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Abstract. Based upon the torus parametrization which was introduced recently, we present

a recipe allowing for a complete analysis of the symmetry structure of quasiperiodic local isomor-

phism classes in one and two dimensions. A number of results is provided explicitly, including

some widely used planar tiling classes with 8-, 10- and 12-fold rotational symmetry.

1. introduction

Given a
(periodic) lattice in IR~, one defines its (special) Wyckojf positions to be the sets

of symmetrically equivalent points that are mapped onto itself by a non-trivial symmetry

operation of the space group ill. The explicit determination of Wyckofl positions and the

corresponding symmetries is a classic problem of crystallography ill.
A naive extension of this problem to non-crystallographic structures with trivial translation

group does not lead to an interesting question. To reach a more relevant situation, however,

one can reformulate the problem in terms -of so-called local isomorphism classes (LI-class for

short).
The LI-class of some discrete structure T consists of all patterns T' that are locally indis-

tinguishable from T in the sense that arbitrarily large patches of T also appear in T' and vice

versa. For the comparison of patches, only translations are allowed [2]. As LI-class elements, we

also distinguish global translates, so that the patterns are equipped with an origin in a natural

way. Using this concept, one defines an isometry g to be a generalized point symmetry [2] of T

ifl g stabilizes LI[ Tj, I.e. ifl g(T') E LI[ Tj for all T' E LI[ Tj. While generalized symmetry is

thus a property of the entire LI-class, there may well be single patterns with exact symmetries:
g(T)

=
T. Of course, all exact symmetries of LI-class elements form subgroups of the (total)

generalized symmetry group, but this is not a sufficient condition. The question arises whether

one can determine all these symmetries for a given LI-class as well as the patterns that preserve

them.

Applying this concept to the crystallographic case, we see that the problem here is indeed

reduced to the determination of the Wyckofl positions: The LI-class of a periodic structure
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consists of a single translation class, the generalized symmetry of a lattice coincides with its

holohedry and an LI-class element shows (exact) symmetry if and only if its origin is in a

Wyckofl position.
In general, the classification problem of symmetric LI-class elements turns out to be rather

non-trivial and is in fact still unsolved. However, LI-classes of quasiperiodic cut-and-project
patterns allow for a complete solution by means of the recently introduced torus parametriza-

tion [3]. Here, not only geometric point symmetries but also rescaling symmetries, typical of

quasiperiodic patterns, can be included in the classification.

For this article to be self-contained,
we start with a short presentation of the method,

illustrated with the 1D case of silver mean chains. We then give the results for the most

relevant 2D LI-classes (quasiperiodic tilings of the plane) which are widely used in literature.

For related work, we also refer to [4] where some of the geometric point symmetries have been

determined, however not in the context of a classification of LI-class elements.

2. The Torus Parametrization

The LI-class of a crystallographic pattern T (where the periods of T span the entire space)
consists of a single translation class. It can thus be written as:

ujr~
=

(r
+ x x e FDjr)) 11)

where FD(r) is a fundamental domain of the underlying translation lattice r. This way,

we obtain a one-to-one correspondence between the elements of the LI-class and the points
of FD(r). The translation vector x hereby marks the origin of space relative to the lattice

and, for standardization, the pattern with a lattice point coinciding with the origin shall

be parametrized by zero. As FD(r) forms an n-dimensional torus T~ after identification of

opposite facets, this is called the torus parametrization.
The key in generalizing this concept to LI-classes of quasiperiodic patterns is that these

patterns can be described as sections through periodic structures of higher dimension. So by
reversing the cut-and-project mechanism, the LI-class can be parametrized by the points of a

fundamental domain of the embedding lattice:

Let A C IR~ be the embedding lattice and E and Eint the physical resp. internal space,
E + Eint spanning IR~. Then a quasiperiodic pattern T C E is obtained by projecting all those

lattice points into E (parallel to Eint) which project, parallel to E, into a compact subset W of

Eint, called the projection window. (This can easily be extended to the situation with several

translation classes of points and hence a system of windows, compare [5]). For simplicity,

we shall also assume that W is the closure of its interior and that 0W is of zero Lebesgue

measure. Translating the window by a vector t E Eint typically results in new, but locally
isomorphic patterns [5]. Now let t be given as the projection image of some point x E FD(A)
while the projection of x on E shall define the origin of the physical space. This way, a

function f
:

