46) in an explicitly rotationally invariant

form by replacing Xsp by (1/3)Tr[X$(j. If calculations had been done in the transverse channel,
it would have been crucial to do them while simultaneously enforcing the Pauli principle in

that channel. In functional integration methods, it is well known that methods that enforce

rotational invariance without enforcing the Pauli principle at the same time give unphysical

answers, such as the wrong factor 2 /3 in the RPA susceptibility [23j xsp =

x° /(1 (2 /3)Ux°)
or wrong Hartree-Fock ground state [50j.

3.2.3. Internal Accuracy Check. The quantitative accuracy of the theory will be discussed in

detail when we compare with Monte Carlo calculations in the next section. Here
we

show that

we can use the consistency requirement between one- and two-particle properties (Eq. (44)) to

gauge the accuracy of the theory from within the theory itself.

The important advantage of the expression for the self-energy Ei~ (k) given by equation (46)
is that, as shown in Appendix (B), it satisfies the consistency requirement between one- and

two-particle properties (Eq. (44) ), in the following sense

lim ~j E[~) (k)G[°~(k)e~~~n~
=

U (n~n~) (48)
~~°

k

Let Gi~ be defined by [Gi~j~~
w Gp~ E(~l We can use the fact that in an exact theory we

should have Tr[E)~Gi~j in the above expression instead of Tr[E)~Gf~j to check the accuracy

of the theory. It suffices to compute by how much Tr[Ei~Gf~j differs from Tr[E)~G)~j. In

the parameter range U < 4t and n, T arbitrary but not too deep in the, soon to be described;

renormalized-classical regime, we find that Tr[Ei~Gf~j differs from Tr[Ei~G)~] by at most

15%. Another way to check the accuracy of our approach is to evaluate the right-hand side of

the f-sum rule (Eqs. (A.22)) with nka =

Gi~ (k, 0~) and to compare with the result that had

been obtained with fk,a. Again we find the same
15% disagreement, at worse, in the same

parameter range. As
one can expect, this deviation is maximal at half-filling and becomes

smaller away from it.

Equation (46) for the self-energy E(~l already gives good agreement with Monte Carlo data

but the accuracy can be improved even further by using the general consistency condition

(Eq. (44) on
Tr[Ei~G)~j to improve on the approximation for vertex corrections. To do so

we replace Usp and Uch on the right-hand side of equation (46) by aUsp and aUch with a

determined self-consistently in such a way that equation (48) is satisfied with Gi~ (k) replaced

by Gil (k). For U < 4, we have o < 1.15. The slight difference between the irreducible vertices

entering the collective modes and the vertex corrections entering the self-energy formula can

be understood from the fact that the replacement of irreducible vertices by constants is, in

a way, justified by the mean-value theorem for integrals. Since the averages are not taken

over the same variables, it is clear that the vertex corrections in the self-energy formula and

irreducible vertices in the collective modes do not need to be strictly identical when they are

approximated by constants.

Before we move on to comparisons with Monte Carlo simulations, we stress that E1° given
by equation (46) cannot be substituted back into the calculation of Xsp,ch by simply replacing
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xo "

GoGo with the dressed bubble ho
=

GG. Indeed, this would violate conservation of

spin and charge and f-sum rule. In particular, the condition xsp,ch(q
=

0,iqn ~ 0)
=

0 that

follows from the Ward identity (A.28) would be violated as we see in equation (A.23). In the

next order, one is forced to work with frequency-dependent irreducible vertices that offset the

unphysical behavior of (o at non-zero frequencies.

4. Numerical Results and Comparisons with Monte Carlo Simulations

In this section, we present a few numerical results and comparisons with Monte Carlo simu-

lations. We divide this section in two parts. In the first one we discuss data sufficiently far

from half-filling, or at high enough temperature, where size effects are unimportant for systems

sizes available in Monte Carlo simulations. In the second part, we discuss data at half-filling.
There, size effects become important below the crossover temperature Tx where correlations

start to grow exponentially (Sect. 5). All single-particle properties are calculated with our

approximation (Eq. (46)) for the self-energy using the vertex renormalization
a

explained in

the previous section. The results would differ at worse by 15% if
we had used

a =
1.

4.I. FAR FROM THE CROSSOVER TEMPERATURE TX

4.1.I. Two-Particle Properties. We have shown previously in Figures 4a-d of reference [29j
and in Figures 2-4 and Figure 6 of reference [34] that both spin and charge structure factor

sufficiently away from the crossover temperature Tx are in quantitative agreement with Monte

Carlo data for values of U as large as the bandwidth. On the qualitative level, the decrease in

charge fluctuations
as one approaches half-filling has been explained [29] as a consequence of

the Pauli principle embodied in the calculation of the irreducible vertex Uch (51].

Here we present in Figures 4 and 5 comparisons with a dynamical quantity, namely the spin
susceptibility. Similar comparisons, but with a phenomenological value of Usp, have been done

by Bulut et al. [52j. Figure 4 shows the staggered spin susceptibility as a function of Matsubara

frequencies for
n =

0.87, T
=

0.25 and U
=

4. The effect of interactions is already quite large
for the zero-frequency susceptibility. It is enhanced by a

factor of over 5 compared with the

non-interacting value. Nevertheless,
one can see that the theory and Monte Carlo simulations

are in good agreement.

Figure 5 shows the temperature dependence of the zero-frequency staggered spin susceptibil-
ity for the same filling and interaction as in the previous figure. Symbols represent Monte Carlo

simulations from references [53, 99j, the solid line is for our theory while dotted and dashed

lines are for two versions of FLEX. Surprisingly, the fully conserving FLEX theory, (dashed
line) compares worse with Monte Carlo data than the non-conserving version of this theory
that neglects the so-called Aslamasov-Larkin diagrams (dotted line). By contrast, our theory

is in better agreement with the Monte Carlo data than FLEX for the staggered susceptibility

xsp (q
=

(x, x)
,

i~an
=

0), and at the same time it agrees exactly with the conservation law that

states that xsp,ch(q
=

0, i~an # 0)
=

0.

Finally, Figure 6 shows the double occupancy (n~n~) as a function of filling for various

values of U. The symbols again represent Monte Carlo data for T
=

1/6, and the lines are

the results of our theory. Everywhere the agreement is very good, except for
n =

1, U
=

4. In

the latter case, the system is already below the crossover temperature Tx to the renormalized

classical regime. As explained in Section 7, the appropriate procedure for calculating double

occupancy in this case is to take for (n~n~) its value (dotted line) at Tx instead of using the

ansatz equation (40). In any case, the difference is not large.
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Fig. 4. Comparisons between Monte Carlo simulations [99] and our theory for the spin susceptibility
at Q

"
IT, x)

as a function of Matsubara frequency. The temperature is T
=

0.25, and the system
size 8 x 8. The factor 1/2

on the vertical axis is due to the fact that the susceptibility in [99] is x+-

a quantity that is by definition twice smaller then ours and that of [53].

Fig. 5. Comparisons between the Monte Carlo simulations (BW) and FLEX calculations presented
in Figure 19 of reference [53] and our theory for the spin susceptibility at Q

"
lx, x) as a

function of

temperature at zero Matsubara frequency. The filled circles (BWS)
are from reference [99].
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4 where the dotted line shows the results of our

theory at the crossover temperature T
=

Tx.
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4.1.2. Single-Particle Properties. Figure 1a of reference [30j shows G(k,7) for filling

n =
0.875, temperature T

=
0.25 and U

=
4 for the wave vector on the 8 x 8 lattice which is

closest to the Fermi surface, namely (x, 0). Our theory is in agreement with Monte Carlo data

and with the parquet approach [53j but in this regime second-order perturbation theory for the

self-energy gives the same result. Surprisingly, FLEX is the only theory that disagrees signifi-
cantly with Monte Carlo data. The good performance of perturbation theory (see also [54j) can

be explained in part by compensation between the renormalized vertices and susceptibilities
(~sp < U, Xsp(~) > X0(~)i Uch > U, Xch(~) ~ X0(~)).

We have also calculated Re(E (ikn) likn) and compared with the Monte Carlo data in Fig-

ure 2a of reference [52] obtained at n =
0.87, U

=
4, fl

=
6. Our approach agrees with Monte

Carlo data for all frequencies, but again second-order perturbation theory gives similar results.

4.2. CLOSE TO CROSSOVER TEMPERATURE TX AT HALF-FILLING

4.2.1. Two-Particle Properties. The occurrence of the crossover temperature Tx at half-

filling is perhaps best illustrated in the upper part of Figure 7 by the behavior of the static

structure factor Ssp (x, x) for U
=

4 as a function of temperature. When the correlation length
becomes comparable to the size of the system used in Monte Carlo simulations [55j, the static

structure factor starts to increase rapidly, saturating to a value that increases with system
size. The solid line is calculated from our theory for an infinite lattice. The Monte Carlo

data follow our theoretical curve (solid line) until they saturate to a size-dependent value.

The theory correctly describes the static structure factor not only above Tx but also as we

enter the renormalized classical regime at Tx. Analytical results for this regime are given in

Section 5.1.i. Note that the RPA mean-field transition temperature for this value of U is more

than three times larger than Tx
+~

0.2. The size-dependence of Monte Carlo data for Ssp (q)
at all other values of q # (x, x) available in simulations is negligible and our calculation for

infinite system reproduces this data (not shown).

4.2.2. Single-Particle Properties. Equal-time (frequency integrated) single-particle proper-
ties are much less sensitive to precursor effects than dynamical quantities as we now proceed to

show. For example,
n

(k)
=

G (k, 0~ is a sum of G (k, ikn) over all Matsubara frequencies. We

have verified (figure not shown) that ( ~~~ nka0~ek/0k] obtained from Monte Carlo simula-

tions [56j is given quite accurately by either second-order perturbation theory or by our theory.
This has very important consequences since, for this quantity, the non-interacting value differs

from second-order perturbation theory by at most 15%. This means that the numerical value

of the right-hand side of the f sum-rule (Eq. (A.22)) is quite close to that obtained from the

left-hand side using our expression for the spin and charge susceptibility.
One can also look in more details at n

(k) itself instead of focusing on a sum rule. Figure 8

shows a comparison of our theory and of second order perturbation theory with Monte Carlo

data for
n

(k) obtained for a set of lattice sizes from 6 x 6 to 16 x 16 at n =
1, T

=
1/6, U

=
4.

Size effects appear unimportant for this quantity at this temperature. These Monte Carlo data

have been used in the past [57j to extract a gap by comparison with mean field SDW theory.
Our theory for the same set of lattice sizes is in excellent agreement with Monte Carlo data

and predicts a pseudogap at this temperature, as we will discuss below. However, for available

values of k on finite lattices, second order perturbation theory is also in reasonable agreement
with Monte Carlo data for

n
(k). Since second order perturbation theory does not predict a

pseudogap, this means that n
(k) is not really sensitive to the opening of a pseudogap. This

is so both because of the finite temperature and because the wave vectors closest to the Fermi

surface are actually quite far on the appropriate scale. For this filling, the value of n
(k) is

fixed to 1/2
on the Fermi surface itself.
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Fig. 7. The upper part of the figure, adapted from reference [29], shows the temperature dependence
of Ssp(«, x) at half-filling n =

1. The solid line is our theory for an infinite system while symbols are

Monte Carlo data from reference [56]. The bottom part of the figure, adapted from reference [30],

shows the behavior of zfT)
=

-2G(kF, fl/2) in equation (49),
as a

function of temperature as obtained

from Monte Carlo [53] simulations (symbols), from second order pertrubation theory (dashed line) and

from our theory for an infinite system (solid line) and for a 16 x 16 lattice (dashed line).

It is thus necessary to find
a

dynamical quantity defined
on

the Fermi surface whose tem-

perature dependence will allow us to unambiguously identify the pseudogap regime in both

theory and in Monte Carlo data. The most dramatic effect is illustrated in the lower part of

Figure 7 where
we plot the quantity 2 (T) defined by [30, 58]

1jT)
=

~2G jk~, p/2)
=

j ) Aj)j'jj~ j49)

The physical meaning of this quantity I(T) is that it is an average of the single-particle
spectral weight A (kF,uJ) within T m

1/fl of the Fermi level (~a =
0). When quasiparticles

exist, this is the best estimate of the usual zero-temperature quasiparticle renormalization

factor z e 1/(1- 0E/0~a) that can be obtained directly from imaginary-time Monte Carlo

data. For non-interacting particles £ (T) is unity. For a normal Fermi liquid it becomes equal
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Fig. 8. Occupation number n(k)
as a function of wave vector k at half-filling for T

=
1/6, U

=
4,

and system sizes 6 x 6 to 16 x 16. The symbols are Monte Carlo results from reference [57] while the

solid line is our theory and the dotted line is the prediction from second order perturbation theory.
The dashed line shows the result for U

=
0 as a reference.

to a constant less than unity as the temperature decreases since the width of the quasipartide
peak scales as

T~ and hence lies within T of the Fermi level. However, contrary to the usual

z a if (1- 0E/0~a) this quantity gives an estimate of the spectral weight A (kF, ~a) around the

Fermi level, even if quasiparticles disappear and a pseudogap forms, as in the present case, (see
Sect. 5).

One can clearly see from the lower part of Figure 7 that while second-order perturbation
theory exhibits typical Fermi-liquid behavior for 2(T), both Monte Carlo data [53j and a

numerical evaluation of our expression for the self-energy lead to a rapid fall-off of I (T) below

Tx (for U
=

4, Tx " 0.2 [29j). The rapid decrease of I (T) clearly suggests non Fermi-liquid
behavior. We checked also that our theory reproduces the Monte Carlo size-dependence. This

dependence is explained analytically in Section 5.1.2. In reference [30] we have shown that at

half-filling, our theory gives better agreement with Monte Carlo data [53] for G (kF,7) than

FLEX, parquet or second order perturbation theory.
To gain a qualitative insight into the meaning of th% drop in I (T), we use the analytical

results of the next section to plot in Figure 9 the value of A (kF, ~a). This plot is obtained by
retaining only the contribution of classical fluctuations (Eq. (59)) to the self-energy. One sees

that above Tx, there is a quasiparticle but that at T
+~

Tx a minimum instead of a maximum

starts to develop at the Fermi surface ~a =
0. Below Tx, the quasipartide maximum is replaced

by two peaks that are the precursors of antiferromagnetic bands. This is discussed in detail in

much of the rest of this paper.

4.3. PHASE DIAGRAM. The main features predicted by our approach for the magnetic phase
diagram of the nearest-neighbor hopping model have been given in reference [29]. Needless to

say, all our considerations apply in the weak to intermediate coupling regime. Note also that

both quantum critical and renormalized classical properties of this model have been studied

in another publication [33j. The shape of the phase diagram that
we

find is illustrated in

Figure 10 for U
=

2.5 and U
=

4.
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Fig. 9. Qualitative sketch of the spectral weight at the Fermi wave vector at half-filling for three

temperatures. This plot is obtained by retainig only the classical contribution to the self-energy using

parameters corresponding to the typical U
=

4 of Monte Carlo simulations. The top plot is for T > Tx,
the middle one for T

+~

Tx and the bottom one for T < Tx. The precursors of antiferromagnetic bands

would look like this last figure.

Fig. 10. Crossover temperature Tx as a function of filling for U
=

4 and U
=

2.5. On this crossover

line, f~ is enhanced by a factor of 500 over the bare value. Filled symbols indicate that the crossover is

at the antiferromagnetic wave vector, while open symbols indicate
a crossover at an incommensurate

wave vector. Reproduced with permission from reference [loo].

