
HAL Id: jpa-00247394
https://hal.science/jpa-00247394

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Excitons in V-Shaped and T-Shaped Semiconductor
Quantum Well Wires

Dirk Brinkmann, Axel Löffler, Guy Fishman

To cite this version:
Dirk Brinkmann, Axel Löffler, Guy Fishman. Excitons in V-Shaped and T-Shaped Semiconductor
Quantum Well Wires. Journal de Physique I, 1997, 7 (10), pp.1221-1231. �10.1051/jp1:1997119�.
�jpa-00247394�

https://hal.science/jpa-00247394
https://hal.archives-ouvertes.fr


J. Phys. I FYance 7 (1997) 1221-1231 OCTOBER1997, PAGE1221

Excitons in V-Shaped and T-Shaped Semiconductor Quantum
Well Wires

Dirk Brinkmann, Axel L6fller and Guy Fishman (*)

Laboratoire de Spectrom4trie Physiqiie (**), Universit6 Joseph Fourier, Grenoble I, BP 87,

38402 Saint Martin d'Hbres Cedex, Flance

(Received 17 February 1997, revised 28 Alay 1997, accepted 23 June 1997)

PACS.73.20.Dx Electron states in low-dimensional structures (superlattices,
quantum well structures and multilayers)

PACS.78.SS.Cr III-V semiconductors

Abstract. We give a general framework for describing electronic states in isolated quantum
wires. It provides a description of both the conduction band and the valence band, taking
full account of the complexity of the r8 valence band. This is applied to T-shaped wires and

V-shaped wires. To make a useful comparison with experimental results we calculate the exciton

Rydberg. We show that in the case of the T-shaped wires hole confinement is due to the

interaction with the confined electron and not due to the confining potential: the red shift of

the wire exciton line with respect to that of the quantum well is mainly due to the decrease of

the electron confinement energy and only partially to the increase of the exciton Rydberg. The

experimental results are reproduced with no adjustable parameters.

1. Introduction

Among the quantum wells (QWS) liable to describe the potential in quantum physics, the

finite square QW plays a special role because the Hamiltonian is exactly soluble. This means

that the Schr6dinger equation can be reduced to a transcendental equation which gives all

the coefficients of the analytical shape of the wave function. Finite square QWS are not very

common except- in two-dimensional (2D) semiconductors where the electrons are confined in

one direction, so that the finite square QW describes very well the physical situation in the

effective mass approximation, which is the framework of this paper. In 2D semiconductors,

two masses, one inside the well and one in the barrier, are necessary to describe the con-

duction electron but this again leads to a transcendental equation iii. In a quantum wire,

henceforth called a wire, the electrons are confined in a 2D potential and the problem is

different; the potential is not separable, except in very special cases, and the Schr6dinger
equation is a partial differential equation: it is no longer a trivial problem to obtain the elec-

tron energy even for the conduction band. The problem is not academic because of progress

in making semiconductors wires (also called one-dimensional semiconductors) which invites

comparison between the experimental results, particularly the photoluminescence lines, and

the theory [2-16j. In recent years, measurements have been performed on wires of several
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types: V-shaped quantum wires (VWI) [5, 6, 9, 10j, T-shaped quantum wires (TWI) [3, 7, 16j,
and quantum wires with Strain-induced lateral confinement (SWI) [2,13j. A theoretical study
of SWIS has already been published [13,14j so that in the present paper we deal only with

VWIS and Tlvls. Although the shapes are very different these wires have at least three points

in common: ii the potential is not separable, iii the wires are isolated and iii) the three types

of wires are parallel to the >110j direction (or any equivalent crystallographic direction). From

a theoretical viewpoint the main problem is linked to the fourfold degeneracy of the valence

band ii?]. The problem of the valence band dispersion was first solved by assuming either

that the potential is separable [18j, or that the wires form a
superlattice jig], the wires being

oriented along [001j. Recently the valence band dispersion was calculated in a VWI [4, 8, lsj,
the wire being oriented along [l10], and in a TWI ill,15]. To perform this calculation we

use the same symmetrized Luttinger Hamiltonian as in references [8,18j and we take into ac-

count the exact (finite) potential. However the luminescence lines were attributed to excitons

in the wire so that it is not enough to know the conduction electron energy and the valence

band dispersion: a meaningful comparison between the experimental and theoretical transi-

tion energies requires the knowledge of the exciton Rydberg as well. The aim of this paper is

to present a calculation of the excitonic energies in VWIS and TWIS taking into account the

exact valence band symmetry. This provides an unambiguous understanding of the origin of
(he luminescence lines reported in references [3, 5j.

Throughout the present paper, the direction along the length of the wire is taken as both

the z-axis and the spin quantization axis, and the radial vector is p =
ix, vi. The free electron

mass is taken as unity.

