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Abstract, We study the local scaling properties of driven interfaces in disordered media

modeled by the Edwards-Wilkinson equation with quenched noise. We find that, due to the

super-rough character of the interface close to the depinning transition, the local width exhibits

an anomalous temporal scaling. It does not saturate at a characteristic time tall)
+~

l~ as

expected, but suffers an anomalous temporal crossover to a different time regime tP., where

fl~ ce 0.21. This is associated with the existence of
a

local roughness exponent ajoc ci I that

differs from the global one o ci 1.2. The relevance of the typical size of pinned sites regions near

the critical point is investigated and the definition of the critical depinning is discussed.

1, Introduction

Rough surfaces and interfaces appear in many situations in nature. Deposition, erosion, fluid-

fluid displacement in porous media or
fire front motion are important examples ii, 2j in which

an interface kinetically becomes rough. A rough interface in dimension d+ I (d is the substrate

dimension), which is described by its height h(x, t) at position x and time t, has been treated

as a self-afline fractal. In the case of interfaces driven by spatio-temporal noise the temporal
evolution of h(x,t) is given by the stochastic equations of Edwards-Wilkinson (EW) [3j and

Kardar-Parisi-Zhang [4j, which have been widely studied. The effect of quenched disorder ii.
e.

a noise frozen in time) on the interface dynamics is a more difficult problem and up to now

there is not a complete and consistent picture. An important feature of the quenched disorder

is that the interface can be dominated by pinning forces, which can slow down the motion of

the interface in large regions. Pinning phenomena have a considerable importance in problems
like the immiscible displacement of fluids in porous media or the motion of domain walls in

magnetic systems.
During the last years much effort has been paid to this subject, but theory, simulations

and experiments are not yet in good agreement (see [2j for recent reviews). In this paper we

wish to show that the reason for this disagreement is certainly twofold. On the one hand,
growth processes do not always generate truly self-afline interfaces IS, Gj and different scaling
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behaviours may appear at short and large length scales. On the other hand, the quenched
disorder introduces a new length scale, related to the size of pinned regions that becomes

relevant and, as we will see later, changes the usual scaling laws.

The simplest stochastic differential equation that describes the evolution of the interface

height in the presence of quenched randomness is the so-called quenched Edwards-Wilkinson

(QEW) equation: '

~~~~ ~ ~ ~ ~~~'~~' ~~~

which is similar to the EW equation but with a quenched disorder term, ~(x, h). The external

driving force F controls completely the dynamics of the front. If F is larger than a critical

force l~, the interface moves with a finite velocity. However, the interface remains pinned by
the disorder for F < Fc. The critical point F

=
Fc is known as depinning transition. Above

the depinning transition, F > Fc, a characteristic length, (, appears. ( represents the typical
size of the pinned regions of the interface and close to the transition scales as (

m~
IF Fc)~"

As we will discuss later, ( is very important to understand the scaling of the interface near the

depinning transition.

The global interface width, which characterizes the scaling of the advancing front, is defined

by

a(L,t)
=

(((h(x,t) (h(x,t)))~)~/~), (2)

where brackets are averages over the whole system and (...)
over realizations of the disorder.

In the usual case, when the only relevant length is the system size, the width scales with time

for the early times regime and saturates at long times:

a(L, t)
rw

~~
~~ ~ ~~ (3)

L° if t » t~,

where o is the roughness exponent and fl is the time exponent. This scaling picture is known

as Family-Vicsek scaling ansatz 11, 2j. The saturation time ts depends on the system size L

because it is the time in which the horizontal correlation length lc it)
rw

tl/z reaches the system
size. The exponent z is called dynamic exponent and the scaling relation a =

zfl is fulfilled.

An alternative way of determining the roughness exponent a is frequently used in simulations

because of the long wait needed to get saturation in large systems, in which simulations are

done. The width is calculated over a window of length I « L and averaged over many pieces
with the same length along the interface. In other words, we can study the scaling of the local

~~~~~

ail, t)
= (((h(x, t) (h(x, t))1)~))/~). (4)

The local width scales in a similar manner as the global width and has a short time regime
ail, t)

rw

t~. For small length scales (or equivalently at long times), < lc(t), the local width

is believed to be independent of time and to scale as

aji, tj
r~

io~o~ jsj

This method is very useful when one has no possibility of producing interfaces in different

system sizes as occurs in real experiments, Most theoretical growth models generate self-ajfine
interfaces and o = aloe ii, 2].