At zero temperature and small filling, the system is a paramagnetic Fermi liquid, whatever

the value of the interaction U (< W). Then, as one moves closer to half-filling, one hits a quan-

tum critical point at a value of filling nc. Since, Usp in our theory saturates with increasing U,

the value of nc is necessarily larger than about nc(U
=

oo)
=

0.68. At this point, incommensu-

rate order sets in at a wave vector (qc, x)
or at symmetry-related points. Whatever the value

of U, the value of qc is contained [29] in the interval 0.74x < qc < x, increasing monotonously
towards 0.74x as U increases. Since our approach applies only in the paramagnetic phase, at

zero temperature we cannot move closer to half-filling. Starting from finite-temperature then,
the existence of long-range order at low temperature is signaled by the existence of a crossover

temperature Tx In, U) below which correlations start to grow exponentially. We have already
discussed the meaning of Tx In, U) at half-filling. This crossover temperature becomes smaller
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and smaller as one moves away from half-filling, until it reaches the quantum-critical point

that we just discussed. The correlations that start to grow at Tx In, U) when n =
1 are at

the antiferromagnetic wave vector, and they stay at this wave vector for a range of fillings n.

Finally, at some filling, the correlations that start to grow at Tx In, U) are at an incommensu-

rate value until the quantum-critical point is reached.

Note that the above phase diagram is quite different from the predictions of Hartree-Fock

theory mostly because of the strong renormalization of Usp. This quantitative change leads

to qualitative changes in the Hartree-Fock phase diagram since, for example, Stoner ferro-

magnetism never occurs in our picture. While the existence of ferromagnetism in the strong

coupling limit has been proven only recently [59], the absence of Stoner ferromagnetism in

the Hubbard model was already suggested by Kanamori [2j a long time ago and was verified

by more recent studies [44, 60, 61j. More relevant to the present debate though, is the fact

that SDW order persists away from half-filling for a
finite range of dopings. While this is

in agreement with slave-boson approaches [62j and studies [63] using the infinite-dimension

methodology [11j, it is in clear disagreement with Monte Carlo simulations [64j. Our approach
certainly fails sufficiently below Tx, but given the successes described above, we believe that it

can
correctly predict the exponential growth of fluctuations at Tx. It would be difficult to imag-

ine how one could modify the theory in such a way that the growth of magnetic fluctuations

does not occur even at incommensurate wave vectors. Also, such an approach would also need

to stop the growth of fluctuations that we find as we approach the quantum critical point along
the zero temperature axis, from the low-filling, paramagnetic side, where Tx In < nc, U)

=
0.

It could be that Monte Carlo simulations [64j fail to see long-range order at zero temperature

away from half-filling because at zero temperature, in the nearest-neighbor model, this order

has a tendency to being incommensurate everywhere except at n =
1. Furthermore, as we saw

above, this incommensuration is in general far from one of the available wave vectors on an

8 x 8 lattice. It comes close to (0.75x, x) only for the largest values of U available by Monte

Carlo. Hence, incommensurate order on small lattices is violently frustrated not only by the

boundary conditions, but also by the fact that there is no wave vector on what would be the

Fermi surface of the infinite system. This means that the electron-electron interaction scatters

the electrons at wave-vectors that are not those where the instability would show up, rendering
these scatterings not singular. This is clearly an open problem.

5. Replacement of Fermi Liquid Quasiparticles by a Pseudogap in Two Dimensions

below Tx

One of the most striking consequences of the results discussed in the context of Monte Carlo

simulations is the fall of the spectral weight below the temperature Tx where antiferromag-
netic fluctuations start to grow exponentially in two dimensions. We have already shown in a

previous publication [30j that this corresponds to the disappearance of Fermi liquid quasipar-
ticles at the Fermi surface, well above the zero temperature phase transition. We also found

that, simultaneously, precursors of the antiferromagnetic bands develop in the single-particle

spectrum. Given the simplicity of our approach, it is possible to demonstrate this phenomenon
analytically. This is particularly important here because size effects and statistical errors make

numerical continuation of the Monte Carlo data to real frequencies particularly difficult. Such

analytic continuations using the maximum entropy method [55] have, in the past, lead to a

conclusion different from the one obtained later using singular value decomposition [65].
In this section then, we will consider the conditions for which Fermi liquid quasiparticles can

be destroyed and replaced by a pseudogap in two dimensions. The major part of this section

will be concerned with the single particle pseudogap and the precursors of antiferromagnetic
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bands in the vicinity of the zero temperature antiferromagnetic phase transition in the positive
U Hubbard model. However, it is well known that the problem of superconductivity is formally
related to the problem of antiferromagnetism, in particular at half-filling where the nearest-

neighbor hopping positive U Hubbard model maps exactly onto the nearest-neighbor negative
U Hubbard model. The corresponding canonical transformation maps the q =

(x, x) spin cor-

relations of the repulsive model onto the q =
o pairing and q =

(x, x) charge correlations of the

attractive model while the single-particle Green's functions of both models are identical. Thus

all our results below concerning the opening of the pseudogap in A (kF,~a) in the repulsive
U half-filled Hubbard model are directly applicable to the attractive U model at half-filling,
the only difference being in the physical interpretation. While in the case of repulsive inter-

action the pseudogap is due to the critical thermal spin fluctuation, in the case of attractive

interactions it is, obviously, due to the critical thermal pairing and charge fluctuations. Away
from half-filling the mapping between two models is more complicated and the single particle
spectra in the pairing pseudogap regime A (kF, ~a) have important qualitative differences with

the single particle spectra in the magnetic pseudogap regime. However, even in this case there

are very useful formal similarities between two problems so that in Section 5.6 we will give

some simple analytical results for the self-energy in the regime dominated by critical pairing
fluctuations.

The problem of precursor effects in the repulsive Hubbard model has been first studied by
Kampf and Schrieffer [35]. Their analysis however was done at zero temperature and although
the precursor effect that they found, called "shadow bands", looks similar to what we find,
there are a number of important differences. For example, they find

a quasipartide between the

precursors of antiferromagnetic bands, while we do not. Also, one does not obtain precursors at

zero temperature when one uses our more standard expression for the dynamical susceptibility
instead of the phenomenological form xKshr "

f(q)g(~a) that they use. The physical reason

why a function that is separable in both momentum and frequency, such as xKshr, leads to

qualitatively different results than the conventional one has been explained in reference [36].
The microscopic justification for xKshr is unclear. We comment below on this problem as well

as on some of the large related literature that has appeared lately.
Repeating some of the arguments of reference [30j, we

first show by general phase space

arguments that the feedback of antiferromagnetic fluctuations on quasiparticles has the po-

tential of being strong enough to destroy the Fermi liquid only in low enough dimension, the

upper critical dimension being three. Then we go into more detailed analysis to give explicit
analytic expressions for the quasi-singular part of the self-energy, first in Matsubara frequency.
The analysis of the self-energy expression directly in real-frequencies is in Appendix (D). The

latter analysis is useful to exhibit in the same formalism both the Fermi liquid limit and the

non-Fermi liquid limit.

For simplicity we give asymptotics for
n =

i at the Fermi wave vector, where e(kF)
=

0,
but similar results apply for

n
# as long as there is long-range order at T

=
0 and one is

below Tx. This case is also discussed briefly, but for more details the reader is referred to

reference [36].

S-I- UPPER CRITICAL DIMENSION FOR THE DESTRUCTION OF QUASIPARTICLES BY

CRITICAL FLUCTUATIONS. Before describing the effect of spin fluctuations
on quasipar-

ticles, we first describe the so-called renormalized classical regime of spin fluctuations that

precedes the zero-temperature phase transition in two dimensions.

5.I. I. Renormalized Classical Regime of Spin Fluctuations- The spin susceptibility xsp (q, 0)
below Tx is almost singular at the antiferromagnetic wave vector Q2

"
lx, x) because
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the energy scale dU w Umi,c Usp (Umi,c + 2/xo(Q,0)) associated with the proximity to

the SDW instability becomes exponentially small [29j. This small energy scale, dU « T, leads

to the so-called renormalized classical regime for the fluctuations [66]. In this regime, the

main contribution to the sum over Matsubara frequencies entering the local-moment sum rule

(Eq. (38)) comes from iqn
=

0 and wave vectors (q- Q)~ < (~2
near Q. Approximating

xsp (q, 0) by its asymptotic form

x~~jq, o) >

]
2~

~~

(so)

where Q2
#

lx, x), Q3
=

lx, x, x) and

jj
~

~~~~ ~~~ ( W IO (Usp/~~)~~~ ~~~~2Xo(Q) ~q$
q=Qd

we obtain, in d dimensions

~~ /j( / ~~~d
q2

/(~2 ~~~~

where a~
a n 2(n~n~) C < 1 is the left-hand side of equation (38) minus corrections

C that come from the sum over non-zero Matsubara frequencies (quantum effects) and from

(q Q)~ » (~~ There is an upper cutoff to the integral which is less than or of the order of

the Brillouin zone size. The important point is that the left-hand side of the above equation
(Eq. (52)) is bounded and weakly dependent on temperature. This implies, as discussed in

detail in reference [33], that the above equation leads to critical exponents for the correlation

length that are in the spherical model (n ~ cc) universality class. For our purposes, it suffices

to notice that the integral converges even when ( ~ oo in more than two dimensions. This leads

to a finite transition temperature. In two dimensions, the transition temperature is pushed
down to zero temperature and, doing the integral, one is left with a correlation length ( that

grows exponentially below Tx

f
r~ exp (xa~fl (~ IS 3)

The important consequence of this is that, below Tx, the correlation length quickly becomes

larger than the single-particle thermal de Broglie wave length (th
"

vF/ (XT). This has dra-

matic consequences on quasiparticles in two dimensions.

5.1.2. Effect of Critical Spin Fluctuations on Quasiparticles. When the classical fluctuations

(iqn
=

0) become critical, they also give, in two dimensions, a dominant contribution to the self-

energy at low freq~ency. To illustrate what we mean by the classical frequency contribution,
neglect the contribution of charge fluctuations and single out the zero Matsubara frequency
component from equation (46) to obtain

~ ~~'~~"~ ~ ~"~~ ~
~ ~~~~~ ~~'~~

ikn

ik+q

Here, ik is
easured relative to the

chemical potential. The last term is the
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be done before the analytical continuation of ikn to real frequencies otherwise this analytical
continuation would involve going through complex plane poles of the other terms entering

the full sum over iqn. The contribution from classical fluctuations, iqn
=

0, does not have

this problem and furthermore it has the correct asymptotic behavior at ikn ~ cc. Hence the

contribution of classical fluctuations to the retarded self-energy CR (k, ~a) can be obtained from

the iqn
=

0 term by trivial analytical continuation ikn ~ ~a +10. Note also that the chemical

potential entering G(°I in the self-energy formula is /1o = lL =
0 at half-filling.

Doing the same substitution as above for the asymptotic form of the spin susceptibility
(Eq. (50)) in the equation for the self-energy (Eq. (46)) one obtains the following contribution

to E from classical fluctuations

~~~ ~~'~~"~ ~
/~ / ~~~d

q2
/(~2

ikn
ik+/-

q v~~~' ~~~~

where we have expanded ik+Q+q Cf ik+Q + q v~ ~~.
In the case that we consider, namely

half-filling and k
=

kF, we have /1o " lL =
0 and ikp+Q

=
0. The key point is again that in

two dimensions the integral in this equation (Eq. (55)) is divergent at small q for (
= oo. In

a Fermi liquid, the imaginary part of the self-energy at the Fermi surface (~a =
0) behaves as

E((kF, 0)
+~

T2. Here instead, we find a singular contribution

E((kF, 0) o<
T
/ d~~~qi

~ ~
o<

Tf~~~ (56)
qi + f~

that is proportional to ( in d
=

2 and hence is very large E((kF, 0) m
-U(/((thf()

> 1 when

the condition ( > (th is realized. By contrast, for d
=

3, E((kF,0)
+~

-U(In() / (f](th),
so that the Fermi liquid is destroyed only in a very narrow temperature range close the N6el

temperature TN- Dimensional analysis again suffices to show that in four dimensions the

classical critical fluctuations do not lead to any singular behavior. Three dimensions then

is the upper critical dimension. As usual, logarithmic corrections exist at the upper critical

dimension. The effect will be very small in three dimensions not only because it is logarithmic,
but also because the fluctuation regime is very small, extending only in a narrow temperature

range around the N6el temperature. By contrast, in two dimensions the effect extends all the

way from the crossover temperature, Tx, which is of the order of the mean-field transition

temperature, to zero temperature where the transition is.

Wave vectors near Van Hove singularities are even more sensitive to classical thermal fluctua-

tions. Indeed, near this point the expansion should be of the type ekv~+q+(«,«) o<
q( q(. This

leads, in two dimensions, to even stronger divergence in E((kF, 0) o<
T(~ fdq~ [(2q( + 1) <q~

) ~~

[36j. Even if the logarithmic divergence is cutoff the prefactor is larger by a factor off compared
with points far from the Van Hove singularities.

5.2. PREcuRsoRs OF ANTIFERROMAGNETIC BANDS IN Two DIMENSIONS. Let us analyze

in more details the consequences of this singular contribution of critical fluctuations to the

self-energy in two dimensions. The integral appearing in the two-dimensional version of the

expression for the self-energy (Eq. (55)),
can be performed exactly [67j

u ujn ~ ~ fi
~ ~~~'~~~~

2 ~8x(] k] v)(~2
~~ ~

k) u)(~2
~ ~ ~~~~

Here R is a regular part.
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As a first application, we can use this expression to understand qualitatively both the tem-

perature and size dependence of the Monte Carlo data for I(T) appearing in Figure 2 of

reference [30j or in the lower panel of Figure 7. Indeed, I(T)
can be written as the alter-

nating series -2G (kF, fl/2)
=

-4T ~~~~ (-1)" / (kn E" (kF, ikn)). Even though the series

converges slowly, in the beginning of the renormalized classical regime and for qualitative

purposes it suffices to use the first term of this series. Then, using the expressions for the