FD(A) ~ LI[ Tj is defined. We now assume that the dimension of the embedding
lattice A is minimal (A projects densely into Eint). Then the function f is injective since we

restricted its domain to FD(A). On the other hand, f is also surjective with one subtlety as

exception: whenever the projection of some lattice point into Eint coincides with a boundary

point of the window, we have to make a choice whether to include this point in the pattern

or not, corresponding to limiting processes of window shifts from different sides. Each such

limiting process results in a so-called singular projection pattern (all other patterns are called

regular). Since singular patterns also belong to the LI-class, several elements here correspond



N°8 SYMMETRY STRUCTURE OF QUASICRYSTALS 1005

to a common parameter. Put in other words, this means that mutually singular patterns are

identified by the torus parametrization. As a matter of fact, if 0W has Lebesgue measure zero,
almost all patterns of the LI-class are regular and mutually singular patterns differ only in

mismatches of zero density [5]. Two regular patterns, on the other hand, are either identical

or differ in mismatches of positive density. So using the torus parametrization just means to

identify patterns that are identical almost everywhere which is also reasonable physically.

SYMMETRY ANALYSIS. Considering the periodic case, the torus parametrization can be

used to determine the Wyckofl positions: given an element g of the holohedry, represented as

a lattice automorphism ), the corresponding Wyckofl position appears as the set of all fixed

points of ) on the torus T:

girix))
=

Tix) - iix)
= x

(mod r). 12)

Furthermore, the total number N(g) of torus points in a Wyckofl position can easily be calcu-

lated. If ) I is not singular, there are

Njg)
=

jdetj I)j j3)

distinct solutions of (2) since (§ I)T is a
N(g)-fold

cover of T. If § I is singular (so there

are fixed spaces of § of dimension > 1), (2) allows for entire solution iJ~anifolds
or subtori of T

(see [3] for details on the structure of subtori).
How does this generalize to the determination of symmetric elements of quasiperiodic LI-

classes? It turns out that there are two conditions in this case [3]:

1) The corresponding torus parameter must be in a Wyckojf position of the symmetry
considered as a symmetry of the embedding lattice A.

2) The symmetry must belong to the generalized symmetry group of the LI-class.

While 1) trivially implies 2) for crystallographic LI-classes (each lattice coincides with its em-

bedding lattice of minimal dimension), the symmetry must be compatible with the projection
procedure in the quasiperiodic case: The generalized symmetry is just the maximal subgroup

of the holohedry of A that stabilizes E and Eint together with the projection window.

At this point, let us compare our approach with the different notion of special points for

quasilattices given in [4]. While both approaches use the Wyckofl positions of the higher
dimensional embedding lattice as a starting point, in [4] special points of single quasiperiodic

LI-class members are defined by projecting the higher dimensional ones in a special way. Within

our framework, on the other hand, Wyckofl positions parametrize symmetric quasilattices and

lead to a symmetry classification of the entire LI-class.

Furthermore, another type of symmetries can be included in our scheme, namely (invert-
ible) inflation /deflation symmetries. They appear as affine transformations on the torus which

can be characterized as follows: Their linear part is a lattice automorphism I
on the embed-

ding lattice leaving E and Ejnt invariant, but is not an isometry like in the case of geometric
point symmetries. In general, a non-vanishing translational part is needed to make the infla-

tion/deflation local [2]. This gives rise to a simple shift of the torus parameters of inflation

symmetric patterns but has no effect on the total numbers of symmetric solutions. We call

I
an inflation if, restricted to E, its determinant is bigger than in absolute value. In most

cases known, an inflation just means a refinement followed by a rescaling of the original pattern
corresponding to I being diagonal on E, but there are also other types, like rotation-dilations,

see below. Point or inflation symmetric patterns then are determined as in the periodic case

by equations (2, 3).
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Fig. 1. Projection scheme for silver mean chains. One fundamental domain is marked as the torus

region used for the parametrization.

3. Silver Mean Chains

Of course, the geometric symmetries of quasiperiodic chains are well known in the quasicrystal
community, as well as the fact that infinitely many members of a given LI-class exhibit inflation

symmetries. In particular, for the Fibonacci chain, the latter is shown in [6]. This section shall

serve as an illustrative introduction of our method, but also leads to a classification of all

symmetries for the first time, and to a much simpler approach than commonly found.

The LI-class of the silver mean chains LI[SM] can be defined by the following inflation rule

on a two-letter alphabet:

Qil~ ~ ~~~
(4)

b ~ a

Starting with the two-letter word aa by continued inflation we get a bi-infinite inflation invariant

word that determines LI[SM]:

ala ~ aba(aba ~ abaaaba(abaaaba ~ IS)

On the other hand, the silver mean chains can be obtained from the square lattice lZ~ by the

standard strip projection method as shown in Figure 1.