Much work has been carried out to obtain the critical exponents at the depinning transition.

The roughness exponent has been the most controversial. Experiments performed in d
=

1 [7j,

which are believed to be described by equation iii, gave roughness exponents around 0.75-0.9
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in disagreement with a renormalization group prediction o =
[8j. A scaling theory [9j gave an

effective roughness exponent 0.8 in good agreement with the model reported in reference [10j. A

number of numerical models for interface pinning by quenched disorder have been investigated.
Roux and Hansen Ill] found two different exponents: oioc =

0.86 ~ 0.03 when the local width

was used, and o m 1.16 1.20 looking at the scaling of the global width as a function of the

system size. Results reported by Jensen [12j, oioc m 0.9 and a ci I -IS are similar. Makse and

Amaral [13j obtained oioc =
0.92 ~ 0.04 or a m 1.23 ~ 0.04 depending on the method that

they used. Also other numerical determinations of aloe gave values around 0.8 [14-18j and

o i 1.2 [17,19j.
It has been demonstrated that the reason for the existence of two different roughness

ex-

ponents is the super-rough character of the interface close to the depinning transition. In

reference [19j was already shown that the local width is bounded by ail, t) < and for that,
it is just technically impossible to measure a roughness exponent larger than one using the

local width. On the contrary the global width does not have this restriction so that it gives
the true roughness exponent. However, we would like to note here that there also exist other

effects is,6j that may lead to the same anomalous scaling in surfaces even with a < I. Our aim

in this paper is to show that the local width suffers
a temporal crossover, instead of saturating,

associated with a different interface scaling at short, « L, and long, I
rw

L, length scales. The

scaling properties of the interface cannot be correctly described by the usual dynamic scaling
hypothesis. We will see that a super-rough dynamic scaling gives the correct scaling of the

front.

2, Numerical Results

We begin by performing a numerical integration of the QEW equation in d
=

I to study the

scaling behaviour of the local and global widths. To start we have to discretize the QEW
equation in the horizontal direction

h~jt + A)
=

h~jt) + AjDjh~+i it) + h~-i(t) 2h~jt)) + A(F + J~(I, ih~(t)1)), (6)

where the index I
=

I,
,

L, being L the size of the system. [h~ it)] represents the integer part

of h~(t). ho(t)
=

hi (t) and hL+i It)
=

hL(t)
are the boundary conditions. This is the usual

discretization scheme used by many authors [12, IS,18j. The random field y~(i, j) is Gaussian

and its correlation (y~(I, j)il(I', j'))
=

gd~,vdj,j>. Hence the noise is uncorrelated from a cell

to another one and stands for the time of
a run. The time step A (we used A

=
0.01 in

all our
simulations) and the size L have to be chosen in such a way that the QEW equation

is obtained in the continuous limit (A -+ 0, L -+ cc). So, the following conditions must be

verified: AD « I, AF < I, and Ag « I. One has to check that changing these parameters

does not affect the final numerical result. Following Kessler et al. [lsj
we distributed disorder

sites randomly with a prefixed density p over the network. So, the disorder is nonzero with

probability p and on these sites disorder is distributed according to a Gaussian distribution.

The scaling exponents do not depend on the actual value of p but the crossover effects will be

clearer for small values of p. As we were looking for crossover regimes, we used p =
0.I in all

our numerical simulations. We worked with networks of size L
=

1000, and the results were

averaged over 15-50 realizations of disorder. As expected we found
a critical driving force Fc

that separates the pinning and depinning phases. The value of Fc depends on the actual values

of the parameters of simulation (p, D, L). For p =
0.I, A

=
0.01, D

=
5, and L

=
1000 we

estimated Fc m 0.13.
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Fig. I. Time evolution of the local width on different length scales I (window size) for a driving
force F

=
0.4, which is far from the depinning transition. Local width saturates at longer times for

larger length scales as corresponds to a standard scaling. The values of the width in saturation are

taken and plotted versus scale I in a log-log plot (see inset). The slope of the line (inset) that fits the

numerical data is 0.5 and gives a local roughness ajoc ci 0.5.

2.I. SCALING FAR FROM THE DEPINNING TRANSITION. Our numerical results indicate

that the global width has two different time regimes. Close to the transition, F ci Fc, the

width behaves as
a(L, t)

+~

t~, where fl ct
3/4 is the time exponent near the critical point.