2. V-Shaped Quantum Wires

We deal with the VWI whose shape is described in reference [5]. The GaAs wire is surrounded

by a barrier in GaAlAs. The photoluminescence (PL) spectra give the energy of the el-h1

and e2-h2 excitons with which we are dealing. We need to know the exact shape of the VWI

to perform the calculation. We start from a TEM micrograph from reference >20] and model

the shape of the boundary between GaAs and GaAlAs with an accuracy of the order of one

monoatomic layer: to go beyond this accuracy has no physical meaning. Figure 1 gives the

potential modelization we use.

We then calculate the energies and the wave functions following the multi-component vari-

ational method of reference [21], which is suited to isolated QWS and which we have ex-

tended for isolated wires along the [l10] direction. We recover the (envelope) wave func-

tion xe =
xe(pe) of the conduction band [5] and the wave function xh =

xh(ph) of the

valence band [10,15]. In a wire the jJM) components are strongly mixed even at k
=

0,

where k is the one-dimensional wave vector. The hole wave function xh has two components

xh ~ f$~/~(ph) (3/2 £ 3/2) + f~~/~(ph) (3/2 ~ l/2) (the two functions are Kramers conju-

gate). The electron and hole ground state (el-hl)
wave functions are given in Figure 2 and

the first excited state (e2-h2) wave functions are shown in Figure 3. Both are given for a zero

wave vector. We have obtained the dispersion curve of the conduction band and the valence

band as well. The first two conduction bands (el and e2) are described by an effective mass of

0.067: We have taken into account the larger mass in the barrier but this does not change the

e1 and e2 masses up to 0.01 l~~. The first two valence bands (hi and h2) are quite reasonably

described by masses mhi "
0.13 and mh2 "

0.20 respectively up to a wave vector equal to

o,ol i~~,
as shown in Figure 4. Owing to the structure of Xh the symbols hi or h2 merely

index the valence subbands without any relation to heavy or light holes with the quantization
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Fig. I. Potential profiles of a) the V-shaped wire (VWI) and b) the T-shaped wire (TWI) studied

in this paper. The modelization of the VWI is based on reference [20]. The geometry of the TWI is

that given in reference [3).

axis parallel to the wire. However if the quantization axis is perpendicular to the wire the

holes are mainly heavy or light with the terms usual in quantum wells [15].

Once the masses and the envelope functions are known, we are in a position to calculate the

exciton by a variational approach of the type often used in QWS [22]. The exciton Hamiltonian

is H
=

p~ /2p e~ ler where e is the background dielectric constant, I Iv
=

1/me +1/mh where

mh = mhi for the el-hl exciton and mh = mh2 for the e2-h2 exciton. With this Hamiltonian,
the potential confinement is taken into account via the trial function il

=

xexhe~'~'/~ where z

is the in-wire distance between the electron and the hole and I is a variational parameter that

plays the role of a Bohr radius. The form of the hole wave function leads to a two component
exciton wave function in a wire. We find that the Bohr radius I is equal to 193 I for el-hl and

203 I for e2-h2: these values are consistent with the condition that l~~ (about 0.005 l~~) is

far smaller than the range of validity of the effective mass description of the carriers (0.01 l~~)
as shown in Figure 4. Were this condition not fulfilled, the exciton calculation would have no

meaning. The exciton Rydbergs are respectively 9.5 and 8.0 mev. This small difference is due

to the fact that the Bohr radii are close because the reduced masses /~ are not very different

(respectively 0.044 and 0.050). Thus the difference between the exciton transition energies
results mainly from different confinement energies for the excitons el-hl and e2-h2 (called

n~ =
I and n~ =

2 in Ref. [5]).
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Fig. 2. Probability of finding the electron and the hole in their ground state (el-hl) in the V-

shaped wire (VWI) described in reference [12). The wave vector parallel to the wire is equal to zero.

a) The squared modulus of the conduction band ground state wave function. b) The squared modulus

of the (3/2 ~ 3/2) component of the valence band ground state wave function hi. cl The same as in

b) but for the (3/2 ~ l/2) component. The spin quantization axis is parallel to the wire throughout
the present paper.

The exact shape of the VWI used in the experiments has a large influence of the energies of

excitons el-hl and e2-h2 but a smaller influence on the splitting between these two lines. Thus,
although we did not perform a calculation on exactly the same sample as in reference [5], it

makes sense to compare the calculated splitting to the experimental one. The energy splitting
calculated from the data of reference [20] between the excitons el-hl and e2-h2 is 22 mev

while the experimental splitting in reference [5] is measured to be 20 mev with a FWHM of

the order of10 mev. This fully confirms the interpretation made by Itinaldi et al. of their two

lines [5].
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Fig. 3. Probability of finding the electron and the hole in their first excited state (e2-h2) in the

same VWI as in Figure 2. The wave vector parallel to the wire is equal to zero. a) The squared
modulus of the first excited state wave function of the conduction band. b) The squared modulus of

the (3/2 ~ 3/2) component of the valence band first excited state wave function h2. cl The same as

in b) but for the (3/2 ~ l/2) component.