The slope of the physical space E fixes the proportion of the a's to the b's in the chains

to the silver number1
=

1+ vi
= [2; 2, 2, 2,. .j. The chain shown corresponds to the torus

parameter (0, 0), the other chains are obtained by moving the origin of the 2D space E + Eint
(together with the window) inside the shaded torus region.

The only geometric point symmetry possible in ID is inversion symmetry S x -+ -x.

According to (2) the inversion symmetric chains correspond to the parameters with 2x
=

0 on

the torus, forming (within
a fundamental domain) the Wyckofl position for inversion symmetry
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on
lZ~. According to (3) there are det(2 1) =

4 solutions (in IR~), namely:

Sjo,o~ =
abaaabaabaabaaabaabaaabaabaabaaaba..

,

Sjj,o~ =
aabaabaabaaabaaba%abaabaaabaabaabaa..

,

Sjo,j~ =
baabaaabaabaaabaabaabaaabaabaaabaab

,

~~~

Sji,i~
=

aabaabaaabaabaa(fl )aabaabaaabaabaa..

Hence we obtain three regular and one singular solutions. The first chain is just the one

generated by inflation in IS). Let us take a closer look at inflation symmetry in the projection
picture. Inflation, as defined in (4), is represented by the lattice automorphism

f
=

l~ j7)
°

on
lZ~. It has the eigenvalues I and ill in the directions of E and Eint, respectively. Using

equation (3), we can immediately determine the number an of silver mean chains that are

invariant under n-fold inflation (called I~-symmetric from now on)

an =

detji I)j. j8)

The an's obey the following recursion relation:

an =
2an-1 + an-2 + 2(1 (-1)~) ao "

0, ai =
2 (9)

We can now avoid multiple countings and calculate the number bn of I"-symmetric chains that

are not Im-symmetric for any Tn dividing n, and finally, since the chains counted by bn form

closed n-cycles under inflation, we obtain the number cn of inflation orbits of length n as:

bn
" an

~j bm, cn "

~"
(10)

mjn
~

m<n

Up to n =
12 the values of an, bn and cn are listed in Table 1.

Table I. Counts of inflation symmetric silver mean chains.

n 1 2 3 4 5 6 7 8 9 10 11 12

an 2 4 14 32 82 196 478 1152 2786 6724 16238 39200

bn 2 2 12 28 80 180 476 1120 2772 6640 16236 38976

cn 2 1 4 7 16 30 68 140 308 664 1476 3248

It is possible to encapsulate the statistics into a generating function. The best choice is the

so-called dynamical or Artin-Mazur (-function [3, 7]. It is for our case

~2 1
Z(x)

=

Ill)
x2 + 2x 1

and gives the an's through the series

log lZlx))
=

i~
an

[
l12)
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while the cm's appear in its Euler product expansion as follows:

~

(~ n)cn (~ lj2 (~ 2jl (~ 3j4 (~~)
z(~) ~ ~ ~ ~

i

Finally, the closest pole of (11) to the origin is xo =

vi 1
=

ill which means that the an

grow asymptotically like I" and the cn like )I".

JOINT CLASSIFICATION OF INFLATION AND INVERSION SYMMETRIC CHAINS. In Order tO

obtain a complete symmetry classification of LI[SM], we have to study the interplay between

the two basic symmetries, inversion and inflation.

Since the two symmetry transformations commute on the torus T~, we immediately can

conclude that the set of inversion symmetric chains dissects into inflation orbits just like the

entire LI-class: We find that two of the inversion invariant chains are also inflation symmetric

(Sjo,o) and Sji ii in (6)), while the other two form an inflation 2-cycle.
Finally, we

live
to look for chains that transform under n-fold inflation into a space inverted

copy. Since these chains are of course
12"-symmetric, they already appear among the numbers

of Table I, but rather have a full symmetry that we shall call -I" (generated by n-fold inflation

followed by inversion). Their numbers an
=

det(-I"- I) (,
in and En

=

in /2n can be calculated

in analogy to the case above.

We now are in the position to determine the complete symmetry structure of the LI-class:

The full generalized symmetry group of LI[SM] is S x I, generated by an inversion IS) and an

inflation II). We now give the numbers of symmetry orbits (with respect to S x I) of chains

that show exact symmetries:

. There are two chains (each its own
orbit) with the maximum symmetry possible, S x I,

namely Sjo,oj and S~i, ii in (6).

.
There is one 2-cycle of chains with S x

12-symmetry (S~i
o~

and S~o i~ of (6)).

.
The numbers dn and in of symmetry orbits that contain chains with I"- and i-I")-
symmetry, respectively, are shown in Table II up to n =

15. (Here dn
=

dn for n > 2

while dn
=

(cn in /2)/2 for n even and dn
=

cn/2 for n
odd.)