Far from the pinning transition, F » Fc, a(L, t)
rw

t~EW and the time exponent PEW ct
1/4

corresponds to the time exponent of the EW equation. As we will see later, the values of the

remaining exponents a and
z indicate that the interface dynamics clearly belong to the EW

universality class in the limit of large driving forces.

In general, the temporal behaviour of the global width is well understood near and far from

the depinning transition and it has been analyzed by many authors [10,13,18j. On the contrary,

we focus here on the scaling behaviour of the local width. Firstly, as far as time evolution is

concerned, in the strong pushing regime the local width scales with time for early times and

saturates at time ts(I)
as corresponds to the Family-Vicsek scaling picture (see Fig. il. The

value of the width at saturation can be used to determine the roughness exponent. We found

that the saturated local width, asat Iii, scales as asat(I) rw1°.~ (see Fig. I inset). Thus, for

large driving forces the exponents (fl m
1/4 and aloe ~f

1/2) of the EW universality class are

obtained, as expected [9;10,13j.

2.2. LOCAL SCALING AT THE DEPINNING TRANSITION. At the critical value, F
=

Fc, the

complete scaling description of the local width is much less trivial than in the strong pushing
limit discussed above. In Figure 2 we

display the time evolution of the local width ail, t) for

different window sizes I. After an early time regime, the local width crosses over to t~., where

the asymptotic time exponent is fl~ ci 0.25. This scaling region becomes shorter as the length

scale is larger, -+ L. Moreover, there is no saturation of local widths at times ts(I)
+~

lz,

contrary to what is generally thought saturation of the local width occurs only when the whole
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Fig. 2. Time evolution of the local width at the depinning transition, F
=

Fc ct 0.13. The global
width,

=
L, is also displayed. The continuous straight lines have slopes 3/4 and 1/4 and are shown

to guide the eye. A simple comparison with Figure I reveals the anomalous scaling behaviour for this

case. The local width does not saturate, but crosses over to an anomalous time regime, tP*, where

fl, ci 0.25 and saturation occurs at the same time for the whole system. Inset shows the width in true

saturation (flat part in the plots) versus the scale in a log-log plot. The line (inset) fits the data and

the slope corresponds to ajo~ ci 0.92.

system saturates (I.e. ts(I)
+~

Lz for any I). As we did in Figure I for the strong pushing
limit, we can use the saturated values of the local width in Figure 2 to determine the local

roughness exponent (see Fig. 2 inset), asat Iii
+~

1° ~~ From Figure 2 it is clear that the dynamic

behaviour of the interface near the depinning transition cannot be completely described with

a Family-Vicsek scaling ansatz. According to this scaling picture the local width ail, t) should

saturate when the horizontal correlation length reaches the size of the sample, lc(ts)
+~

I, as

occurs in the strong pushing limit (see Fig. I). However, the local width displayed in Figure 2

scales with time for length scales < lc(t) and a new time exponent fl~ has to be introduced.

This anomalous time regime of ail, t) has been observed in other growth processes and

termed the problem of anomalous kinetic roughening in the literature [5, 6j. In reference [5j we

have shown that for a broad class of growth processes the scaling for < lc it) is actually given
by

ail, t)
r~

t~~°~°~/~ 1°~°~, (7)

when a local exponent oioc #
a exists, I.e. when anomalous roughening occurs. This gives

rise to an anomalous temporal regime with fl~
=

fl ojoc/z. Only when the interface is

self,afline one has fl~
=

0 and the Family-Vicsek scaling for the local width is recovered.

As demonstrated in reference [5j this may occur for growth with a below or above one and

thus it is not necessarily associated with super,roughening. More precisely, super-roughening
corresponds to an anomalous scaling like (7), but aloe =

I and so fl~
= a I /z in this particular

case. At true saturation, when lc(t)
-J

L, the local width scales as

ail, t » L~)
rw

1°1°~L~~*
rw

1°'°~L°~°'°~,
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Fig. 3. Data collapse, according to (9), of the results displayed in Figure 2. The exponents fl
=

0.81

and z =
1.53 were used. The slope of the straight line gives the local roughness exponent ajoc =

0.92.

that corresponds to the anomalous dependence of the local width on the system size already
observed in simulation [13j.