correlation length (Eq. (53) and for the self-energy (Eq. (57)),
one finds

jn2 fi
~~~~

~ a~UUsp /~ ~~ ~ ~ ~~' ~~~~

On the infinite lattice, f starts growing exponentially below Tx, quickly becoming much larger
than (th. This implies I(T)

c~
T~. On finite lattices (

+~

/R, which explains the size effect

observed in Monte Carlo I.e. smaller I for smaller size N, ((th(Tx)
+~

5 for Fig. 7).

The analytic continuation of E (kF, ikn) in equation (57) is

~~ ~~~'~~ ~
8gr(2

~~
~2 j-2

~~ ~ 2 ~(-2 ~l~
~' ~~~~

0 F

~ ~

For the wave vectors k away from the Fermi surface the anomalous contribution due to the

classical fluctuation has a similar form but with
~a

replaced by (~a ik+Q). when T > Tx, the

correlation length ( becomes of order unity and, as we will show in Appendix D, the regular

part R dominates so that one recovers standard Fermi liquid behavior. Furthermore, even

for large correlation length the regular part cannot be neglected when ~a » T since the term

exhibited here becomes small. Hence we concentrate on small frequencies and on T < Tx

where the regular part R can be neglected.

Exactly at the Fermi level (~a =
0) we recover the result of the previous section, namely that

the imaginary part of the self-energy for ( > (th increases exponentially when the temperature
decreases, E"(kF, 0)

+~

U(/((th(()
o< T( o< T exp (xfi2((Usp /T). The above analysis shows by

contradiction that in the paramagnetic state below Tx there is no Fermi-liquid quasiparticle at

kF, Yet the symmetry of the system remains unbroken at any finite T. Indeed, starting from

quasipartides (Gf~)
we found that as temperature decreases, E((kF, 0) increases indefinitely

instead of decreasing, in direct contradiction with the starting hypothesis. By contrast, a self-

consistent treatment where we use in equation (46) the full G~ with a large E((kF, 0) shows

that, for T < Tx, E((kF,0) remains large in d
=

2 and does not vanish as T ~ 0, again
confirming that the system is not a Fermi liquid in this regime (See however Sect. 6.2 below).
Strong modifications to the usual Fermi liquid picture also persist away from half-filling as long

as
Tx(n) > 0, as we discuss later.

One can check that the large Xi (kF, 0) in two dimensions (for T < Tx) leads to a pseudogap
in the infinite lattice, contrary to the conclusion reached in reference [55j. Indeed, instead of

a
quasiparticle peak, the spectral weight A (kF, ~a) e

-2ImGR (kF, ~a) has a minimum at the

Fermi level ~a =
0 and two symmetrically located maxima away from it. More specifically, for

vF/( < (~a( < T we have

2 i~ui
uT/18(1)

j60)~ l~~'~~ ~

[~u2
uu~pa2/4]2 + IUT/18fi)i~
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The maxima are located at ~a =

+@§fi12. These two maxima away from zero fre-

quency correspond to precursors of the zero-temperature antiferromagnetic (or SDW) bands

(shadow bands [35j). There is no quasiparticle peak between these two maxima when ( > (th.
This remains true in the case of no perfect nesting as well [36j (see also Sect. 5.5). We note

that this is different from the results of the zero-temperature ((th
"

oo) calculations of Kampf
and Schrieffer [35j that were based on a phenomenological susceptibility separable in momen-

tum and frequency xK.sh. "

f(q)g(~a). As was explained in reference [36j, the existence of

precursors of antiferromagnetic bands (shadow bands in the terminology of Ref. [35j) at zero

temperature is an artifact of the separable form of the susceptibility. The third peak between

the two precursors of antiferromagnetic bands that was found in reference [35j is due to the

fact that at zero temperature the imaginary part of the self-energy E"(k,~a
=

0,T
=

0) is

strictly zero at all k. In our calculations, precursor bands appear only at finite tempera-

ture when the system is moving towards a zero-temperature phase transition. In this case,

the imaginary part of the self-energy goes to infinity for k on the "shadow Fermi surface"

limT_o E"(kF + Q, 0) o< T( o< T exp (Cst IT) ~ oo and to zero at all other wave vectors. This

is consistent with the SDW result which we should recover at T
=

0. Indeed, the latter result

can be described by the self-energy ER(k, ~a) =

A~ /(~a @(k + Q) + I~/) which implies that the

imaginary is a delta function E"(k,~a)
=

-xd(~a @(k + Q)) instead of zero at all k as in a

Fermi liquid. We note also that analyticity and the zero value of E"(k,
~a =

0) in reference [35j
automatically implies that the slope of the real part of the self-energy 0E'(k, ~a) /0~a(~=o is neg-

ative. By contrast, in our case
0E'(kF + Q, ~a) /0~a(w=o is positive and increases with decreasing

temperature, eventually diverging at the zero-temperature phase transition. The real part of

the self-energy obtained using the asymptotic form equation (59) is at the bottom left corner

of Figure 11 with the corresponding spectral function A (kF, ~a) shown above it. In Figure 9

we have already shown the evolution of the spectral function A (kF, w) with temperature. The

positions of the precursors of antiferromagnetic bands scale like %/2 which itself, at small cou-

pling in two dimensions, scales like the mean field SDW transition temperature or gap (see
Appendix B of Ref. [33j). As U increases, the predicted positions of the maxima obtained

from the asymptotic form (Eq. (60)) will be less accurate since they will be at intermediate

frequencies and the regular quantum contribution to the self-energy will affect more and more

the position of the peaks.

We have predicted [30j that the exponential growth of the magnetic correlation length (
below Tx will be accompanied by the appearance of precursors of SDW bands in A (kF,w)
with no quasipartide peak between them. By contrast with isotropic materials, in quasi-

two-dimensional materials this effect should exist in a wide temperature range, from Tx

(Tx « U < EF) to the N6el temperature TN (Tx TN
r~

10~ K).

5.3. CONTRAST BETWEEN MAGNETIC PRECURSOR EFFECTS AND HUBBARD BANDS.

Although there are some formal similarities between the precursors of antiferromagnetic bands

and the Hubbard bands (see Sect. 6) we would like to stress that these are two different physi-
cal phenomena. A clear illustration of this is when a four peak structure exists in the spectral

function A(k, w), two peaks being precursors of antiferromagnetic bands, and two peaks be-

ing upper and lower Hubbard bands. The main differences between these bands are in the

k-dependence of the self-energy E(k, ~a) and in the conditions for which these bands develop.

Precursors of antiferromagnetic bands appear even for small U in the renormalized classical

regime T < Tx, and their dispersion has the quasi-periodicity of the magnetic Brillouin zone.

In contrast, upper and lower Hubbard bands are high~frequency features that appear only for

sufficiently large U > W and T < U and have the periodicity of the whole Brillouin zone

in the paramagnetic state. Furthermore, the existence of Hubbard bands is not sensitive to
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dimensionality so they exist even in infinite dimension where the self-energy does not depends

on momentum k at all. In contrast, the upper critical dimension for the precursors of antifer-

romagnetic bands is three (see Sect. 5.4).
In our theory the precursors of antiferromagnetic bands come from the almost singular behav-

ior of the zero Matsubara frequency susceptibility xsp (q, 0), which leads to the characteristic

behavior of E(k, ~a) =
A(~_~ / (~a e(k + Q)) with A(~

~ o<
Tln(~). On another hand, the Huf-

bard bands appear in our theory because the high-frequency asymptotics E(k,~a)
o<

Al
~

/~a
has already set in for

~a > W, and this leads to the bands at ~a =
+AH.B for A > W (see

for more details Sect. 6). The coefficient A[_~ is determined by the sum over all Matsubara

frequencies and q: /h[
~ =

TUN~~ £~
~

[Uspxsp(q, iwn) + Uci~xch(q, i~an)].
It was noticed in Monte Carlo simulations [68, 78] that for intermediate U, the spectral weight

has four maxima. We think that peaks at ~a -~
+U/2 are Hubbard bands, while the peaks closer

to w =
0 are precursors of antiferromagnetic bands. If this interpretation is correct, then the

latter peaks should disappear with increasing temperature when ( becomes smaller than (th,
while the Hubbard bands should exist as long as T < U.

While the location of the precursors of antiferromagnetic bands should be accurate in our

theory, the same will not be true for the location of the upper and lower Hubbard bands. This

is because our theory is tuned to the low frequency behavior of the irreducible vertices and does

not have the right numerical coefficient in the high-frequency expansion of the self-energy, as

shown in equation (E.10) below. Nevertheless, our analytical approach to date is the only one

that agrees at least qualitatively with the finding that precursors of antiferromagnetic bands

as well as upper and lower Hubbard bands can occur simultaneously. Note however that a four

peak structure at n =
1 was also obtained in reference [70] but the physical difference between

Hubbard bands and precursors of antiferromagnetic bands was not clearly spelled out. We

comment on recent findings of the FLEX approach in Section 6 [37, 38, 69].

5.4. CAN THE PRECURSORS OF ANTIFERROMAGNETIC BANDS EXIST IN THREE

DIMENSIONS?. In two dimensions, the finitertemperature phase is disordered, but the zero-

temperature one is ordered and has a finite gap, except at the quantum critical point away

from half-filling. Hence, precursors of antiferromagnetic bands that appear in the paramagnetic

state do so with a finite pseudogap which appears consistent with the finite zero-temperature

gap towards which the system is evolving. By contrast, in higher dimensions the gap opens-up
with a zero value at the transition temperature. Based on this simple argument, one does not

expect precursors of antiferromagnetic bands in dimensions larger than two (see, however, be-

low). Here, we
will also show that there is no phase space reasons for the existence of precursors

of the antiferromagnetic bands when d > 2.

We have already shown that in three dimensions the quasiparticle at the Fermi level at ha%-

filling will have an imaginary part of the self-energy that grows like TIn(, an effect that is

much weaker than T( found in two dimensions. Despite this small effect, in three dimensions

the classical fluctuations do not affect the self-energy for energies larger than vF(~~. Indeed,

consider the contribution of classical thermal fluctuations to the self-energy (Eq. (55)). In two

dimensions, we have for (w( > vF(~~

~ g2d j~ r~

~~ ~~~ jfii)
~ ~' ~'°~ 2jj

/
(2~r)2 q2 + j-2 w'

which allows
us to recover the approximate formula for the spectral weight given in equa-

tion (fi0) above. In three dimensions however, this approximation cannot be done because

the integral is not dominated by small values of q. To see this explicitly in three dimensions,
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consider the contribution of classical thermal fluctuations

~~/ (kF> " + ill) Q
~( / ~~(( j d~~l I 1

~~° ~~ (27r)~ ql + q2 +1-2
w + in + v~qjj

(fi2)

~
ij 7r /

~~ ~~ l~~i~/~ ~

uJ +

q~+
vfqjj

~~~~

As long as (w( > vF(~~, the logarithmic singularity that develops at qjj =
0 when (~~ ~ 0

is integrable and gives no
singular contribution to the selLenergy. Hence, unusual effects of

classical thermal fluctuations are confined to the range of frequencies (w( < vF(~~. At higher
frequencies, (w( > vF(~~, all bosonic Matsubara frequencies in equation (4fi) need to be taken

into account and from phase space considerations alone there is no reason for the existence of

precursors of antiferromagnetic bands in the 3D case. However, the existence of such bands in

3D cannot be completely excluded based on dimensional arguments alone because they occur

at finite frequencies and strictly speaking they are non-universal. In particular, as discussed in

reference [33], one expects to see precursors that look like 2D antiferromagnetic bands (shadow
bands) in the vicinity of the finite temperature phase transition in strongly anisotropic quasi-

two-dimensional material. On the other hand, such bands do not generically exist in the

almost isotropic 3D case, because even in 2D the conditions for such bands are quite stringent.
The difference between shadow bands and Hubbard bands has been discussed in the previous
subsection and the discussion of non-analyticities sometimes encountered in Fermi liquid theory

can be found in Appendix D.

5.5. AWAY FROM HALF-FILLING. Close to half-filling, in the nearest-neighbor hopping
model, one can enter a renormalized classical regime with large antiferromagnetic correlation

length, even though the zero-temperature Fermi surface properties may favor incommensurate

correlations. This renormalized-classical regime with large (7r,7r) correlations occurs when

Tx » ~to. By arguments similar to those above, one finds that in this regime one still has

precursors of antiferromagnetic bands. However, the chemical potential is in or near the lower

precursor band and the system remains metallic. The high-frequency precursor appears only
below Tx at w m @k+Q.

With second-neighbor hopping, the points of the Fermi surface that intersect the magnetic
Brillouin zone

(hot spots) behave as does the whole Fermi surface of the nearest-neighbor
(nested)

case discussed above. These questions were discussed in detail in reference [3fi].

5.fi. THE PAIRING PSEUDOGAP AND PRECURSORS OF SUPERCONDUCTING BANDS IN TWO

DIMENSIONS. As we have already pointed out above, the results for the single particle

spectra obtained for the half-filled nearest-neighbor hopping repulsive Hubbard model can be

directly applied to the corresponding attractive Hubbard model, in which case the pseudogap

opens up in the renormalized classical regime of pairing and charge fluctuations. Away from

half-filling, the symmetry between charge and pair correlations is lost and pair fluctuations

dominate, becoming infinite at the Kosterlitz-Thouless transition temperature. This temper-

ature is below the temperature at which the magnitude of the pair order parameter acquires
rigidity despite the randomness of its phase. One expects then that a pseudogap will also open

in this case when the correlation length for pairing fluctuations becomes larger than the single-
particle thermal de Broglie wavelength (paj~j~g > (th

=
vF/T. This should occur below the

crossover temperature to the renormalized classical regime of pairing fluctuations but above

the Kosterlitz-Thouless transition temperature.
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The quantitative microscopic theory for the negative U Hubbard model will be considered

in a separate publication. By contrast with all other sections of this paper, our considerations

here will be more phenomenological. Nevertheless, they will allow us to present some analytical
results for the self-energy obtained in the critical regime dominated by pairing fluctuations.

Details of the model should not be very important since we are in a regime where everything

is dominated by long wave length fluctuations.

The derivation of Z(k, uJ) in the pairing case is a straightforward extension of what we did

in the antiferromagnetic case
(see Sects. 5.1.2, 5.2 and Ref. [36]). In particular, in complete

analogy with the magnetic case, the main contribution to the self-energy in the critical regime

comes from the classical thermal fluctuations iq~
=

0. Assuming some effective coupling

constant g' between quasiparticles and pairing fluctuations, which in general can be momentum

dependent, one can write in the one loop approximation

~~' ~~'~~~~
'~

~~~~~~
/

(~/2 (p~ q2 ik~ +~-k+q ~~~~

Here ik is the electron dispersion relative to the chemical potential, and all factors in front

of integral are reabsorbed into the coupling constant g'. This expression is similar to the

expression (Eq. (55)) in the magnetic case but there are two important differences: I) instead

of ik+Q+q we have now I-k+qi ii ) there is no minus sign in front of I-k+q. The first difference

is due to the fact that superconductivity usually occurs with zero center of mass momentum

for the pair, and hence the pairing susceptibility in the normal state xp oc I /((p~ + q~) must

be peaked near q =
0, (the integration variable q in equation (55) was measured relative

to Q
= (7r, 7r)). The second difference comes from the fact that we are now considering the

contribution to Z coming from the particle-particle channel instead of the particle-hole channel.

Taking the integrals over q and using the fact that small q only will contribute we neglect the

q dependence of the coupling constant and obtain for the imaginary part of Eci the following
expression

E~~lk,")
~

~~~~l
(65)

4/(uJ + I-k) + v~ ~(p~

In the renormalized classical regime the pairing correlation length (p increases faster with

decreasing temperature than (th
=

vF/T. Consequently, E"(kF,0) tends to diverge with

decreasing temperature and a pairing pseudogap in the spectral function A(kF,uJ) opens up

over the complete Fermi surface, except maybe at a few points where g'(k)
=

0. This is

different from the antiferromagnetic case, where the pseudogap in A(kF
=

kh
sp.,

uJ) opens up

only when, so called, "hot spots" (@(kh
sp

+ Q)
=

@(kh.sp
=

0 exist in a given model [36].
The antiferromagnetic pseudogap opens everywhere on the Fermi surface only in the case of

perfect nesting, where all points on the Fermi surface are "hot spots".
The real part of the self-energy can be obtained front equation (65) using the Kraniers-Kronig

relation and has the forni:

g'(k)T UJ + E-k + (UJ + I-k)~ + U~ ~fp ~

~ ~~~ ~~

47r/(uJ + @-k)~ + v~ ~(p~
~~

uJ + I-k

(uJ
+ £-k)~ + v~ ~(p~

~~~~

To understand how precursors of the superconducting bands develop, let us look at E'(k,uJ)

at frequencies (uJ + I-k » v-k(j~ In thiq case, using inversion synimetry I-k
"

ik, one can

obtain front equation (66) the following asyniptotic forni

E'(k, uJ) m

j~~~ ~~~~~
(67)

~r UJ + Sk
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When, (p
mu

exp(const/T) (see, niore general case below) this forni of the self-energy leads

to the usual BCS result E'(k, uJ) m
A~ (k) /(uJ + @k) with the gap

A~ (k)
m

(g'(k)/27r)T In (p.
On the other hand, the iniaginary part E"(k, uJ), equation (65), vanishes everywhere in the

T
=

0 liniit, except when
uJ =

-£k where it beconies infinite. The results for E' and E"

can thus be conibined to write for the corresponding liniit of the retarded self-energy E~
=

A~ (k) /(uJ + £k + in). This liniit leads to the standard BCS expression for the nornial Green's

function when substituted back into the Dyson equation G~
=

I/ (uJ + in £k ER(k,uJ)).
Above the transition teniperature, the anomalous Green's function remains zero since there is

no broken syninietry. The qualitative picture for the developnient of the pairing pseudogap
and of the precursors of superconducting bands at k

=
kF is illustrated in Figure 9 and in the

left part of Figure 11. While in the case of niagnetic critical fluctuations these figures describe

the precursor effect in A(kF,uJ) for perfect-nesting or for the "hot spots" (when such points
exist), in the case of pairing fluctuations they describe the spectra for all kF and for all fillings
where the ground state is superconducting.

We need to coninient on a subtle difference between the antiferroniagnetic and the pairing

precursor effects in the single particle spectra. While the magnetic order paranieter has three

coniponents and can order only at zero temperature in the two-diniensional repulsive niodel,

away front half-filling in the attractive niodel the pairing order paranieter beconies the only
relevant order paranieter at low teniperature. Since it has only two coniponents, a finite

teniperature Kosterlitz-Thouless phase transition is then allowed in two diniensions. The

critical behavior in vicinity of this transition is given by (p oc
exp[const/(T TKT)~/~) instead

off oc
exp(const IT) as in the niagnetic case. To take this properly into account one would need

a treatnient of the probleni that is niore sophisticated than that given above. In particular,

one would have to take into account corrections to the siniple forni that we used for the pairing
susceptibility xp(q, 0) oc I /((p~ + q~). This Lorentzian forni of the susceptibility in the critical

reginie is strictly valid only in the n = oo liniit n is the nuniber of the coniponents of the

order paranieter) and is, clearly, a less accurate approxiniation in the case of pairing fluctuations

(n
=

2) than in the case of the antiferroniagnetic fluctuations (n
=

3). Nevertheless, we believe

that qualitatively the picture given above is correct for two reasons. First, because in the

Kosterlitz-Thouless picture the niagnitude of the order paranieter is locally non-zero starting

below a crossover teniperature Tx that is larger than the transition teniperature TKT. It is only

the phase that is globally decorrelated above TNT This nieans that locally the quasiparticles

are basically in a superconducting state even above TKT. A second reason to believe in the

precursor effects is that the superfluid density and the gap are finite as T ~ Tj~ and, hence,

the two peak structure in A(kF, uJ) exists even as the phase transition point is approached front

the low-temperature side. By analogy with the antiferroniagnetic case, this two peak structure

should not ininiediately disappear when one increases the teniperature slightly above TNT-

Finally, we point out that the precursor phenonienon described above has to be distin-

guished from, so-called, pre-formed pairs considered first by Nozibres and Schniitt-Rink [ill
(see also [72]). These pre-formed pairs exist in any dimension when the coupling strength is

sufficiently large, while the precursor effect considered above can be caused by arbitrarily small

attractive interactions but only in two dimensions. We think that recent Monte Carlo data [73]

on the negative U
=

-W/2 Hubbard model illustrates the opening of the single-particle pseu-

dogap due to critical fluctuations, rather than a strong-coupling effect. In these simulations,

the drop in the density of states at the Fermi level should be accompanied by a simultaneous

rapid increase of the pairing structure factor Sp(q =0, T). The latter must be exponential in

the infinite 2D lattice and a size analysis of Monte Carlo data similar to the one shown in

Figure 7 would be extremely helpful to clarify this issue.
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6. Absence of the Precursors of Antiferromagnetic Bands and Upper and Lower

Hubbard Bands in Eliashberg-Type Self-Consistent Theories

In this section, we explain why the theories that use self-consistent propagators but neglect the

corresponding frequency-dependent vertex corrections fail to see two important physical effects:

namely upper and lower Hubbard bands, as well as the precursors of antiferromagnetic bands

that we just discussed. The failure of this type of self-consistent schemes to correctly predict

upper and lower Hubbard bands has been realized a long tinie ago in the context of calculations

in infinite diniension ill, 74]. While
one niay brush aside this failure by clainiing that high-

energy phenomena are not so relevant to low-energy physics, we show that in fact these schemes

also fail to reproduce the low-energy pseudogap and the precursors of antiferromagnetic bands

for essentially the same reasons that they fail to see Hubbard bands. It is thus useful to start

by a discussion of the better understood phenomenon of upper and lower Hubbard bands and

then to move to precursors of antiferroniagnetic bands.

6.I. WHY ELIASHBERG-TYPE SELF-CONSISTENCY FOR THE ELECTRONIC SELF-ENERGY

KILLS HUBBARD BANDS. We first note that ordinary perturbation theory satisfies the

correct high-frequency behavior (Eq. (68)) for the self-energy naniely, for k~ » W

lint E~ (k, ik~)
=

Un-~ +
~~~~~

~~ ~~~~
+ (68)

~kn~C° lkn

It is the latter property that guarantees the existence of the Hubbard bands for U > W. To

see this, consider the half-filled case. In this case, n-~ =
l /2, ~t =

U/2 and one finds for the

spectral weight

which has onounced
iaxinia

at the upper and lower Hubbard bands, naniely uJ = +U/2,
long as E" is not too large. Since these results are btained

using high-frequency

they are valid only
when

the asyniptotic equation (fi8) has lready set in when uJ
the exact heory

and in
rdinary

theory in ternis of bare
Green functions G(°),

equation (fi8)

than W.

The fact that this siniple sets in at the energy scale given by W
rather than U, even when W < U, is a

on-trivial nsequence
of the Pauli principle. To see

u2~_~ jl n-a)
(70)E#°~~~ (k'~k~)