Table II. Symmetry orbit counts of LIfSMj: There are dn orbits that contain chains with I~

as exact symmetry and in orbits of (-I")-symmetric chains.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dn 0 0 2 3 8 14 34 68 154 328 738 1616 3640 8126 18384

in 0 1 2 4 8 16 34 72 154 336 738 1632 3640 8160 18384

4. Remarks on the Generality of the Approach

In principle, each LI-class that can be described within the projection scheme can be analyzed
in a similar fashion as described above. One might ask how general results of this kind are.
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Obviously, the symmetry structure is not changed by local, symmetry preserving decorations of

the patterns: it is thus a common feature of entire S-MLD classes (they consist of all patterns
that are equivalent with respect to Symmetry preserving Mutual Local Derivability [2,8]). But

there is more to be said.

For closer inspection, let us impose two conditions on the projection window. In order not

to bring along any restriction to the geometrical symmetries we shall assume the window to be

invariant under the maximal point group that stabilizes Eint. Furthermore, in order to attain

a well defined global inflation in the tiling space, it must be possible to reconstruct the inflated

window by countably many unions and intersections from the original one, its complement,
and shifts of them by projected lattice vectors. (It can be shown that local inflation exists ifl

the reconstruction can be done with only finite unions and intersections [8].) As a consequence
of these conditions, the symmetry transformations do not mix regular and singular members

of the LI-class.

It is remarkable that under these conditions, the detailed shape of the projection window

has no influence on the total number of the symmetric LI-class elements, and has to be taken

into account only if
we want to decide whether a symmetry is realized by singular or regular

members of the LI-class under consideration, I-e- if the torus coordinate projects onto the

projection window boundary or not.

Consider for that reason the projection window extended to the whole internal space, thus

projecting the entire embedding lattice. For LI-classes obtained by cut-and-project techniques
with minimal embedding this projection image in the physical space is exactly the Limit Trans-

lation Module (LTM for short) [5]. So we can alternatively say that, under the above assump-

tions, the derived results are valid for all LI-classes of "cut-and-project-type" which share the

same LTM. Regarding the silver mean chains, our results apply to all LI-classes of quasiperiodic
chains with )-inflation (and inversion symmetric window).

To a second generalization we are led by the one-to-one correspondence between the inversion

symmetric chains and the twofold inflation symmetric chains. This result can be read off from

the inflation matrix I which fulfils the identity l~ -1
=

21. But this equation does not depend

on details of the projection scheme, so the above correspondence is valid for all LI-classes with

)-inflation in any dimension. The number theoretic reason for this is evident from Pleasants'

approach [9]. So results obtained by symmetry analysis generalize to LI-classes whose LTM

contains the LTM of the special given LI-class.

It is thus natural to reformulate the symmetry analysis without explicit reference to the cut-

and-project formalism and without fixing a specific representation in form of the embedding
lattice. Let us explain this in more detail for LTM'S of dimension two.

SYMMETRY ANALYSIS FROM A NUMBER THEORETIC POINT OF ViEw. Given a special
cut-and-project tiling class in 2D, the total numbers of its symmetric members are perhaps

most easily determined by calculating determinants according to (3). The advantage of the

number theoretic approach consists in the fact that symmetries can be determined even if the

particular embedding is unknown and that the generality of the derived results is clarified. The

usefulness of number theoretic tools in the field of quasicrystals was first realized by Pleasants in

1984 [10], the importance of cyclotomic fields for a classification of symmetries of quasilattices
has been pointed out by Niizeki [11].

Let an LI-class of tilings in 2D be given with n-fold (generalized) rotation symmetry. In the

minimal rank case, the corresponding LTM is (up to a similarity transformation) the ring of

cyclotomic integers [12]

~[(j
"

(~l + a2~ + a3~~ +' + a~(n)~~~"~ ~
"