Next, we are going to show that for the QEW model ii the anomalous scaling behaviour of

the local width at the depinning transition is also given by equation (7) with aloe =
I in this

case. In Figure 3 we plot a collapse of the data of Figure 2. An inspection of Figure 3 reveals

that the dynamic scaling form of the local width is consistent with

all, t)
r~

t~fll/t~/~i 18)

The scaling function is given by

where aloe ~d 0.92, fl1 0.81 and z ci 1.53 are the exponents giving the best data collapse.
This scaling behavior leads to a local width ail, t)

rw

t~~°~°~/~ 1°iW in the intermediate regime
I < t~/~ « L that corresponds to the scaling proposed in (7) with fl~

=
fl oioc /z

1 0.21 (to
be compared with our previous determination fl~ c~

0.25). In agreement with other authors

[11,13, 20], we thus found fl cf 0.81, z i 1.53 and a global roughness exponent a =
zfl

ct 1.2

from the data collapse shown in Figure 3.

Similar results were obtained when the structure factor was used. The structure factor,
which is related to the Fourier transform of the height-height correlation function can be used

to obtain the critical exponents

S(k,t)
=

(I(k,t)h(-k,t))
rw

k~~~°+~~s(k~t), (10)

where I(k, t)
=

L~1/~ £~ [h(x, t) I(t)j exp(ikx) and the scaling function is
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Fig. 4. Structure factor data collapse for the QEW equation at the depinning transition in a system
of size L

=
128. Data shown a good collapse for z =

1.67 and a =
1.25. The deviation from the scaling

at large abscissa values is due to discrete lattice effects.

whenever the interface satisfies a standard Family,Vicsek scaling. Also in the case of anomalous

scaling due to super-roughening, equation ill) gives the correct scaling of the structure factor

(see [sbj for details).
We have determined the structure factor at the depinning transition by performing simula-

tions of equation ii) in a system of total size L
=

128 and a density of pinning sites p =
I.

For this system size, the critical force was found to be Fc ct 0.067. Figure 4 shows the data

collapse for the exponents a =
1.25 and

z =
1.67 (and then fl

=
a/z

cf 0.75) in agreement
with the exponents that we found in Figure 3.

2.3. DYNAMIC EXPONENT AT DEPINNING. There is another point that merits some dis-

cussion related to the complete scaling of the QEW model. From Figures 2 and 3 we have

obtained a value for the dynamic exponent z m 1.5-1.6 in agreement with several previous
simulations [13,20] of the QEW equation (and related models) in which an exponent z ci I-S

was reported. However, in these numerical works z was always calculated from the scaling
relation

z =

alp,
as we have done in this paper. In principle, in order to correctly deter,

mine the dynamic exponent z one should be able to use its definition in lc(t)
rw

tl/~, where

the correlation length lc(t)
can be obtained from an appropriate correlation function. Let us

consider the height correlation function r(I, t)
=

(((h(x + I, t) (hi (h(x, t) (hi ), which

relates the heights at two positions
x

and x + I. This correlation function becomes zero at

distances larger than the correlation length, thus lc(t) can be determined from

/
lr(I, t)dl

jolt)
= r~

t~/~ i12)/
r(I, t)dl

Note that equation (12) should be the correct way of obtaining
z while we are interested in

checking the validity of the dynamic scaling ansatz. Direct determination of the dynamic
exponent from equation (12) was reported in rAferences [lo, 21], where z'

m 2 for
a wide
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range of driving forces even at the transition (here the prime denotes a direct measure using
equation (12)). Surprisingly, the value of the exponent z'

m 2 obtained in this way differs

from the one that we have measured by an indirect method z c~ 1.5 (and consequently the

corresponding global roughness exponents a i 1.2 and a'
m 1.5 are different as well). A value

of the dynamic exponent z'
ct 2 and the time exponent fl ct 0.75 leads to fl~

=
fl I /z'

ct 0.25,
in agreement with our previous estimation for the anomalous time exponent.

In order to try to explain this puzzling situation we have considered the effect of the char-

acteristic size of the pinned regions on the interface local scaling. Besides the super-rough
character of interfaces generated by the QEW equation and the corresponding anomalous scal-

ing of the local width just discussed above, there is also another important effect that conspires

to complicate even more the QEW problem. As
we have already mentioned, the quenched dis-

order in equation ii)
can slow down the motion of the interface in large regions of length ( in

which the interface temporarily remains pinned. In an infinite system, the size of the pinned
regions, (, diverges as (

rw

(F Fc)~" when approaching the depinning threshold Fc from

above and the exponent v ci 1.35 [13] (or
v ci 4/3 in Ref. [14]) can be measured in simula-

tion from a direct observation of these pinned regions in the interface. For a system of finite

size L the depinning transition occurs at a value of the driving force F
=

Fd(L) for which

(Fd Fc)~"
rw

L. As a consequence, in a finite system the depinning force Fd(L) depends on

the system size, and close to the depinning transition both lengths ( and L become relevant in

the dynamics. Thus, in any proper numerical determination of the global roughness exponent

at the depinning threshold one must have in mind two important facts. First, to obtain the

global exponent a' (where o'
=

z'fl
m 1.5) one has to perform simulations in systems with

different sizes L and, after saturation for t » Lz, one can fit the power law a IL. t » L~)
rw