~
~~~~ ~

ikn + lL
U (~ ~~~~

Fornially, the atoniic liniit nieans that hopping is the sniallest of all energy scales in the prob-
lent, including the teniperature, t « T, which is not a very interesting case. However, the

saute argunients that have been used to derive the expression (70) in the atoniic liniit can be

used to show that equation (70) is valid at any T/t when k~ » W. Indeed, in the equations
of motion for two-particle correlators ill

one can neglect hopping ternis when k~ » W. This

is where the asyniptotic behavior (70) sets in since the equations of niotion then ininiedi-

ately lend theniselves to a solution without any additional approximation for the interacting

terni. This solution is possible because the Pauli principle n]~
= nw allows us to collapse

three-particle correlation function which enters equation of niotion to the two-particle one
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U (T~ (n~-~ (T~) n~-~ (T~) cm (n) cj~ (Tj)) =
U (T~ (n~-~ (T~) cm (T~) cj~ (Tj )) ). Hence, the

expression for atoniic liniit (Eq. (70)) is also a general result for the self-energy that is valid

for k~ » W At half-filling n-~ =

l/2, ~t =

U/2 and the asyniptotic (fi8) sets in at k~
mu

W, as

was pointed out above. Away front half-filling, as long as (~t E (oo)( and (~t U (I n-~)(
are both niuch snialler than ll§ (they both vanish at half-filling), the asyniptotic behavior will

also start at k~
mu

W.

The situation is qualitatively different when one uses dressed Green functions, but does

not take into account the frequency dependence of the vertex, as it is done in FLEX (see
Eq. (E.9))

or for second-order perturbation theory with dressed G. For exaniple, the second-

order expression for E~ (k, ik~) in ternis of full G does satisfy the asyniptotics equation (fi8),
but it sets in too late, naniely for k~ » U, instead of k~ » W. Indeed, when k~ » W, the

equation for the self-energy at half-filling in this type of theories reduces to

~~
~° (ikn)

= ik~ z (ik~)
iii)

where A~
= c

U~ /4 with c a constant of proportionality involving the surf over all wave vectors

and Matsubara frequencies of the self-consistent dynamical susceptibilities. In a given theory
the value of c may differ from its value c =

I obtained front the exact result (Eq. (70)), but

its always of order unity. The solution of equation (71)

Z (ik~)
=

jik~ (ik~)~ 4A2 (72)

has the analytically continued forni

ReZ~ (w)
=

j j9
(jwj 2A) fi (73)

Im zR (w)
t

-jo j2a jwj) ~. (14)

Froni this one can ininiediately see that a U~/uJ reginie exists for ReER(uJ) only
when (w( » U, (with 2A

=
U).

This nieans that such reginie sets in too late to give the Hubbard bands described by equa-

tion (69), because the Hubbard bands occur at uJ =

+U/2 and for such uJ the asyniptotic forni

E~
oc

U~ /uJ is not valid yet in FLEX and siniilar theories. Consequently, instead of well defined

peaks at uJ =
+U/2 in the half-filled case, one obtains only long tails in the spectral function

A~ (k, uJ), no niatter how large U is [74] (see also following subsection).
This explains why there is no Hubbard bands in any theory that uses self-consistent Green's

functions, but neglects the frequency dependence of the vertex. This is an explicit exaniple that

illustrates what seenis to be a niore general phenonienon when there is no Migdal theoreni for

vertex corrections: a calculation with dressed Green's functions but no frequency dependent

vertex correction often gives worse results than a calculation done with bare Green's functions

and a frequency independent vertex.

6.2. WHY FLEX FAILS TO SEE PRECURSORS OF ANTIFERROMAGNETIC BANDS. in this

subsection we describe the qualitative differences between our results and the results of FLEX

approxiniations given by equation (E.9) with regards to the "shadow bands" and explain why

we believe that the failure of the FLEX to reproduce these bands is an artifact of that approx-

iniation. To avoid any confusion, we first clarify the terniinology, because the terni "shadow
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bands" has been used previously to describe different physical effects (see for details Ref. [36] ).
We note that the so-called shadow features discussed in [36, 37] as well as the pseudogap in

the total density of states N(uJ)
=

(I IN) ~~ A (k,uJ))exist in both theories and we will not

discuss them here. Instead, we concentrate on the precursors of antiferroniagnetic bands in the

spectral function A (kF, uJ)which correspond to two new solutions of the quasi-particle equation

uJ
elk) + ~t E(k, uJ) =

0. (75)

We start by recalling a simple physical argument why the precursors of antiferromagnetic bands

niust exist at finite temperatures in the vicinity of the zero-teniperature phase transition in

two diniensions. This can be best understood by contrasting this case with isotropic 3D case

where such precursor effect are highly unlikely (for a discussion of the strongly anisotropic case

see Sect. 5.4). Indeed, in three diniensions there is a finite teniperature phase transition and

the gap is equal to zero at this teniperature A(TN)
=

0. Consequently at TN there is only one

peak in the A (kF, uJ) at uJ =
0 which starts to split into two peaks only below TN Based on

this siniple physical picture, one would not expect to see precursors of antiferroniagnetic bands

above TN in this case. The situation is qualitatively different in two-diniensions where classical

thernial fluctuations suppress long-range order at any finite teniperature while at the T
=

0

phase transition the systeni goes directly into the ordered state with a finite gap. Clearly, the

two peak structure in A (kF, uJ) at T
=

0 cannot disappear as soon as we raise the teniperature.

For siniplicity we again consider half-filling. As we have seen in Section 5.2 two new quasi-
particle peaks do appear in the renornialized classical reginie T < Tx in our theory. We have

also found a pseudogap with the niininiuni at uJ =
0 in this reginie. In contrast, the nunierical

solution of the FLEX equations [38] found a spectral function with a
single maximum in

A (kF, uJ) at uJ =
0 even when (~~~(q, 0) becomes strongly peaked at q =

Q. With decreasing

teniperature this central niaxiniuni beconies anonialously broad, but the two peak structure

does not appear. The clear deviation front the Fernii liquid is signaled by the positive sign of

bE' (kF, uJ) low > 0. However the value of bE'(kF,uJ) low does not beconie larger than unity.
The latter would unavoidably lead to the existence of two new

quasi-particle peaks away front

uJ =
0 as is clear front the graphical solution of the quasiparticle equation (Eq. (75) shown on

the bottoni left panel of Figures 11.

We now explain analytically the origin of these qualitative differences in the two theories.

In our theory bE'(kF,uJ)/buJ(w=o
oc

T(~ and hence it quickly beconies larger than unity in

the renornialized classical reginie ( oc
exp(const/T). In addition, for uJ > vF(~~ the real

part of the self-energy has the saute behavior as in the ordered state E(kF,uJ)
oc

A~/uJ with

A~
oc TIn(

=
const. The iniportant point is that this asyniptotic behavior E(kF,uJ)

oc /h~/uJ
of the self-energy already sets in for

uJ ~w

A » vF(~~. It is this property that leads to the

appearance of the precursors of antiferroniagnetic bands at uJ =
+A in a nianner analogous

to the appearance of the Hubbard bands in the strong coupling liniit that is discussed in the

previous subsection. Let's now try to understand analytically what happens in the FLEX

approxiniation. As in our theory, the main contribution to the self-energy in the strongly
fluctuating regime comes from the zero-frequency term in the Matsubara surf in the equation
for the self-energy (Eq. (54) in our theory and Eq. (E.9) in FLEX). An upper bound of the

effect of the critical spin fluctuations
can be obtained by approxiniating Tfl~~~(q, 0) oc

d(q).
Then one ininiediately obtains the saute expression for the self-energy as the one obtained in

FLEX in the context of Hubbard bands (Eq. iii)). (The only difference is that the paranieter

A is now
defined by the zero-frequency Matsubara contribution of fl~~~(q, 0), rather than

by the surf over all Matsubara frequencies.) As we have already discussed in the context of

Hubbard bands, such a forni for E does not lead to the appearance of two new quasiparticle

solution away front uJ =
0 because the characteristic behavior E(kF,uJ)

oc A~/uJ sets in too
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This work FLEX-like approaches
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Fig. ll. Top two panels are qualitative sketches of the spectral weight at the Fermi wave vector

at half-filling. The plots are obtained by retainig only the classical contribution to the self-energy for

T < Tx using parameters corresponding to the typical U
=

4, of Monte Carlo siniulations. The two

bottom panels are the corresponding plots of Re E(w). The left-hand side of this figure is obtained using

our approximation while the right-hand side is obtained from the FLEX-like approach. The intersection

with the 45 degree line
w

in the bottom-left panel gives rise to the precursors of antiferromagnetic
bands seen right above it.

late, naniely for
uJ » A. In addition, the slope of E' (kF, uJ) at uJ ~ 0 does not diverge with

decreasing teniperature as in our theory but instead saturates to its value given by the analog
of equation (73), I.e. bE' (kF, uJ) low < 1/2. As we nientioned above, a value larger than unity
bE' (kF,uJ) low > I would guarantee the existence of two new solutions of the quasiparticle
equation (Eq. (75)) away from uJ =

0. The right-hand side of Figure 11 illustrates clearly
what happens in a FLEX-like approach such as equation (71). The contribution of classical

fluctuations to the spectral weight does not lead to a Fernii liquid since A (kF,uJ) saturates

to a finite width as teniperature decreases, but nevertheless precursors of shadow bands do

not occur because bE' (kF,uJ) low is bounded below unity. (Note that the spectral weight
would not vanish

so steeply at large frequencies if we had taken into account the quantuni
contribution of the spin fluctuations, as in full FLEX calculations.

We just saw that the self-consistency in the propagators without corresponding selLconsisten-

cy in the vertices inhibits the existence of the shadow bands in essentially the saute way as it

inhibits the existence of the Hubbard bands. It thus seenis to us very likely that the absence

of the precursors of antiferroniagnetic bands below Tx in FLEX is an
artifact. This conclusion
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can be reliably verified by coniparison with Monte Carlo data despite the fact that the latter is

done for finite lattices and in the Matsubara fornialisni. This was discussed in niore detail in

Section 5.2. Here we just note that the teniperature dependence of Matsubara quantities such

as
G(kF,T

=
fl/2) and E(kF, iki) have a very characteristic forni in the pseudogap reginie.

For exaniple, E(k, iki)
oc 1/(17rT) in the pseudogap reginie, while in FLEX we would expect

a niuch weaker teniperature dependence of this quantity (the upper bound being given by the

analog of Eq. (72)).
We also would like to coninient on the lD niodel [75] which describes the interaction of

electrons with static spin fluctdations characterized by the susceptibility xsp oc
d(uJ)[(~~/(q

Q)~ + (~~]. The nice thing about this niodel is that it has an exact solution which shows the

developnient of shadow bands and of the pseudogap in A (kF,uJ). A treatnient siniilar to ours

which uses non-interacting Green's functions in the one-loop approxiniation also reproduces
this feature [75]. However, the analogous approxiniation with dressed Green's functions leads

to equation (71) and hence inhibits the existence of the "shadow bands" and of the pseudogap
in A (kF, uJ).

In closing we coninient on seniantics and on the physical interpretation of sortie results

obtained in the FLEX approxiniation. The expression "conserving approxiniation" has been

widely used to describe FLEX calculations of the single particle properties and, in particular,
in the context of the shadow bands and of the failure of Luttinger's theoreni [37, 38, 69]. The

conserving aspect has been eniphasized, but in fact the only desirable feature in the calculation

of the single-particle properties is that the self-energy E is obtained front a functional derivative

of the Luttinger-Ward functional E
=

d4~/dG and hence it is guaranteed to satisfy Luttinger's
theoreni whenever appropriate. Only on the next level does this schenie lead to a calculation

of the "true" susceptibilities [24] and of collective triodes that satisfy conservation laws (Ward
identities). However, these "true" susceptibilities are never substituted back in the calculation

of the self-energy and the effect of "true" collective modes on the single-particle spectruni is

an open question in FLEX. In fact, the RPA propagators fIRPA appearing in the self-energy
expression are different front susceptibilities front which collective triodes should be coniputed
and further they explicitly break conservation laws, as can be seen front the fact that RPA-like

expressions iRPA
"

io/(I Uio) with a dressed bubble flo have the unphysical properties
that are nientioned in equations (A.23, A.24) of Appendix A. The fact that there are in effect

two susceptibilities in the FLEX approxiniation leads, in our opinion, to sortie confusion and

incorrect physical interpretation of the results in the literature. In particular, it was argued that

the non-Fernii-liquid behavior and deviations from Luttinger theoreni found in FLEX [37, 38, 69]

are not due to critical thernial fluctuation in the vicinity of the phase transition but are rather

the result of large U. The reasoning for such claini was that although the RPA susceptibilities
iRPA is very strongly peaked at q =

Q, the "true" FLEX susceptibility is not. In our opinion,
such claini could be justified only if one would substitute the "true" susceptibility back in

the calculation of Z (for example using the exact Eq. (31)) and found that the deviation

front the Luttinger theorem and other qualitative changes in A(k, uJ) increase with decreasing
teniperature without aIniost divergent behavior of the conserving susceptibility Xsp(Q, 0) and

of the static structure factor Ssp (Q)
The Monte Carlo data in Figure 7 are also instructive since they clearly show that qualitative

changes in the single-particle spectra occur when the systeni enters the renornialized classical

reginie with rapidly growing Ssp (Q). The fact that the FLEX "true" susceptibility does not

show such behavior at half-filling [38] tells us that it even niore drastically disagrees with the

Monte Carlo data than the RPA-like fl which enters the expression for self-energy. Moreover,

even away front half-filling the "true" susceptibility in FLEX at q =
Q significantly underesti-

niates the strength of the spin fluctuations, as is clear front the coniparison with Monte Carlo
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data in Figure 5. In our opinion the, so-called, "true susceptibility" in FLEX is the key elenient

in the confusion surrounding the interpretation of FLEX results for the self-energy because the

"true susceptibility" never comes in the calculation of the self-energy. For all practical pur-

poses these calculations of the self-energy should be considered as consistent with Luttinger's
theorem at T

=
0 but based on a non-conserving susceptibility. Consistency with conserva-

tion laws and consistency with Luttinger's theoreni are not identical requirenients because to

satisfy rigorously Luttinger's theoreni one needs that Z
=

d4~/dG, while to have conserving
susceptibilities one needs that the irreducible vertices used in Bethe-Salpeter (Eq. (26) should

be obtained front r
=

d~4~/dGdG.

7. Domain of Validity of our Approach

Our approach is not valid beyond interniediate coupling. That is perhaps best illustrated by
Figure 3 that shows that the crossover teniperature first increases with U and then saturates

instead of decreasing. The decrease is expected on general grounds front the fact that at strong
coupling the tendency to antiferroniagnetisni should decrease roughly as J

mu

t~ /U. The reason

for this failure of our approach is clear. As we know front studies in infinite diniension [11], to

account for strong-coupling effects it is necessary to include at least a frequency dependence

to the self-energy and to the corresponding irreducible vertices.

Our theory also fails at half-filling deep in the renornialized classical reginie, I.e. T « Tx
niainly for two reasons. First, the ansatz Usp =

Ug,1(0), equation (40), fails in the sense that

g,1(0) eventually reaches zero at T ~ 0 because of the log~ T divergence in the irreducible

susceptibility xo (7r, 7r) due to perfect nesting. The physically appropriate choice for g,1(0) in

the renornialized classical reginie is to keep its value fixed to its crossover-teniperature value

(See Fig. 6 and Sect. 4). The niore serious reason why our approach fails for T « Tx is that,

as we just saw, critical fluctuations destroy conipletely the Fernii liquid quasiparticles and lead

to a pseudogap. This invalidates
our starting point. It is likely that in a niore self-consistent

theory, the logarithmic divergence of the appropriate irreducible susceptibility will be cutoff

by the pseudogap. However, just a siniple dressing of the Green's function is not the correct

solution to the problem because it would niake the theory non-conserving, as we discussed

in Section A.3. One needs to take into account wave vector and energy dependent vertex

corrections similar to those discussed by Schrieffer [76, 77].

8. Comparisons with other Approaches

In Appendix E, we discuss in detail various theories, pointing out liniitations and advantages
based on the criteria established in Appendices A.2 and A.3. More specifically, we include

in our list of desirable properties, the local Pauli principle in()
=

(nil, the Merniin-Wagner
theoreni (Eq. (A,14)), the Ward identities (Eq. (A.28)), and f-surf rule (Eq. (A.22)),

one-

particle versus two-particle consistency E~ (I, I) G~ (T, I+)
=

U (n,ni) (Eq. (44)), Luttinger's
theorem, and the large frequency asyniptotic for the self-energy (Eq. (68) ), which is iniportant
for the existence of the Hubbard bands. In the present section, we only state without proof
where each theory has strengths and weaknesses.

In standard paraniagnon theories [32, 46], the spin and charge fluctuations are coniputed by
RPA, using either bare or dressed Green's functions. Then the fluctuations are feedback in the

self-energy. When RPA with bare Green's functions are used for the collective triodes, these

satisfy the f-surf rule, but that is the only one of our requirenients that is satisfied by such

theories.
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In conserving approxiniation schenies [24.26] the Merniin-Wagner theoreni, the Luttinger
theoreni and conservation laws are satisfied, but none of the other above requirenients are

fulfilled.

In the parquet approach [25,53], one enforces coniplete antisyninietry of the four point

function by writing down fully crossing-syninietric equations for these. However, in actual cal-

culations, the local Pauli principle, the Mermin Wagner theorem, and the consistency between

one and two particle properties are only approximately satisfied, while nothing enforces the

other requirements.
In our approach, the high-frequency asymptotics and Luttinger's theorem are satisfied to a

very good degree of approximation while all other properties in our list are exactly enforced.

Let us specify the level of approximation. Luttinger's theorem is trivially satisfied with our

initial approximation for the self-energy Ei~, but at the next level of approximation, Ei~,
one

needs a new chemical potential to keep the electron density Tr[Gi~ (I,I+)] fixed. With this

new chemical potential the Fermi surface volume is preserved to a very high accuracy. Finally,
consider the high~frequency asymptotics. Since we use bare propagators, the high-frequency

asymptotics comes in at the appropriate frequency scale, namely ik~
mu

W, which is crucial for

the existence of the Hubbard bands. However, the coefficient of the llikn terni in the high-
frequency expansion (Eq. (68)) is incorrect because our irreducible vertices Usp and Uch are

tuned to the low frequencies. If one would take into account the frequency dependence of Usp
and Uch and assunie that at high frequency they beconie equal to the bare interaction U, then

one would recover the exact result, provided the Pauli principle in the forni of equation (39) is

satisfied. The difficulty with such a procedure is that frequency dependent irreducible vertices

requires frequency dependent self-energy in the calculation of collective triodes and that would

niake the theory niuch niore coniplicated. Yet it is, probably, the only way to extend the theory
to strong coupling.

9. Conclusion

We have presented
a new siniple approach [29, 30] to the repulsive single-band Hubbard niodel.

We have also critically conipared conipeting approaches, such as paraniagnon, fluctuation ex-

change approxiniation, and pseudo-potential parquet approaches. Our approach is applicable
for arbitrary band structure [34] and gives us not only a quantitative description of the Hub-

bard niodel, but also provide us with sortie qualitatively new results. Let us suniniarize our

theory again. We first obtain spin and charge fluctuations by a self-consistent paranieteriza-
tion of the two-particle effective interactions (irreducible vertices) that satisfies a nuniber of

exact constraints usually not fulfilled by standard diagraniniatic approaches to the niany~body
probleni. Then the influence of collective modes on single-particle properties is taken into ac-

count in such a way that single-particle properties are consistent with two-particle correlators,
which describe these collective modes. More specifically, our approach satisfies the following

constraints:

1. Spin and charge susceptibilities, through the fluctuation~dissipation theoreni, satisfy the

Pauli principle in the forni in()
=

(nil
as well as the local nionient surf-rule, conserva-

tions laws and consistency with the equations of niotion in a local-field-like approxinia-
tion.

2. In two diniensions, the spin fluctuations satisfy the Merniin-Wagner theoreni.

3. The effect of collective triodes on single-particle properties is obtained by a paraniagnon-

like forniula that is consistent with the two-particle properties in the sense that
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the potential energy obtained front Tr [EG] is identical to that obtained front applying
the fluctuation-dissipation theoreni to spin and charge susceptibilities.

4. Vertex corrections are included not only in spin and charge susceptibilities (Usp ~ Uch # U)
but also in the self-energy forniula. In the latter case, this takes into account the fact

that there is no Migdal theoreni controlling the effect of spin and charge fluctuations on

the self-energy.

The results for both single-particle and two-particle properties are in quantitative agreenient
with Monte Carlo siniulations for all fillings, as long as U is less than the bandwidth and T is

not niuch snialler than the crossover teniperature Tx where renornialized-classical behavior sets

in. Both quantuni-critical and renornialized-classical behavior can occur in certain paranieter

ranges but the critical behavior of our approach is that of the O in) niodel with n ~ oo [33].
The niain predictions of physical significance are as follows:

I. The theory predicts a niagnetic phase diagrani where niagnetic order persists away front

half-filling but with conipletely suppressed ferroniagnetisni.

2. In the renornialized classical reginie above the zero-teniperature phase transition, pre-

cursors of antiferroniagnetic bands (shadow bands) appear in A (kF,uJ). These precur-

sors occur when ( > (th (or uJsF < T). Between these precursors of antiferromagnetic
bands a pseudogap appears at half-filling, so that the Fermi liquid quasiparticles are

completely destroyed in a wide temperature range above the zero-temperature phase
transition 0 < T < Tx. The upper critical diniension for this phenonienon is three. We

stress the qualitative difference between the Hubbard bands and the precursors of antifer-

roniagnetic bands and we predict that in two diniensions one niay see both sets of bands

siniultaneously in certain paranieter ranges. This prediction is consistent with the results

of nunierical siniulations [68, 78]. We know of only one other analytic approach [70] which

leads to siniilar four peak structure in the spectral fmiction.

The zero teniperature niagnetic phase diagrani is partly an open question because, despite the

qualitative agreenient with other analytical approaches, there is still an apparent contradiction

with Monte Carlo siniulations [64]. Our prediction of precursors of antiferroniagnetic bands on

the other hand is in agreenient with Monte Carlo siniulations. Neither this effect nor upper and

lower Hubbard bands are observed in self-consistent schenies such as FLEX. This is because of

inconsistent treatnient of the vertex and self-energy corrections in this approxiniation, as we

have explained in Section 6. However, if there was a Migdal theoreni for spin fluctuations, it

would be justifiable to neglect the vertex corrections and keep only the self-energy effects as

is done in the FLEX approxiniation. The presence of precursors of antiferroniagnetic bands in

two-diniensions is then a clear case of qualitatively new Physics that would not appear if there

was a Migdal theoreni for spin fluctuations. The saute is true for the Hubbard bands for large
U > W in any diniension.

We would like to state again clearly the nature of our critique of approxiniation schenies

which are based on using Migdal's theoreni for systenis with electron-electron interactions. We

do not iniply that one does not need at all to take into account the feedback of the single-
particle spectra on collective triodes. The only point that we want to niake here is that, based

on surf rules and coniparison with Monte Carlo data, we see that frequency and nionientuni

dependent corrections to the self-energy and to the vertex often tend to cancel one another

and that ignoring this leads to qualitatively incorrect results, in particular, with regards to

the pseudogap. In this paper we were able to look only at the beginning of the renornialized
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classical reginie when the pseudogap starts to forni. The truly self-consistent treatnient of

the one-particle and two-particle properties in the pseudogap reginie reniains an open and

very challenging probleni. We hope that by extending our approach to the ordered state and

looking at how the pseudogap starts to disappear as the teniperature is raised, one can better

understand how to develop a niore self-consistent theory in the pseudogap regime. We now

point out how our approach can be extended in other directions.

As we
nientioned in Section 5, the pseudogap and precursors of antiferroniagnetic bands

in the two-diniensional repulsive Hubbard niodel have interesting analogs in the attractive

Hubbard niidel. In that niodel, one expects a pairing pseudogap and precursors of supercon-

ducting quasiparticle bands above Tc. At half-filling the negative and positive Hubbard niodels

are niapped onto one another by a canonical transforniation and the present theory is directly
applicable to the -attractive case. However, away front half-filling the niapping between the

two niodels is niore coniplicated and the niicroscopic theory requires additional surf-rule for

pairing susceptibilities to find self-consistently the effective pairing interaction. This work is

now in progress.

The present approach can be also extended to stronger coupling U > W. Again the key idea

would be to paranieterize the irreducible vertices, which have now to be frequency dependent,
and then use the niost iniportant surf-rules to find the paranieterization coefficients. This will,

of course, require solving niuch more complicated selLconsistent equations than in the present

approach, but we believe that the problem still can be made tractable.

Finally, we would like to make two comments about the magnetic and the pairing pseudogap
in the context of high-Tc superconductors, based on the results of our studies. First, as was

stressed in reference [36], to understand clearly the physics of the single-particle pseudogap
phenomena it is important to distinguish static short-range order from dynamical short-range
order. The fornier is defined by a nearly Lorentzian form of the corresponding static structure

factor S(q)
oc I /((q Q)~ + (~~) (Q

= (7r, 7r) in niagnetic case, Q
=

0 in the case of pairing),
while the latter nieans only that the corresponding susceptibility x(q, 0) has such a Lorentzian

forni. A condition for the existence of the single particle pseudogap in the vicinity of a given
phase transition is that the corresponding short-range order is quasi-static (I. e. uJsF « T) [36].
Experinientally, one can nieasure directly the dynaniical spin structure factor S(q,uJ), and

then obtain the static structure factor through the integral S(q)
=

fS(q,uJ)duJ/(27r). Even

if the zero-frequency dynaniical structure factor Ssp(q, 0) is very strongly peaked at q mu
Q it

is possible that the static structure factor Ssp(q) is only weakly nionientuni dependent [36].
Thus in order to know whether one should expect to see the precursors of the antiferroniagnetic
bands and the corresponding pseudogap at a given doping and teniperature it is necessary to

obtain the static spin structure factor front the experinientally deterniined dynaniical structure

factor and then analyze its nionientuni dependence to see both if it is peaked and if it is quasi-
two-dimensional.

The second comment that we would like to make is that both the pairing and the magnetic
single-particle pseudogap discussed above are an effect of low diniensionality and hence they
exist as long as there is a large two-diniensional fluctuating regime before the real three-

dimensional phase transition. In this context, a pairing pseudogap could exist on either side

of optinial doping [79]. The niuch larger teniperature range over which a pseudogap appears

in the underdoped conipounds suggests that, in addition to pairing fluctuations, other thernial

fluctuations (charge, spin...) prohibit finite-teniperature ordering [80]. An exaniple of this

occurs in the attractive Hubbard niodel where charge fluctuations push the Kosterlitz-Thouless

teniperature to zero at half-filling, precisely where the crossover temperature to the pseudogap

reginie is largest.
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Appendix A

Sum Rules, Ward Identities and Consistency Requirements

In this appendix, we recall well known constraints on
many-body theory that follow front suni-

rules and conservation laws and coninient, wherever possible, on their physical nieaning and

on where coninionly used approaches fail to satisfy these constraints. Although we conie back

on a detailed discussion of various theories in a later appendix, we find it useful to include

sortie of this discussion here to niotivate our approach. We consider in turn various results that

would be satisfied by an) exact solution of the many-body probleni. They are all consequences
of either anticoniniutation relations alone (Pauli principle)

or of anticoniniutation relations

and the Heisenberg equations of niotion. We describe in turn: i) the relation between self-

energy and two-body correlation functions that enibodies the details of the Haniiltonian; 2)

surf rules for one-particle properties; 3) surf rules and constraints on two-particle properties,
in particular f-surf rule and Ward identities that express conservation laws; 4) a few relations

that are crucial in Fernii liquid theory, naniely Luttinger's theoreni and the forward scattering

surf rule.

A-I- EQUATIONS OF MOTION AND THE RELATION BETWEEN THE SELF-ENERGY E AND

Two-PARTICLE PROPERTIES. The self-energy (we always mean one-particle irreducible

self-energy) is related to the potential energy, and hence to two-particle correlations through
the expression equation (44), which in the Kadanoff and Bayni notation can be written as

E~ (I,( G~ (I, I+)
=

U (n,n ii (A.I)

Here, the index with an overbar, I,
nieans that there is a surf over corresponding lattice

positions and an integral over iniaginary tinie. The notation I+
nieans that the iniaginary

tinie iniplicit in i is Ti + n where q is a positive infinitesinial nuniber. Equation (A.i) is an

iniportant consistency requirenient between self-energy and double occupancy in the Hubbard

niodel that can easily be proven as follows. From the equations of niotion for the single-particle
Green's function (Eq. (3)) one finds

1(-
)

+ /t) di,i +
iij

Ga (ri rj, Ti Tj)
1

=
di,jd (T~ Tj) U (T~ (c)_~ (n) c~-~ (n) c~~ (T~) c)~ (Tj)) (A.2)



1350 JOURNAL DE PHYSIQUE I N°11

Using the short-hand notation in equations (3, 4) and the definition of self-energy (Dyson's
equation) the above equation is also written in the forni,

Gj~(I, I)G~(I, 2)
=

d (1 2) + E~(I, I)G~(1, 2). (A.3)

Coniparing the last two equations, the well known relation equation (A.I) (or Eq. (44) between

self-energy, Green's function and potential energy follows.

So-called conserving [2fi] approaches to the niany-body probleni violate the above consistency
requirenient (Eq. (44) in the following sense. The right~hand side can be coniputed front the

collective modes using the fluctuation-dissipation theoreni. In conserving approxiniations, this

gives a result that is different front what is coniputed directly front the left-hand side of the

equation, naniely front the self-energy and front the Green's function. In fact, all niany-body
approaches satisfy the above consistency requirenient at best in an approxiniate way. However,

it is a very iniportant requirenient and equation (44) plays a key role in our discussion. Seen

in Matsubara frequency, it is a surf rule, or an integral constraint that involves all frequencies,
large and sniall.

A.2. CONSTRAINTS ON SINGLE-PARTICLE PROPERTIES. The spectral weight A~ (k, uJ) can

be interpreted as a probability of having an electron in a state (a,k,uJ) and it satisfies the

normalization surf rule

Formally this is a consequence of the jump in the Green's function at T =
0, as can be seen

from calculating

G~(k, 0~) G~(k, 0+)
= =

T £
(e~~n~ e~~~n~)

/~
~" l[~~'"~

~km °~
~ ~

~
~

~

j°° )A~(k,w). (A.5)

To do perturbation theory directly for the Green's function to any finite order would require
that the interaction U be small not only in comparison with the bandwidth W but also in

comparison with the smallest Matsubara frequency iki
=

27rT. Also, the direct perturbation
series for the Green's function gives, after analytical continuation, poles of arbitrary high order

located at the unperturbed energies. These high-order poles are inconsistent with the simple
pole (or branch cut) structure of the Green's function predicted by the spectral representation.
Furthermore, the high-order poles lead to a spectral weight that can be negative [81]. The

coninion way to get around these difficulties is to niake approxiniations for the self-energy E

instead and then calculate the Green's function using Dyson's equation (Eq. (8)).
It is interesting to note that to satisfy the constraint equation (A.4), it suffices that E(k, ik~ ),

defined by equation (8), has a finite liniit as ik~ ~ oo. More constraints on approxiniations for

the self-energy niay be found by continuing this line of thought. A systeniatic way of doing
this is to do a high-frequency expansion for both the Matsubara Green's function and the

self-energy and to find coefficients using sum-rules. The surf-rules that we need then are [82]

/~~
"~a(~> ") ~((Cka. (~ /~~)'

,
C~a " ~k /L + ~ll-a (~.~)

~

/~"UJ~A~(k, uJ) =
(ek il)~ + 2U(ek il)n-~ + U~n-~ (A.7)~j

27r

where n~ =
n/2 since we are in the paraniagnetic state.
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Using the spectral representation (Eq. (6))
one can easily see that the above surf rules give

the coefficients of the high-frequency expansion of the Matsubara Green's function

ik)for ~~~~'~~~~
~~

~
i~~ ~ /

~~"~~~~'"~ ~
i~~ ~ /

~~"~~~~~'"~ ~ ~~'~~

The self-energy has the saute analytic properties as the Green's function. Using its high
frequency expansion in the expression for the Green's function (Eq. (8)), one finds that the

first terni in equation (A.8), leads to the requirenient that the self-energy has a finite liniit

at ik~ ~ oo. The second terni fixes the value of this constant to the Hartree-Fock result,
and the last and second-terni conibine to give the leading terni in llik~ of the self-energy
high-frequency expansion. In short, we find the result quoted in equation (68), naniely

~lini
E~(k, ikn)

=

Un-~ +