~~~~~", ah ~ ~i~, ~
"

l,
,

~(l~)),



1010 JOURNAL DE PHYSIQUE I N°8

where # denotes Euler's totient function from number theory. Regarding lZ[(] as projection
image of a periodic lattice of higher dimension, it is natural to identify the generalized sym-

metries with the module automorphisms on lZ[(], I-e- those preserving the structure of lZ[(]

as a module of rank #(n), but not necessarily its additional ring structure. The inner auto-

morphisms constitute the unit group Un
=

lZ[(]~ of lZ[(]. It indeed contains the rotation

group Cn together with the inflation symmetries [11]. An important outer automorphism is

complex conjugation by which, when combined with the rotations, one obtains the reflection

symmetries.
If we want to count symmetries, we have to look for the number theoretic counterpart of

the torus equation (2) in the cut-and-project scheme. It translates to a linear equation in

the cyclotomic field tilt)- The determinant (3) equals the absolute algebraic norm in the

corresponding ring of cydotomic integers, which we now define (see e. g. [12,13]):
The ring lZ[(] (the integer polynomials in () consists of all algebraic integers of the cyclotomic

field Q((), the rational functions in (. Now, f is a root of the n-th cyclotomic polynomial,
Pn ix), which is integral, irreducible over lZ and of degree #(n). The other solutions are the

#(n) algebraic conjugates off in lZ[f]. The #(n) roots of Pn(x), the primitive n-th roots

of unity, are obtained from ( by the action of the Galois group "
Gal(Q(f) IQ) on (, where

(G( =
#(n). Any

a E is already uniquely determined by its action on ( because it then

has a unique extension to a field automorphism of Q(() which fixes the elements of Q. So, if

"
(ao, ai,

,

a~jnj-i), with ao "
Id, we can define the norm of any number a E Q(()

as

N4(ni [al
.= a

ai(a) aw(nj-i(o). (14)

The correspondence to determinants can be seen by representing a linear transformation

x -+ ax with o E tilt)
as rational matrix over the basis (1,(,(2,. ,(*("l~~), say. Its

characteristic polynomial then has the constant term (-1)*("lN~(nj [al.
Let us illustrate how to compute abstract algebraic norms for the eightfold module which

underlies the Ammann-Beenker LI-class. The unit group U8 is generated by two elements,
namely by a 45°-rotation (

=

e2~Q~ and the silver mean dilation 1
=

1+ vi
=

1+ ( + (.
The cyclotomic polynomial of the eightfold module reads P8 lx)

=

x~ +1 with solutions (,
°1(~) (~ ~(, °2(~)

"
(~

"
~(, °3(~)

"
(~

"
(. Here,

"
(Id, al, a2,a3)

Cf C2 X C2,
and a3 is complex conjugation. For a = a + b( + cf~ + d(~ E Q[(] we then have ak(a)

=

a + bak (f) + c(ak (f))~ + dlak lf))~, k
=

o,
,

3.

The field tilt] contains ti[vi]
=

till] as its maximal real subfield. Its Galois group is

(Id, ail,
a subgroup of the previous one. Now, the norm is defined as follows: for i = r + sA E

till]
we have (with ai(vi)

=

-vi, and hence ai(A)
=

-1IA)

N2[1]
= 1. ai(i)

=
(r + sA) jr + sai(A))

=

r~ + 2rs s~. (15)

We then have an alternative expression for the N4-norm:

N4(a]
=

ad ai lad)
=

N2((a(~].

Note that the definition of N2 is usually given as N2(a + bvi]
=

a~ 2b~. Though this

is equivalent to (15), the latter is more suitable for our needs. These rules can be used to

simplify norm calculations and are helpful to relate results in different dimensions.

5. The Symmetry Structure of Quasiperiodic Tiling Classes

TILINGS wiTH 8-FOLD ROTATIONAL SYMMETRY. The symmetry of the underlying module

and generalized symmetry of the LI-classes under consideration is D8 x I. Leaving mirror
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Table III. Total numbers of tilings invariant under n-fold inflation followed by k-fold $5°
rotation in LI-classes with (D8 x I) generalized symmetry.

0 2 3 4 5 6 7

0 0 2 4 2 16 2 4 2

1 4 2 8 18 4 18 8 2

2 16 34 36 34 64 34 36 34

3 196 162 200 242 196 242 200 162

4 1024 1154 1156 1154 1296 1154 1156 1154

5 6724 6498 6728 6962 6724 6962 6728 6498

6 38416 39202 39204 39202 40000 39202 39204 39202

7 228484 227138 228488 229842 228484 229842 228488 227138

8 1327104 1331714 1331716 1331714 1336336 1331714 1331716 1331714

symmetries aside for the moment, we obtain as total number of tilings that are invariant under

k-fold rotation through 45°, followed by n-fold >-inflation:

an,k =
N4[A"(~ -1]. (16)

The results are given in Table III. The first row agrees mutatis mutandis with the corresponding
results of [4], but note that their meaning is now rather different.