L°'

Secondly, since the critical force Fd IL) is different for a different size of the system, in order to

keep the system at the depinning transition one must vary the driving force F in such a way
that (

rw
L. These requirements lead to a dependence of the saturated global width

on the

relevant lengths ( and L at the depinning transition as

ajL, t » Lz)
~
La'())

~

~

Lo'-6jF~jL) F~)-w6, j13)

where 9 is an exponent that characterizes the dependence of the global width on the correlation

length (. It is worth remarking here that only when (
+~

L the system is certainly being
maintained at the depinning transition and the exponent a'

can be measured. On the contrary,
numerical simulations done in systems with different sizes, but in which the driving force

F is not adjusted to the corresponding Fd(L), always yield a different roughness exponent

a =
a' 9. The exponent a would appear for any F somewhat larger than Fd and gives the

global roughness in the moving phase.

In reference [13] an anomalous dependence of the prefactor of the width on the driving

force as
(F Fc)~~

was already found, with # 1 0.44. We believe that the dependence of

the saturated width on the driving force close to the depinning transition indicates that the

system is not just at the transition. Taking into account the measured values v ci 1.35 [13,16j
and # i o.44 [13] we have 9

=
(Iv

c~ 0.33. So, we obtain a global roughness exponent

a =
a' 9 m 1.17 in agreement with our numerical determination (a

ct 1.2, see Figs. 3 and 4)

as well as with previous simulations [11-13,17,19].

3. Discussion

In summary, we have found that the complete scaling behaviour of the QEW equation is not

trivial. At the depinning transition the interface is super-rough and this leads to the violation
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of the usual scaling ansatz. In particular, the local width exhibits a new time regime with

an exponent fl~ cf 0.21. We have shown that this is associated with the existence of two

different roughness exponents describing the scaling of the local and global fluctuations. A

new dynamic scaling, which was already used in other growth processes, has been successfully
applied to understand the scaling behaviour of the local width.

Accordingly to this scaling, equation ii), the measured value of the local roughness, close

to unity aloe ~bf 0.92, suggests that the anomalous scaling of the local width is due to super-

roughening, in such a way that a global roughness exponent larger than one must exist. A

direct determination of the time exponent gives fl m 0.75 0.81 in agreement with most of

the previous works. On the contrary, a direct determination of the global roughness exponent
from the scaling of the saturated global width with the system size can be controversial since

variation of the total size L leads to a change in the depinning threshold Fc. The effect of the

characteristic length of the pinned sites regions is relevant close to the depinning transition. It

seems then that it is possible to obtain two different values for the global roughness exponent
depending on the procedure used. The most usual reported value of the global roughness

exponent a cf 1.2 (and z ct 1.5) is obtained by us from collapses of the local width as well

as from the behaviour of the structure factor. However, a direct measure of the correlation

length reflects that there is a
dynamic exponent z' ci 2 [lo, 21] land consequently a'

cf
1.5).

Moreover, it remains unclear for us which of the mentioned methods land the corresponding set

of critical exponents) is the proper to describe completely the scaling behaviour of the interface

at depinning. We believe that it is a very unsatisfactory situation the fact that, on the one

hand, the depinning threshold changes with the system size and, on the other hand, one of

the exponents of interest, the global roughness exponent, has to be measured by changing the

system size. It seems difficult to define a correct roughness exponent at critical depinning as

the exponent a in the power law a(L, t -+ cc)
rw

L° while a variation of L yields a shift in the

critical point.

From an experimental point of view the local roughness exponent is very important since it

is the exponent accessible in experiments, in which the size of the sample remains fixed. We

suggest that the anomalous scaling (7) might be useful for clarifying whether the QEW equation

certainly describes the motion of interfaces in disordered media; since in many experiments it

may be possible to study the time evolution of the local width and to determine the existence

of an anomalous exponent fl~.
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