~~~~~
)j

~~~~
+ IA-g)

i n-oJ i
n

The Kraniers-Kronig relation for the self-energy

j~ ~
jzRj~ ~) zR j~ ~)j

~
p
j ~~~ ~~ ~~~ ~~'°~~)j

a a j7T " "

and the high-frequency result (Eq. IA-g)) iniply the following surf-rule for the iniaginary part
of the self-energy

~"
Ini [E$(k, uJ')] =

U~n-~ ii n-~)
r'

Iniportant consequences of this equation are that for a given U the integrated iniaginary part
of the self-energy is independent of teniperature and is increasing towards half-filling. The

right-hand side of this equation is also a nieasure of the width of the single-particle excitation

spectruni, as can be seen
front the spectral weight nionients (Eqs. (A.6, A-I),

uJ2 a~
e

/~ "UJ~A~(k,
uJ)

/~ "UJA~(k, J)j ~

=

U~n-~ (l n-~).

_~
7r

_~
7r

An iniportant physical point is that the asyniptotic behavior (Eq. IA-g) is a necessary condi-

tion for the existence of upper and lower Hubbard bands, as has been explained in Section 6.I.

However, it is iniportant to realize that it is not a sufficient condition. Indeed, the following
paradox has been noticed in explicit calculations in infinite diniensions ill, 74]. While ordinary

second-order perturbatisi theory with bare Green functions Go reproduces correctly the ap-

pearance of the Hubba ' bands with increasing U, the perturbation theory with dressed Green

function G
=

[Gj~ E]~~ does not. The reason for this is that although the second-order

expression for E~ (k, ik~) in ternis of full G does satisfy the asyniptotics (Eq. IA-g) ), it sets in

too late, naniely for k~ » U, instead of kn » W. The fact that the asyniptotics should start

at k~
mu

W even when U > W is a non-trivial consequence of the Pauli principle, as explained
in Section 6.1. Thus there are no Hubbard bands in any theory that uses self-consistent Green

functions but neglects the frequency dependence of the vertex. This is an explicit exaniple that

illustrates what seenis to be a niore general phenoniena: a calculation with dressed Green's

functions but no frequency dependent vertex correction often gives worse results that the one

done with bare Green's functions and a frequency independent vertex. We will see in the next
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subsection that this also happens in the calculation of the two-particle properties. Also, as we

have argued in Section 6, a siniilar situation occurs with the precursors of antiferroniagnetic
bands in the renornialized classical reginie in two~diniensions.

Finally, we quote two niore well known surf-rules that we will need. They involve the Fernii

function f (uJ) and the spectral weight. The first one follows front definition of G~ (k, T) and

the spectral representation

lint G~ (k, T)
=

/ ~"
f (uJ) A~ (k, uJ) = (c[~cka) % nka. (A.10)

r-o- 27r

The quantity nka is the distribution function. It is equal ~to the Fernii function only when the

self-energy is frequency independent. The next result, that follows siniply front the equations
of niotion,

r~- ~i ~ ~~~~~ ~~ ~i ~ /
~~"~ ~"~ ~~ ~~'"~

=

( ~j (ek il) nka + U (n,n ii IA, ll)

~

is useful to show to what extent certain dressed-propagator approaches fail to satisfy the f-surf
rule.

A.3. CONSTRAINTS ON Two-PARTICLE PROPERTIES. For any one-band model, indepen-
dently of the Hamiltonian, the Pauli principle (anticommutation relations)

In)~)
=

(nw) (A.12)

implies the following two simple identities:

(nit + nil)~
= n + 2 Iniiniil (A.131

The correlation functions
on the left-hand side are equal-tinie and equal-position spin and

charge correlation functions. The susceptibilities xch (r~ rj, T)
,

xsp (r~ rj, T) in equations
(17, 16) are response functions for arbitrary (r~ rj,T)

so they niust reduce to the above

equal-tinie equal-position correlation functions when r~ = rj and
T =

0. This is one special

case of the iniaginary-tinie version of the fluctuation-dissipation theoreni (Eqs. (16, 17)). This

translates into local-nionient and local-charge surf-rules for the susceptibilities

( ~j ~j
Xsp l~>i~n)

"
2 lTl1Tl11 2 lTl1Tl11 " Tl 2 lTl1Tl11 lA.141

q iqn

~ ~j ~j
xch (q, iqn)

=
2 (n,n,) + 2 (n,n ii n~

= n + 2 (n,n ii n~ (A.15)
N

q ion

where we have removed the I dependence of (n~,n~ ii using translational invariance. The right-

hand side of the local-nionient surf-rule is equal to ((S~)~),while that of the local-charge surf

rule is equal to (p~) n~.

If arbitrary sets of diagrams are
summed, nothing can prevent the right-hand side front

taking unphysical values. For example, the Pauli principle may be violated, I. e.
(nini) # (nil
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To see this, notice that when the Pauli principle is satisfied, our two surf rules equations (A.14,
A.15) lead to ( ~ ~ (xsp (q,ion) + xch (q>ion))

~
2Tl Tl~. (A,16)

~ ion

It is easy to check that well known approaches to the niany-body probleni, such as RPA, violate

this basic requirenient. Indeed, the ordinary RPA expressions for spin and charge are

xt~~i~)
+

i
-~'x~ iA.171

xt~~i~)
~

i +~)x~
iA.181

where

xo iq)
=

-2( L G~°~ ik) G~°) (k + q) (A.ig)
~

That RPA does not satisfy the surf rule (Eq. (A.16)) already to second order in U can be

easily seen by expanding the denoniinators.

To satisfy the Mermin-Wagner theoreni, approxiniate theories niust also prevent (n,n ii front

taking unphysical values. This quantity is positive and bounded by its value for U
= oo and

its value for non-interacting systenis, naniely 0 < (n,n ii < n~ /4. Hence, the right-hand side of

the local-nionient surf-rule (Eq. (A.14)) is contained in the interval [n, n )n~) Any theory
that prevents the right-hand side of the local-nionient surf rule front taking infinite values

satisfies the Merniin-Wagner theoreni.

Proof: Near a niagnetic phase transition, the zero Matsubara-frequency coniponent of the

spin susceptibility takes the Ornstein-Zernicke forni

XSP l~ ~ Q'°1
~

q2

/
j-2

lA.2°1

where q is nieasured with respect to the ordering wave vector Q and where (~ is the

square of the correlation length. Near its niaxiniuni, the above susceptibility is of order

(~ while all finite Matsubara-frequency coniponents at the ordering wave vector are at

niost of order if (27rT)~ which is niuch snialler than (~. Hence, one can keep only the

zero-Matsubara frequency contribution on the left-hand side of the local-nionient
surf

rule (Eq. (A,14)) obtaining
~

T
~ ~

~ ~
=

C (A.21)
(27r) q + (~

where C contains non-zero Matsubara frequency contributions as well as n 2 (n,n ii.
Since C is finite, this nieans that in two diniensions id

=
2), it is impossible to have

(~~
=

0 on the left-hand side otherwise the integral would diverge logarithniically.

Finally, the f-sum rule on spin and charge susceptibilities follows as usual front the fact that the

Haniiltonian conserves particle nuniber. Coniputing (pq,
(j

and (Sq,
flfij

r=o r=o
one obtains for either charge or spin

~"uJX~'h,sp
(q, uJ) =

lim T ~j
(e~~~n~ e~~n~) iqnxch,sp (q, iqn)

7r ~-o
iqn

~

j ~ l~k+q + ~k-q 2fk) llka. (A.22j
ka
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As can be seen front the spectral representations of spin and charge susceptibilities, equa-

tion (20), the quantity that obeys the f-surf rule is the coefficient of the leading terni in the

I /q( high-frequency expansion of the susceptibilities.
The single-particle energies ek entering explicitly the right-hand side of the f-surf rule are

independent of interactions, so interactions influence the f-surf rule only very weakly through

the nka. In fact, in a continuuni ek oc
k~

so nka enters only in the forni ~~~
nka " n. In this

case, the right-hand side of the f-surf rule is proportional to q~n and hence is independent

of interactions. On a lattice however, the energies cannot in general be taken out of the surf

and interactions influence the value of the right-hand side, but only through the fact that nka

differs front the non-interacting Fernii function fka. At strong-coupling, where the self-energy

is strongly frequency dependent, this difference between nka and fka becomes important.
But from weak to interniediate coupling, calculations where fk« appears on the right-hand
side should be good approximations. In the explicit exaniples that we have treated, the U

dependence of the f-surf rule beconies iniportant only close to half-filling and for U > 4,
signaling the breakdown of approxiniations based

on
frequency-independent self-energies.

While RPA-like theories that use fka instead of nka violate only weakly the f-surf rule in

the weak to interniediate coupling reginie, self-consistent theories that use frequency-dependent
self-energies but no frequency-dependent vertices violate conservations laws in general, and the

f-surf rule in particular, in a niuch niore draniatic way. The point is that susceptibilities with

a dressed bubble, fIRPA
"

io/(i )Uflo), are bad approxiniations because they have the

following properties, for any value of U

iRPA(q
~

0, iqn # 0) # o (A.23)

/~) "X~PA (~, Ml
"

j ~ (~k+q ~ ~k-q 2fk) llka + 4~ ((lit) (lli) (lll~i)) (~.~~)

k,a

The first of these equations explicitly violates the Ward identity, equation (A.28) below, at

all frequencies, including sniall non-zero ones, since at zero wave vector we should have

X(q
~

0, iqn # 0)
=

0 for all frequencies except zero. The second equation (Eq. (A.24)) violates

the f-surf rule (Eq. (A.22)) at all wave vectors, by a constant terni 4U ((n,) (n ii (n,n ii)
which in practical calculations, say at U

=
4, is of the saute order as the first terni, which is

the only one that should be there according to the f-sum rule.

Proof: Equations (A.23, A.24) are proven as follows. Consider the standard RPA expression

but with dressed bubbles flo

iRPA
=

io/(I )ho)- (A.25)

Using the spectral representation for the Green's function and inversion syninietry in the

Brillouin zone one
finds

10 i~, i~n)
"

) ~j / ) / )Aik> ")~i~ + ~> "') ~~
)~ ))~f ~~~~' i~'~~)

When the bubble is not dressed, the spectral weights are delta functions so that at

q =
0 the susceptibility would vanish for all non-zero values of qn, as required by the

Ward identity. However, here because the spectral weight has a width and because the

integrand is even and positive, then the integral will not vanish, resulting in the first

anonialy (Eq. (A.23) we niention. To prove the second equation (Eq. (A.24) ), it suffices
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to renieniber front the spectral representation of the susceptibility (Eq. (20)) and the

derivation of the f-surf rule (Eqs. (A.22) that we are looking for the coefficient of the

I /q( terni in the high-frequency expansion. Given the RPA forni (Eq. (A.25) ), only the

nunierator contributes to this liniit. One obtains, for the coefficient of the I /q( terni,

( ~ / ) / )A(k> W)A(k + q, W') (W W') (f (W') f (W)) (A.27)

front which equation (A.24) follows using the surf rules for occupation nuniber (Eq. (A,10)
and for energy (Eq. (A.11)).

Conservation laws have general consequences not only on equal-tinie correlation functions, as in

the f-surf rule above, but also on tinie-dependent correlation functions. For exaniple, front the

Heisenberg equations of niotion and anti-coniniutation relations, follow the Ward identities [45]

~ ~ ~ l~
~ (~k+q

k))
(Trc~a (T) °~Ck+qa (T) C~'+qa' (Tl) ?'~Ck'a' (T2))

k a=~l a'=~l

=
d (T Ti

~j a'~G~, (k',
T2 T) d (T T2) ~j a'~G~, (k' + q, T Ti (A.28)

a'=~i a'=~i

where I
=

0 for charge, and I
=

I for spin. The f-surf rule above (Eq. (A.22)) follows front

the above identity by siniply taking Ti ~

T/, suniniing over
k' and subtracting the two results

for
T ~

T/ and
T ~ Tp.

We have seen in this section that there are strong cancelations for two-particle properties
between the frequency dependence of self-energy and that of the vertex corrections, so that

putting a frequency dependence in only one of theni is a bad approxiniation. We have adopted
the Kadanoff-Bayni fornialisni in the niain text since it can

be used as a
guide to niake ap-

proxiniations that satisfy conservation laws.

A.4. WHEN THERE Is A FERMI SURFACE. When perturbation theory converges (no phase
transition) then at zero teniperature T

=
0 the iniaginary part of the self-energy vanishes,

E[ (k,
uJ =

0)
=

0, for all k values and the Fernii surface defined by

ek il E[ (k,
uJ =

0)
=

0 (A.29)

encloses a volunie that is equal to the volunie enclosed by non-interacting particles

~j 9 (~t ek
E[ (k, 0))

=

~j 9 (~to ek)
" n~. (A.30)

~
k

~
k

This is the content of Luttinger's theoreni [28, 83]. It iniplies that there is a strong cancelation

between the change of the cheniical potential and the change of the self-energy on the Fernii

surface. In particular, when Xi (kF, 0) does not depend on k or on the direction of kF (infinite
D Hubbard niodel, electron gas) the change in (~t ~to) is exactly canceled by E[ (kF, 0)

~t ~to =

El (kF,o). (A.31)

Luttinger's theoreni is satisfied when

im a ,

iv