As the next step in our classification, we determine the tilings with multiple (inflation and

rotation) symmetries. Like in the case of LI[SM] considered above, tilings with geometric
symmetries have to dissect into inflation orbits., In the number theoretic approach, multiple
symmetries are reflected by identities (up to units) within the module:

1
=

(~((~ 1) (17)

~~ l
"

lf~(f~ 1) (" 21). (18)

Looking at Table III with these identities in mind, we conclude that all four tilings with

90° rotational symmetry ((2-symmetry)
are also inflation invariant (two of them are in fact

symmetric under 45° rotation). Furthermore (as already stated above), inversion (or (~-)
symmetry coincides with invariance under twofold )-inflation. In fact, 8 of the 16 inversion

symmetric patterns show even higher symmetry: Besides the four inflation invariant tilings
there are another four that inflate to a 90° rotated copy (this can be seen from the identity

lf~~ i)
=

f~lf~~ i)).
We now can eliminate all multiple countings of the same patterns from Table III. This is

done recursively:

bn,k
" an,k

~j bm,j
,

where Tn(n and
~~

% k (mod d). (19)
Tn

m,j

Here, bm,j counts f~-symmetric tilings. Table IV shows the number cn,k of symmetry orbits

with respect to inflation and rotation which is defined via

~"'~
i~j~

~~~~



1012 JOURNAL DE PHYSIQUE I N°8

Table IV. Orbit counts with respect to inflation and rotation for LI-classes with generalized
D8 x I-symmetry.

0 1 2 3 4 5 6 7

1 0 0 0 2 0 2 0 0

2 0 2 1 2 3 2 1 2

3 8 6 8 10 8 10 8 6

4 30 36 34 36 38 36 34 36

5 168 162 168 174 168 174 168 162

6 792 816 808 816 824 816 808 816

7 4080 4056 4080 4104 4080 4104 4080 4056

8 20700 20808 20772 20808 20844 20808 20772 20808

INCLUDING MIRROR SYMMETRY. In order to obtain the complete symmetry struture, we

have to include mirror reflection in our analysis. We observe that the mirror symmetry in each

row of Tables III and IV is due to the fact that the tilings (or orbits) in columns k
=

5, 6 and

7 are mirror images of the ones in columns k
=

3, 2 and 1, respectively. These tilings are thus

mirror symmetric if and only if they are also invariant under some rotation but the rotation

symmetric patterns are just those with multiple symmetries determined above.

The situation is somewhat more involved for the tilings of columns k
=

0 and 4. Since

their symmetry, generated by inflation and inversion, commutes with reflection, we find entire

inflation-orbits of mirror symmetric patterns for each reflection axis. Also, inflation orbits of

order 2n may rather contain tilings that transform under n-fold inflation to a mirror reflected

copy: II" S)-symmetry.

For the latter case, we obtain the numbers as (N2)"
11

N2[-~" ii (for each reflection

axis), but for counting reflection symmetric tilings with additional inflation symmetry, a closer

look at the structure of the solution manifolds of reflection symmetric patterns on the torus

is needed. While for details we refer to [3], the situation, in summary, is like this: The

solution manifolds form subtori of lower dimension (2D in this case) within the original torus.

Symmetries that commute with mirror reflection will stabilize these subtori. Thus we can

restrict our analysis to these subtori. But in our case, restricting inversion and )-inflation to

2D, we are back to the situation of the silver mean chains! The symmetry counts of LI[SM]
(times the number of subtori) thus give us the numbers of mirror symmetric tilings (for each

reflection axes) in the LI-classes under consideration. Since we find one and two subtori

respectively (for each reflection axes) in the two different conjugation classes of D8, there

are altogether 3dn orbits of mirror symmetric inflation n-cycles and 3in orbits of tilings with

i-I"
x S)-symmetry (dn and in of Tab. II).

We give the results of the now complete symmetry analysis together with examples from the

quasiperiodic Ammann-Beenker tiling class LI[AB]. The tilings (resp, tiling seeds) below are

constructed through iterated inflation. For the inflation rules see [14].
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Table V. Symmetry orbit counts for LI-classes with D8 x I generalized symmetry. If multiple
entries in the same column occur, the second refers to orbits of mirror symmetric tilings and