3. T-Shaped Quantum Wires

The TWI fabricated with GaAs-GaAlAs is a
different case. We are interested in the low

excitation PL spectra in Figure 4 of reference [3], where the various lines are identified as

originating from the TWI and from the two QWS that form the vertical part of the T (growth
axis in the [001] direction) and the horizontal part of the T (growth axis in the II10] direction)

so that the wire is along the >I -I oj direction. The geometry is given in Figure I. In the

following we write 001 and l10 as subscripts to distinguish the two QWS. The width of each

QW is 70 1; each [001j QW is separated by 380 I.

First we calculate the energies of the QWS whose valence band dispersion curves are given
in Figure 5. The calculation is performed in the axial approximation which gives averages

over all the directions of the in-plane wave vector k. The confinement energies at k
=

o are
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Fig. 4. Dispersion curve of valence band energy of the VWI. The VWI has no inversion center, so

the spin degeneracy is lifted. The wave vector is parallel to the wire. The indices hi and h2 correspond

to the hole ground state and to the first excited state but not to the heavy or light hole which has no

meaning in such a wire (see Figs. I and 2). The average masses mini =
0.13 and mh2 =

0.20 are valid

up to wave vectors about equal to 0.01 i~~, that is larger than the inverse of the Bohr radius of the

exciton el-hl and e2-h2 (see text).

Ee
=

55. I mev for the electron in both the QWS (the conduction electron mass is isotropic)
and Ehooi

"
12.6 mev and Ehiio

"
7.6 mev, while the masses mh of the first valence band in

each QW are mhooi =
0.19 and mhiio #

0. ii: these masses are used to calculate the exciton

Rydberg in the two QWS (see below). For the >001j QW the symbols hhn and lhn mean heavy
and light hole as usual. For the ii10j QW the symbols 'hhn' and 'lhn' mean heavy and light
hole only in the axial approximation used here. In the general case the wave functions hhn and

lhn do not correspond to the wave functions j3/2 £ 3/2) and j3/2 £ 1/2) respectively, even at

k
=

o (see Ref. >21j). The range where the effective mass of the hole has a meaning is of the

order of 0.02 i~~ The exciton Rydberg Rx calculated by a method similar to that used in

Section 2 is 7.2 mev for the vertical QW and 7.0 mev for the horizontal QW. The Bohr radii

are respectively 137 and 147 I, whose inverse is smaller than 0.02 i~~: thus the calculation

is consistent. The exciton transition energies are then Ex
#

EG + Ee + Eh Rx
#

EG + REX

so that Ex is 1579.9 mev for the vertical QW and 1575.1 mev for the horizontal QW (EG is

the GaAs bandgap). In reference [3j the PL energies of the two QWS are 1579 and 1583 mev

with a FWHM of the order of 2 mev.

Now we come to the wire. First we suppose that the wires are isolated. The conduction band

dispersion curve looks like that of the bulk: The ID conduction mass is practically unchanged
(0.068 instead of o.067) [23j. On the contrary the valence band dispersion is quite different and

is given in Figure 6. The hole effective mass, valid up to a wave vector larger than 0.01 i~~,
is equal to 0.12. Once the energy is known we can get the wave functions, which are given for

a zero wave vector in Figure 7. More precisely, Figure 7 gives the probability of finding the

electron in a wire: for the electron it is valid to suppose the wire isolated [3j. The electron

confinement energy is Ee
=

46.4 mev. The same figure also gives the probability that a hole is

present, which is the sum of the squares of the moduli of the two components. Clearly, as far

as the hole is concerned the wire cannot be considered as isolated. The reason that the hole

is poorly localized in the wire is the following: the confinement energy Ehiio is 5 mev lower

than the confinement energy Ehooi (see Fig. 5) and therefore the hole is mainly confined in the

l10 QW. Were the TWI built with axes rotated by go degrees (inversion of the [oolj and [l10j
axes) the hole confinement would be different.
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calculation of the two~dimensional exciton Rydberg. The indices hhn and lhn for the growth axis in the

[001) direction correspond to the usual heavy and light holes in a two~dimensional semiconductor. The
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Fig. 6. Valence band dispersion curve for the wire of the TWI structure. The calculation is made

as if the wires were isolated. See text regarding the limit of validity of this description.
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wire (TWI). The wave vector parallel to the wire is equal to zero. al The squared modulus of the

conduction band ground state wave function. b) The squared modulus of the (3/2 ~ 3/2) component
of the valence band ground state wave function hi. c) The same as in b) but for the (3/2 ~ l/2)

component. The calculation was performed assuming the wires, separated by 380 I,
are isolated. The

figure shows that this is true for the electron but not for the hole, which is not localized in a wire: the

hole will be localized by the attraction of the confined electron as shown in Figure 8.