~~~
~d~i~) ~~"(k, iv)dvdk

=
o ~_~~~
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Any theory that calculates its self-energy front a functional derivative of thi Luttinger-Ward
functional E

=
d4~[G]/dG will satisfy Luttinger's theoreni [28, 83]. The latter procedure re-

quires self-consistent deterniination of the self-energy as a function of nionientuni and fre-

quency E« (k,ikn) and is usually quite coniputationally involved. However, even when this

procedure to calculate the self-energy is not followed, it turns out to be rather easy to sat-

isfy this theoreni to an excellent degree of approxiniation in the weak to interniediate cou-

pling regime. The reason for this is that any frequency-independent self-energy will preserve

Luttinger's theoreni and weak frequency dependence will not cause great harni. For the electron

gas, Luttinger [28] suggests a way to build a perturbation theory in ternis of non-interacting
Green's functions which allows to satisfy Luttinger's theoreni to very good accuracy. The

trick is that the cheniical potential for the interacting electrons ~t should always enter the

calculations in the forni of the difference witl'the shift of the self-energy on the Fernii surface

Go
"

I/[ikn
ek + (il Xi (kF, 0))]. The "non-interacting" Green's function Go in this for-

nialisni is the Green's function of sortie effective non-interacting systeni and, in general, it is

different front both I / (ikn ek + il) and I / (ikn ek + ~Lo) However, when T ~ 0 Luttinger's
theoreni requires that (~t Xi (kF, 0)) ~ ~to and one can approxiniate Do by the Green's func-

tion for a non-interacting systeni of the saute density Go
"

I / (ikn ek + ilo) In practice, one

can also have a phase transition (or crossover) at a finite teniperature Tc (Tx). In these cases

Luttinger's theoreni is satisfied only approxiniately since the zero-teniperature liniit cannot be

reached without a breakdown of perturbation theory. Then the relevant question is how well

it is satisfied at Tc (Tx) (see also Sect. 3.2.2 for a discussion of Luttinger's theoreni in our

approach).
When Luttinger's theoreni holds, one can usually develop a Landau Fernii liquid theory. In

this approach, the Pauli principle is inipleniented only for nionientuni states near the Fernii

surface by iniposing the forward scattering surf rule. This surf rule, in two diniensions, reads

~ ll ~F/ ~
l ~F/~ ~ ~~'~~~

where F] and F/ are the syninietric and antisyninietric Landau paranieters expanded on the
e~~" basis instead of the Legendre polynoniial basis. Recent renornialization group analysis
has however clainied [84] that the forward scattering surf rule conies front an inaccurate use of

crossing syninietry and is not the proper way to enforce the Pauli principle. Most approaches
to the many-body probleni disregard this surf rule anyway, in the saute way that they disregard
the local Pauli principle.

Appendix B

Proofs of Various Formal Results

In this appendix, we give the proofs of various relations nientioned in Sections 3 and 3.2.3.

1. The general expression for the self-energy (Eq. (27)) can be obtained as follows. Use the

equations of niotion and the definition of the self-energy (Eqs. (A.2, A.3)) which in the

present notation give

E« (I, T) G« (I, 2)
=

-U (T~ [~l±~ (l++) ~fi-« (I+) ~fi« (I) ~fi$ (2)) (B.I)

~
~

d~~) ~)~~)
~~~ ~~'~~~ ~~ ~'~~~ ~~'~~
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Substituting the equation for the three-point susceptibility (collective triodes) (Eq. (2fi))
in this last equation and niultiplying on both sides by G~~ proves [27] the expression
(Eq. (27)) for the self-energy.

2. We now show that our approach satisfies the consistency requirenient between single-
particle properties and collective triodes in the forni of equation (48). Using our expression
(Eq. (4fi)) for E(~) and the definition of xo (Eq. (A.19))

we obtain

lint ~j Ef~(k)G$°~(k)e~~~~~
=

Un(~ (
~j[Uspxsp(q) + UchXch(q))

°j~~
(B.3)

~~°~
k q

Using

xspiq) xo (q)
=

)xo
IQ) xsp IQ) (B.4j

Xo (Q) Xch(Q)
" (~Xo (Q) Xch(Q) lB.5)

and the local monient (Eq. (38) and local charge (Eq. (37))
surf rules proves the result.

The result is also obvious if we follow the steps in the first part of this appendix to

deduce the self-energy expression (Eq. (31)) using the collective niode equation (Eq. (30)
adapted to our approxiniation.

Appendix C

Ansatz for Relation between Usp and (n,n11

Using the present notation and fornialisni, we now give a physical derivation of equation (40)
that is equivalent to the one already given using the equations of niotion approach [29]. (The
latter derivation was inspired by the local field approxiniation of Singwi et al. [31]). Since our

considerations on collective triodes are independent of the precise value of the interaction U,

we do have to use the equations of niotion, or the equivalent, to feed that inforniation back in

the definition of irreducible vertices. The two irreducible vertices that we need are in principle
calculable front

The rewriting on the right-hand side has been done to take advantage of the fact that

in the Hubbard niodel, the equations of niotion (see Eqs. (A.2, A.3)) give us the

product E~(I,I)G~(T,§)
as the highly local four field correlation function

-U (T~ [~fi+~ (i++) ~fi-~ (i+)
~fi~

(ii ~fi$ (§)) ). Ordinary RPA amounts to a Hartree-Fock fac-

toring of this correlation function. Pursuing the philosophy that the mininiuni nuniber of

approxiniations should be done on local correlation functions, we do this factoring in such a

way that it beconies exact when all points are identical, namely when §
=

i+ In other words,

we write

U (T~ [~fi±~(i++)~fi-~(1+)~fi~(i)~fi$ (§)j
mu

U
~~' ~~~ ~~ ~~~~ G-~(i,1+)G~(1, §). (C.2)
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All quantities are evaluated as functionals of G up to this point. We can now evaluate the

functional derivative

>z« 11, ~~
d

iu-G-« ii, i+) d (1
)1

~~ ~~dG«, j3, 4j dG«, (3, 4)

~ ~~~~~~~~~
~~~

~~~ ~~~ ~ ~~ ~~ ~ ~ ())~(~
~~)~~l

~~Gl'~>~~ ~ ~~ ~~' ~~'~~

The functional derivatives are now evaluated for the actual equilibriuni value of G. Hence, we

can use rotational invariance to argue that the first terni is independent of
a and a' whereas

the last one is proportional to d-«,«,. Since Usp
=

r,i r,,, only this last terni proportional
to d-«,«, contributes to Usp. To obtain this terni, it suffices to note that

dG
a

(I l~)
dG~, ii, 4) ~

~~~~~'~ ~~ ~) ~ (4 l~) (C.5)

and we obtain the desired result (Eq. (40)) for Usp.

Appendix D

Real-Frequency Analysis of the Self-Energy and Fermi Liquid Limit

It is instructive to recover the two-diniensional result for precursors of antiferroniagnetic bands

using the real-frequency fornialisni since it also clarifies the liniit in which the Fernii liquid
result is recovered. Again

we neglect the contribution of charge fluctuations. Starting front

our expression for the self-energy (Eq. (46)),
one uses the spectral representation for the

susceptibility and for G(°) The Matsubara frequency surfs can be then done and the result is

trivially continued to real frequencies [85]. One obtains, for the contribution of classical and

quantuni spin fluctuations to the self-energy in d diniensions

zR (k, w)
= ~ISP

/ ] / ~i' in (ml) + / (e~+q)1
~ + j~

II ~~ill~
~~~

(D.i)

where ~to "
0 at half-filling in the nearest-neighbor niodel and where f is, as usual, the Fernii

function, while n (uJ)
= (efl~ -1)~~ is the Bose-Einstein distribution. To analyze this result

in various limiting cases we need to know niore about the frequency dependence of the spin
susceptibility. When the antiferroniagnetic correlation length is large, the zero-frequency result

(Eq. (50) mentioned above can be generalized to

l(D.2)~~ ~~ ~ ~~, w) m f~
)

i + q~f~ ~"/"~~

where, uJsF =

D/(~ is the characteristic spin relaxation frequency. In the notation of reference

[33], the microscopic diffusion constant D is defined by

j
"

) (~.~)

with the microscopic relaxation time,

To =

~X) (Qd, UJ)

~° ~~~~ ~~"
w=o

(DA)
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This relaxation-time is non-zero in models where the Fermi surface intersects the magnetic
Brillouin zone. Clearly, the frequency dependence of x((q + Qd, uJ) is on a scale uJsF =

D /(~.
The I/uJ decrease of y[[ at high-frequency is not enough to ensure that the real frequency
version of the local-moment sum rule is satisfied and the simplest way to cure this problem

is to introduce [86] a high-frequency cutoff Qcut. The large correlation length makes the

characteristic energy of the spin fluctuations uJsF a
small number (critical slowing down). We

consider in turn two limiting cases [87]. The Fermi-liquid regime appears for uJsF » T and the

non-Fermi liquid regime in the opposite (renormalized classical) regime uJsF < T.

D.I. FERMI LIQUID AND NESTED FERMI LIQUID REGIME uJsF » T. Perhaps the best

known characteristic of a Fermi liquid is that E"~ (kF, uJ; T
=

0) oc uJ~ and E"~ (kF,
uJ =

0; T)
oc

T~.

To recover this result in the regime uJsF » T far from phase transitions, we start from the

above expression (Eq. (D.1)) for the self-energy to obtain

~"~ ~~~'"~ ~~~ ~F ~7r~~~ ~~'

~ lTl
("') + f (" + "')I

X$p (~1, ~ii (~1> kF> ",
"') "') (D.5)

where qjj, the component of q parallelto the Fermi momentum kF,is obtained from the solution

of the equation

The key to the Fermi
liquid versus on-Fermi liquid egime is in the relative

width in frequency of x[[
(q,uJ')

/uJ'
ersus he idth of the combined Bose and Fermi unc-

tions. In the function n (uJ') + f (uJ + uJ') epends on uJ' on
a

far from
a hase ransition,

the xplicit
frequency dependence of x[[ (q,uJ') /uJ' is on a scale

uJsF ~ EF » T.
ence,

in
this case we can assume that x[[ (q, uJ') /uJ' is

quency range over
hich n(uJ') + f(uJ + uJ')

differs from zero. Also, since
x[[(q, uJ') /uJ' depends

on wave vector q over a scale of order qF, one can
neglect

the uJ

tained from equation
D.6). Hence,

we can pproximate our
xpression (Eq. (D.5)) for E" by

here the
=

fl~
owed the

ntegral
to be

exactly
A + /

(~~) ~
w-O

UJ
In general, A depends on the

orientation of the Fermi wave vector, iF, because it etermines

the choice of parallel and
perpendicular

the well known Fermi
liquid result.

There are nown rrections to the
Fermi liquid self-energy that come from the n-analytic

uJ'/vfq ehavior of x[[ (q,uJ') /uJ' near the ferromagnetic (zone enter) wave

dimensions
[88]

this leads to bdominant uJ~lnuJ corrections,
while

in two

imensions it leads to
the dominant uJ~ lnuJ behavior

[89,
90]. In the

the ntiferromagnetic
ontribution has a

larger
refactor. Even when it dominates however, it
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In two dimensions, the logarithmic divergence of the density of states Nd(f) at the van

Hove singularity makes the zero-frequency limit of the microscopic relaxation time (Eq. (D.4))
ill-defined, because of the logarithmic divergence at uJ =

0. However, this leads only to logarith-

mic corrections. If we drop logarithmic dependencies, then for
uJ < T one has

bx) (Qd, uJ) /biuJ(~~~
mu

I IT and this I IT dependence of bx) (Qd,uJ) /biuJ(~_~ changes the

temperature dependence of E"~ (kF, 0) from T~ to T as discussed in the "Nested Fermi Liquid"
approach [91].

D.2. NON-FERMI LIQUID REGIME uJsF « T. Near an antiferromagnetic phase transition,

the spin-fluctuation energy beconies niuch snialler than temperature. This is the renornialized

classical reginie. The condition uJsF < T nieans that x[[ (qi,
qjj uJ') is peaked over a

frequency
interval uJ' < T niuch narrower than the interval uJ'

mu
T over which n (uJ') + f (uJ + uJ') changes.

This situation is the opposite of that encountered in the Fernii liquid reginie. To evaluate E"~

(Eq. (D.5)) the Fernii factor can now be neglected conipared with the classical liniit of the Bose

factor, T/uJ'. Then the doniinant contribution to E"~ (kF, uJ) is front classical spin fluctuations

T f ~f')x[[
=

Tx[~ ci Ssp as we see below. More specifically, we take into account that

the integral is peaked near Q #(7r,7r) and nieasure wave vector with respect to the zone

center. For siniplicity we consider below the half-filled case ~to "
0. Then, with the help of

ek+q+Q " -ek+q we approxiniate the equation for qjj
(Eq. (D.fi)) by vfqjj = (uJ + uJ'). This

gives us for equation (D.5) the approxiniation

E"~ (kF,uJ) m ~(~P
£ / ~~

j~( / ~"'
~jx([ (qi, qjj "

-" ~ "'i J')
(D.10)

vF (27r) 7r uJ vF

The dependence of x[[
on

uJ' through qjj =
-(uJ + uJ') /vF niay be neglected because qjj appears

only in the combination ((~~ + q + q( and in the reginie uJsF < T we
have uJ'/vF < uJsF/vF

~

D(~~/vF < (~~ The latter inequality is generically satisfied when (~~ < l. Using

T
/ ~l' ,X$p Q1>

~ii "

~)i"')
"

TXlp
Q1,

Qii ~

~)i ion
" o) (D'~l)

=
~~

~

~

~

(D.12)
sP(o j-2 + q2 + (m)

~ "F

the above equation (Eq. (D,10)) for E"~ (kF, uJ) reduces precisely to the classical contribution

found using imaginary-time formalism (Eq. (55)). As we saw in Section 5.I,i, when the condi-

tion ( > (th is satisfied, then this contribution is doniinant and leads to

liniT-o E"~ (kF, 0) ~ oo.

Appendix E

Expanded Discussion of Other Approaches

This appendix expands in Section 8 to discuss in detail various theories, explaining the advan-

tages and disadvantages of each in the context of the sets of constraints described in Appen-
dices A.2 and A.3.

E.I. PARAMAGNON THEORIES. In standard Paramagnon theories [32, 4fi], the spin and

charge fluctuations are computed by RPA, using either bare or dressed Green's functions. Then

the fluctuations are fed back in the self-energy. In fact there is a whole variety of paramagnon
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theories. They are largely phenomenological. The reader is referred to reference [4fi] for a

review.- We concentrate our discussion on recent versions [52] of the so-called Berk-Schrieffer

formula [92]. In this approach, infinite subsets of diagrams are summed and bare propagators

are used in the calculation of both the susceptibilities and the self-energy, the latter being given
by

Ef~ lk)
"

Un-a +
) ( L [(3UX7~(q) 2UXo(q)) + UXT~(q)I G$(k + q). (E.I)

q

The RPA spin and charge susceptibilities have been defined in equations (A.17, A.18). Com-

paring with our self-energy formula (Eq. (4fi)), it is clear that here there is no vertex correction.

In addition, the factor of three in front of the spin susceptibility in equation (E.I) is supposed
to take into account the presence of both longitudinal and transverse spin waves and the

subtracted term is to avoid double-counting the term of order U~.

We can now see the advantages and disadvantages of this approach. First, note that the sus-

ceptibilities entering the Berk-Schrieffer formula are the RPA ones. As we saw in Appendix A,
these fail to satisfy both the local Pauli principle and the Merniin-Wagner theoreni. Hence,
spurious phase transitions will influence the self-energy in uncontrollable ways. The collective

triodes do however satisfy conservation laws since they are obtained with bare vertices and

Green's functions containing a constant self-energy. The f-surf rule (Eqs. (A.22)) then is

satisfied without renornialization of the distribution function nk because the zeroth order self-

energy is constant. This is all in agreenient with the definition of a conserving approxiniation
for the collective triodes.

The high-energy asyniptotics of the self-energy sets in at the correct energy scale kn > W in

this approach, but the second terni of the large-frequency asyniptotics is incorrect. Indeed, at

large values of ikn,

lint E$~ (k)
=

Un-~ +
~ ~j [3Ux(~~(q) + Uxfl~~(q) 2Uxo(q)j + (E.2)