the third (if present) to orbits of tilings with (1"/~ S) -symmetry.

0 2 3 4

1 0 0 0 2 0

2 0 2 1 2 0 + 3

3 1_+ 6 + 0 6 8 10 1 + 6

4 8 + 9 + 5 36 34 36 13 + 12

5 72 + 24 + 0 162 168 174 72 + 24

6 362 + 42 + 26 816 808 816 388 + 48

7 1989 + 102 + 0 4056 4080 4104 1989 + 102

8 10182 + 204 + 132 20808 20772 20808 10314 + 216

.
There are two tilings with maximum pos-

~
sible symmetry, D8 x I. In LI[AB] one of

them is regular, the other corresponds to

a set of eight singular tilings.

. We obtain one 2-cycle of D4 x I symmetric tilings. They are

singular in LI[AB].

~
. There is one orbit of four tilings with D2 x II C4 symmetry,

hence the tilings are transformed into 90° rotated copies by
inflation. They are regular in LI[AB].

. Finally there is one orbit containing eight -

~
(in LI[AB] singular) tilings with (D2 x I~)-

symmetry. --

~
. The orbit counts of tilings with no rotational symmetry are given in Table V.

TILINGS wiTH 10-FOLD ROTATIONAL SYMMETRY. The most prominent tiling classes with

(Dio x I)-symmetry
are the triangle and Penrose patterns. They have been studied in detail

in [3]. Here, we give the results in a completed (but concise) form.

The unit group of the cydotomic field tilt) is generated by the 36°-rotation f
=

exp(iri IS)
and the golden mean inflation factor

T = 11 + v$) /2
=

( + (. The 10th cyclotomic polynomial
reads Pio(x)

"

x~ x~ + x~
x +1 [11,13] and the Galois group, Ci C4, is cyclic. Note that

one could equally well use P5 lx)
=

x~ + x~ + x~ + x +1 because it has the same splitting field
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Table VI. Symmetry orbit counts for LI-classes with (Dio x I) generalized symmetry. If
multiple entries occur in one column, the second refers to orbits containing mirror symmetric

tilings and the third gives the number of orbits with (1"/~ S)-symmetric tilings.

0 1 2 3 4 5

1 o o o i i o

2 0 0 0 0 0 0+1

3 0 0 0 1 1 0

4 0 1 0+2

5 0+2+0 2 2 3 3 0+2

6 0+2+2 5 5 5 5 2+2

7 4+4+0 ii 11 13 13 4+4

8 8+4+4 27 27 27 27 12+6

9 26+8+0 62 62 66 66 28+8

10 62+10+10 150 150 150 150 72+12

as Pio lx) [12]. Tilings with rotation symmetries again have inflation symmetries, due to the

identities: ( 1
=

(~ IT 1), (2 -1
=

(2T~~ (T2( -1) and (~ -1
=

T~~ (T~ -1). On restriction

to mirror symmetric tilings we get to the symmetry structure of one-dimensional Fibonacci

chains (there is one subtorus for each reflection axes in this case). In summary, we find:

.
There is one tiling with full symmetry, Dio x I. It is singular both in the Penrose and in

the triangle LI-class.

.
There is one orbit containing 4 tilings with IDS x (C2 I~))-symmetry. The triangle tilings

are singular, but the patterns of the Penrose LI-class are regular.

.
Finally, there is an orbit of15 tilings with (D2 x

I~)-symmetry, singular in both cases.

.
The orbit counts for tilings without rotational symmetry are shown in Table VI.

12-FOLD ROTATIONAL SYMMETRIC TILINGS. The underlying module belonging to twelve-

fold symmetric tilings, like the square-triangle tiling, the Stampfli tiling or the Socolar tiling,
is the module lZ[(] with (

=

e2"/~~. The corresponding cyclotomic field is the splitting field

of the 12th cydotomic polynomial, P12 lx)
=

x~ x2 + 1 [11,13]. The primitive 12th roots of

unity are f, f~, f~, f~~, and the Galois group is Cf C2 x C2.

Its unit group U12 is generated by a 30°-rotation ( together with a
rotation-inflation

J~ =

@
where p =

2 + vi. Note the contrast to the eight- and tenfold cases where the elementary
inflation were pure dilations. The full symmetry group therefore is a semidirect product between

the reflection group S and the rotation-inflation group U12. As in the above cases, every tiling
with a geometric symmetry also shows some inflation symmetry, indicated by the identities

lf~ i)
=

lfiJ i)f~, lf~ i)f~iJ
=

fiJ~ i and lf~ i)f~iJ
=

lfiJ)~ i The Symmetry

structure of the mirror symmetric tilings can be read from the maximal real submodule lZlp]
which corresponds to the so-called Platinum number chains. Tilings with one single reflection

axis split into ~p"-orbits. Again, we find one subtorus for each reflection axis.
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Table VII. Symmetry orbit counts for LI-classes with (C12 x I) xs S generalized symmetry.