The hole being weakly localized, the validity of the assumption that the wires are isolated is

questionable and one could think of calculating the dispersion curve for coupled wires. However

we must keep in mind that the aim is to calculate the exciton Rydberg which means here an

exciton where only the electron is well localized. The method of the preceding section is

not usable and we are led to use another method to calculate the excitonic transition energy

Ex, namely localization of the hole by the confined electron, used by Peter et al. in 2D

semiconductors [24j. This is the reason why we have not calculated the hole dispersion curve

for a coupled wire: in any case
neither the latter curve nor the periodic wave function would

be useful in the method of Peter et al. Now we have to extend it here to ID semiconductors.
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a) The squared modulus of the (3/2 ~ 3/2) component of the hole wave function. b) the same as in

al but for the (3/2 ~ l/2) component.

This leads to a problem that is specific to quantum wires: the hole attracted by the electron

is a two-dimensional hole; what hole mass should be used in such a
calculation, and more

precisely which is the 2D mass to be introduced? For the reason stated above we take the

mass in the horizontal well, namely 0.17. The electron mass and the hole mass being defined,

the calculation is more complicated than in 2D semiconductors because we have to calculate

a two-component hole function. Formally the result has the same shape as that given in the

VWI section, but here the components are obtained from a calculation of the hole attracted by
the electron and not from a calculation of the hole localized directly by the wire.

The two components are given in Figure 8 which shows unambiguously that the hole is

now localized on a wire. The energy of this hole, localized both by the wire potential and

by the Coulomb interaction with the electron, is Ehc
"

-4.4 mev. The excitonic transition

energy ExiD
=

EG + Ee + Ehc
"

EG + REX is then 15Gl.4 mev. The experimental result

is approximatively 1564 mev (the line width is of the order of 7 mev). This corresponds to

the experimentally observed shift, Ii mev, noted in reference [3j between the average of the

QWS lines (1581 mev) and the wire exciton. We can now look at how we obtain this difference

in our calculation. The result is summarized in Figure 9 where the results for the QWS are

the average of the energies of the two QWS. We see that the difference between the average

exciton energy 1577.5 mev of the two QWS and ExiD
"

1561.4 mev is 16.1 mev, which is to

be compared to the value 17 mev quoted in reference [3j. Although we do not have exactly the

same interpretation as that of reference >3j, we point out here that we end up with the same

result as the experiment, so that there is no doubt as to the origin of the lines.

Before concluding we note that we use the same kind of calculations that are known to

work in two-dimensional semiconductors. It is therefore not very surprising that they work
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Fig. 9. This diagram shows the different energies that play a role in the TWI. The energy gap
EG is taken as the origin of energy. In the left column the energies are those of the wire; Ee is the

confinement energy of the electron; the hole energy Eh
=

Ehc is negative because the hole is confined

by the Coulomb interaction of the electron. In the right column the mean energies of the two quantum
wells are given in order to allow comparison with the results of reference [3); Ee (Eh) is the electron

(hole) confinement energy. Rx is the Rydberg energy of the exciton. In both cases Ex
=

EG + REX

is the theoretical luminescence exciton energy. The theoretical difference 58.1 42
=

16.I mev is to

be compared with the experimental result: 17 mev in reference [3).

in one-dimensional semiconductors as well. Using the same method for the dispersion curve

calculation as that used for two-dimensional semiconductors [21j we are led to diagonalize a

Hermitian matrix of dimensions 30 x 4 dimension for the valence band in a QW (30: basis

dimension, 4: valence band degeneracy) and 30 x 30 x 4 in a wire: the computation time is

tremendously increased in the latter case.

4. Conclusion

In conclusion, a theoretical study of excitons in quantum wires provides an unambiguous
identification of the photoluminescence lines observed. The full calculation shows that in all

of the wires only the electron is confined, in contrast to the hole which is well confined in the

VWI and poorly confined in the TWI. In the latter case the exciton is linked to the wire only
because the hole is confined by the Coulomb attraction of the electron. Finally the red shift

of the wire's photoluminescence with respect to the QW photoluminescence is due mainly to

the decrease of the electron confinement energy. In other words the one-dimensional exciton

Rydberg is not always increased with respect to the two-dimensional exciton Rydberg. If the

surrounding potential were infinite this would always be the case, but in a real wire the extent

of the wire wave functions can be larger than the quantum well wave functions so that a

numerical calculation is needed to make an accurate comparison.
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