~~~~°° ~~~~ ~
q

and the surfs can be evaluated as follows using the fluctuation-dissipation theoreni

( ~ xt~~io)
=

2 mini) 2 mini) iE.3)

( lI xt~~(Q)
=

2 ininii + 2 ininii n~ (E.4)

q

~n ~2

~
~j Xo(Ql

" n ~. (E.5)

q

The correlators on the right-hand side take their RPA value so they do not satisfy the Pauli

principle, I-e- (n~n~) # (n~). Taking these results together we have

~
n (E.fi)

~~j~~ zis (k)
=

un-« +
) 2 l~~~~l ~~~~~~

~
~

This does not gives the correct asyniptotic behavior (Eq. (68)) even if the Pauli principle
(n~n~)

=
(n~) were satisfied, because (n~ni) depends on the interaction U.
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The Paraniagnon self-energy (Eq. (E.I)) also does not satisfy the consistency requirenient
(Eq. (45)) between self-energy and collective triodes iniposed by the equations of niotion. To

see this we first note that

fi~
~ ~ zBS j~) ~(0) (~j ~-iknr

r-o- N
~

~ ~

"

Unl« ( ~ [3X7~(q) + XT~(q) 2Xolq)] Xo (q) lE.7)

q

Using this expression in the surf-rule (Eq. (45)) which relates one and two-particle correlators

and expanding both sides of this surf-rule in powers of U, one finds that it is satisfied only

up to order U~. On the other hand, if one replaces 3xsp 2Xo in equation (E,I) by xsp, the

surf-rule (Eq. (45)) is satisfied to all orders in U. In our opinion, the probleni of enforcing
rotational invariance in approxiniate theories is highly non-trivial and cannot be solved siniply

by adding factor of 3 in front of Xsp and then subtracting 2xo to avoid doub(e counting. For

niore detailed discussions see reference [50] and the coninients at the end of Section 3.2.2.

Luttinger's theorem is trivially satisfied if the occupation number is calculated with the

initial constant self-energy since it gets absorbed in the chemical potential. If the occupation
number is calculated with the Green's function that contains the Berk-Schrieffer self-energy

then Luttinger's theorem is in general violated. It is advisable to use a new chemical potential.

E.2. CONSERVING APPROXIMATIONS (FLEX). in the conserving approximation
schemes [2fi], one takes any physically motivated subset of skeleton diagrams to define a

Luttinger-Ward functional 4~. Skeleton diagrams contain fully dressed Green's functions and

no self-energy insertions. This functional is functionally differentiated to generate a self-energy
that is then calculated self-consistently since it appears implicitly in the Green's functions

used in the original set of diagranis. A further functional differentiation allows one to calculate

the irreducible vertices necessary to obtain the collective triodes in a way that preserves Ward

identities. If one uses for the free energy the forniula

In Z
=

Tr [In (-G)] + Tr (EG) 4~ (E.8)

then one obtains therniodynaniic consistency in the sense that therniodynaniic quantities ob-

tained by derivatives of the free energy are identical to quantities coniputed directly front the

single-particle Green's function. For exaniple, particle nuniber
can be obtained either front a

trace of the Green's function
or front a cheniical potential derivative of the free energy. In this

schenie, Luttinger's theoreni is satisfied as long as perturbation theory conver)es since then

any initial guess for the Luttinger-Ward functional will satisfy Luttinger's theoreni.

FLEX refers to a particular choice of diagranis for 4~. This choice leads to the following
self-consistent expression for the self-energy

Ef~ lk)
"

Un-a +
) ( ~ [(3U17~lq) 2Uio(q)) + UiT~lq)] Galk + q). lE.9)

q

This expression for the self-energy does not contain vertex corrections, despite the fact that,

contrary to the electron-phonon case, Migdal's theoreni does not apply here. We have explained
in detail in Section 6.2 why this niay lead to qualitatively wrong results, such as the absence

of precursors of antiferroniagnetic bands and of the pseudogap in A(kF, uJ) in two diniensions.

Another drawback of this approach is that it does not satisfy the Pauli principle in any
forni, either local or through crossing syninietry [93]. Indeed, one would need to include
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all exchange diagranis to satisfy it. In practice this is never done. In the saute way that there

is nothing to constrain the value of (n~n~) obtained by the fluctuation-dissipation theoreni to

be equal to (n~), there is nothing to explicitly constrain the value of (n~n ii. Nevertheless, the

Merniin-Wagner theoreni is believed to be satisfied in FLEX because the feedback through the

self-energy tends to prevent the divergence of fluctuations in low diniension [38, 94]. Physically
however, this seenis to be an artificial way of satisfying the Merniin-Wagner theorem since

this theoreni should be valid even in localized spin systenis where single-particle properties are

negligibly influenced by thernial fluctuations. We also point out that the proof of the Merniin-

Wagner theoreni in n ~ oo niodels iniplies that the finite teniperature phase transition in two

diniensions is not siniply renioved by thernial fluctuations, but that it is replaced by a crossover

to the renornialized classical reginie with exponentially growing susceptibility. The fact that

the conserving susceptibility in FLEX does not show such behavior [38] nieans that FLEX

is actually inconsistent with the generic phase space argunients responsible for the absence

of finite-teniperature phase transition in two diniensions. The case of
one diniension also

suggests that collective triodes by theniselves should suffice to guarantee the Merniin-Wagner
theoreni without feedback on single-particle properties. Indeed, in one diniension one shows

by diagraniniatic niethods (parquet suniniation or
renornialization) that the zero-temperature

phase transition is prohibited at the two-particle level even without self-energy effects [8].
Although, the second-order diagram is included correctly in FLEX, it does not have the cor-

rect coefficient in the I likn expansion of the self-energy. More importantly, the high-frequency
behavior sets-in too late to give the Hubbard bands,

as we have explained in Section 6.2. We

have also seen a case where FLEX, as judged from comparisons with Monte Carlo simulations

(Fig, la of Ref. [30] ), does not reproduce the results of second-order perturbation theory even

when it is a
good low-energy approximation.

One of the inconsistencies of conserving approximations that is seldom realized, is that the

self-energy is inconsistent with the collective modes. In other words, the consistency formula

(Eq. (44)) is not satisfied in the following sense. The explicit calculation of EG leads to an

estimate of U (n~n ii that differs from the one obtained by applying the fluctuation-dissipation
theorem to the conserving spin and charge susceptibilities.

E.3. PSEUDO-POTENTIAL PARQUET APPROACH. In the parquet approach, one enforces

complete antisymmetry of the four point function by writing down fully crossing-symmetric
equations for these. There are three irreducible vertices, namely one for the particle-particle
channel, and one for each of the two particle-hole channels. They obey the so-called parquet

equations [95]. The Green's functions are dressed by a self-energy which itself contains the four

point function. In this way, self-consistency between one-particle and two-particle quantities

is built-in. Solutions are possible for the one-impurity problem [96] and in one-dimension [8].
However, to solve the parquet equations in higher dimension with presently available computing

power is impossible. Bickers et al. [25,53] have formulated the parquet equations as a systematic

improvement over FLEX and have devised a way to do practical calculations by introducing
so-called pseudo-potentials. Since the main computational difficulty is in keeping the full

momentum and frequency dependence of the four point functions entering the calculation of

the self-energy, this is where the various fluctuations channels are approximated by RPA-like

forms (Eq. (A.25)) but with fully dressed propagators and an effective interaction (pseudo-
potential) instead of U. A different strategy is under development [94]. The criticism of the

present section applies only to the current pseudo-potential parquet approach [25, 53].
It can be seen that one drawback of this approach at the physical level is that the use of

constant effective interactions with dressed single-particle propagators means that the fluctu-

ations used in the calculation of the self-energy do not satisfy conservation laws, as we just
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demonstrated in Section A.3. Furthermore, the pseudopotentials are determined by asking that

the susceptibilities extracted from the four-point functions in the parquet equations match the

corresponding RPA-pseudo-potential susceptibility at only one wave vector and frequency. The

choice of this matching point is arbitrary: should the match be done for the typical, the average,

or the maximal value of the susceptibility in the Brillouin zone?

As we have seen in Section 6, even if the expression for the self-energy in this approach
explicitly has the second-order perturbation theory diagram in it, this is not sufficient to ensure

that the correct high frequency asymptotic behavior starts at the appropriate frequency scale

ikn
mu

W. Nevertheless, in many cases the results of the calculations performed with this

approach are not so different from second-order perturbation theory, as can be seen from

Figure I of reference [30].
Going rapidly through the rest of our list of properties, we see that the consistency re-

quirement E~ (i,I) G~ (T, I+)
=

U (n~n ii is at least approximately built-in by construction.

Concerning the local-moment sum-rule and the Mermin-Wagner theorem, it has been shown

that the so-called "basic" parquet equations should have the same critical behavior as the

leading term in the I IN expansion [97], and hence should satisfy the Mermin-Wagner theo-

rem [94], The pseudo-potentials should not affect the self-consistency necessary to satisfy the

Mermin-Wagner theorem but the fact that they are matched at a single point might introduce

difficulties, especially if the wave-vector at which xsp becomes unstable is unknown from the

start. As far as the Pauli principle is concerned, it should be at least approximately satisfied

both locally and in momentum space. Nothing however in the approach enforces conservation

laws.

E.4. PRESENT APPROACH. The role of the above sum-rules in our approach has been

discussed in detail in the main text. Here we will discuss only a few additional points.
If we concentrate on the q =

0 properties, our spin and charge correlations behave as a special

case of the "local Fermi liquid" defined in reference [98]. A "local Fermi liquid" is a description
of q =

0 properties that applies when the self-energy, and consequently irreducible vertices,
depend only on frequency, not on momentum. In a

local Fermi liquid there are only two Landau

parameters, which in our case are F?
=

-Uspxo (0+, 0) /2 and F]
=

Uchxo (0+, 0) /2. Unitarity
and the forward scattering sum rule, if valid, imply that there is no ferromagnetism in the

repulsive case [98], as we have found. One can check explicitly that the forward scattering sum

rule is satisfied to within about 15% in our usual Monte Carlo parameter range. However, as

discussed in Appendix A.4, the forward scattering sum-rule refers only to wave vectors on the

Fermi surface, not to the local version of the Pauli principle. Furthermore, the validity of this

sum rule has been questioned [84]. The effective mass at this level of approximation is the bare

one, as in a transitionally invariant local Fernii liquid [98]. Recall however that our niicroscopic
calculations are not phenonienological: they explicitly give a value for the Landau parameters.

Also, our results extend well beyond the q =
0 quantities usually considered in Fernii liquid

theory.

The quasi-particle weight Z calculated with Ei~
can differ substantially front the initial one.

This nieans that if we were to calculate the susceptibility with the corresponding frequency and

nionientuni dependent irreducible vertices r°~ there would be sizeable conipensation between

vertices and self-energy because our calculations with Ef~ (Z
=

I) and constant renornialized

vertices already gave excellent agreenient with Monte Carlo siniulations.

Finally, consider the high-frequency asyniptotics. Since we use bare propagators, the high-
frequency asyniptotics conies in at the appropriate frequency scale, naniely ikn

mu
W and the

Hubbard bands do exist in our theory. However, the coefficient of proportionality in front

of the asyniptotic forni llikn is incorrect. Using equations (46, A.14, A,15)
we can write
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the high-frequency asyniptotics in the following forni

lint E~ (k, ik~)
=

Un-~ +
~ l~P ~ ~~

(n~ ~)
ikn-on ikn 2

Uchn~
«

+
~~~ i ~~~

(mail + (E.1°)

This forni is useful to understand what is necessary to obtain the quantitatively correct high-
frequency behavior. Indeed, one would recover the exact result (Eq. (68)), if one were to

take into account that: I) the irreducible vertices beconie equal to the bare one U at high-
frequencies; it) the local Pauli principle (fi~ ~)

= n-a is satisfied. Contrary to niost other

approaches, our theory does satisfy the local Pauli principle (Eq. (A.12)) exactly. However,
since our irreducible vertices are constant and tuned to describe the low energy physics, we

violate the first of the above requirenients. It is thus clear that for
a correct quantitative

description of both the low energy physics and the Hubbard bands one needs to work with

frequency-dependent irreducible vertices.
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