In columns with several entries, the second corresponds to orbits of mirror symmetric tilings,

the third entry corresponds to orbits with1(/~ S symmetry.

0 1 2 3 4 5 6 7 8 9 10 ii

i o o o i o i i o i o o o

2 0 0 0 1 0 0+1 0 1 0 0 0 0

3 1 1 2 1 2 2 1 2 1 1 1

4 3 4 4 4 2+3 4 4 4 3 4 0+1+1 4

5 11 13 12 13 13 12 13 11 12 11 11 12

6 36 39 36 32+8 36 39 36 36 36 18+8+8 36 36

7 123 120 123 123 120 123 11? 120 11? l17 120 11?

8 392 392 372+24 392 392 392 384 392 338+21+21 392 384 392

9 1309 1309 1299 1309 1292 1299 1292 1292 1299 1292 1309

10 4320+72 4356 4380 4356 4356 4356 4200+72+72 4356 4356 4356 4380

We illustrate our results with square-triangle tilings. The precise definition of our class

LI[ST] is given in the appendix. Patterns are constructed through iterated inflation.

.
There is one single tiling with full sym-

~
metry (C12 x I) xs S. It is singular in

LI[ST].

.
There is one orbit containing three tilings
with (C4 x 1. C12) xs S symmetry. It is

singular in LI[ST].

~
.

There is one orbit of eight tilings with

(C3 x
12 C12) x

s

S symmetry. The mem-

bers of LI[ST] are regular.

~ ~
.

Finally, there is one orbit of twelve tilings
with (C2 x

I~ C6) xs S symmetry. The

tilings in are regular in LI[ST].

~

.
The orbit structure for tilings without rotational symmetry is shown in Table VII.

14-FOLD AND HIGHER ROTATIONAL SYMMETRY. Up to this day no quasicrystal has been

found in nature with higher rotational symmetry than 12-fold. On the other hand, it is no prob-
lem to extend the theoretical description to rotation symmetries of arbitrary order. However,
the situation becomes more complex on going beyond 12-fold rotation: While there is no infla-

tion symmetry for crystallographic LI-classes and one inflation scale for quasicrystallographic
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LI-classes with Ds, Dio or D12 generalized symmetry, there are two or more independent in-

flation scales for LI-classes with higher rotational symmetry [11]. This corresponds to the fact

that in the projection picture we need to start with an embedding lattice of dimension higher
than four.

Here, we shortly present how to deal with these cases within the torus parametrization. The

case of LI-classes with D14 x Ii x 12 generalized symmetry shall serve as an example.

The unit group of the cyclotomic field tilt), t
=

exp(iri17), is generated by the ir
/7 rotation

and the two inflation scales Ti "
1+ (~ + (~ m 2.247 and T2 =

T) -1 m 4.049 [11,13]. The

14th cyclotomic polynomial has degree 6, P14 lx)
=

x~ x~ + x~ x~ + x~
x +1, with roots

f,f~, f~ and their complex conjugates. Its Galois group is cyclic: Ci
C6, the same as that

of P7 lx)
=

P141-z). (Hence 6 is also the minimum dimension of the embedding lattice). The

total numbers of symmetric tilings are then given again by the corresponding N6-norms as in

(14). Multiple symmetries for special tilings are indicated through identities within Q(f) like

in the cases discussed above.

Here, we give a classification of all tilings with nontrivial rotation symmetry.

.
There is one tiling with maximum possible symmetry: D14 x Ii x 12.

.
One symmetry orbit contains 6 tilings with (C7 x

(II Cm) x 12) xs S symmetry.

.
There is one symmetry orbit of14 tilings with C2 x (Ii C14) x (Ii .12) symmetry. So

the two inflations act as mutually inverse ir/7-rotations
on these tilings. Mind that the

tilings have no mirror axes.

.
Finally, there is one orbit containing 49 tilings with D2 x

I)
x (Ii .12) symmetry.

6. Concluding Remarks

We have presented an approach allowing for a complete classification of the symmetry structure

of "cut-and-project" LI-classes. Within the framework of the torus parametrization, symmetric
LI-class elements correspond to Wyckofl positions of the embedding lattice. Inflation symme-

tries can be included in the classification. The method can be extended to higher dimensions,

see [3] for a full discussion of quasiperiodic LI-classes with icosahedral symmetry.

Results have been presented explicitly for 2D tiling classes with 8, 10, 12 and 14-fold rota-

tional symmetry. While it is straightforward to apply our method to other "cut-and-project"
LI-classes of interest, nothing can be said here about symmetries in LI-classes that can not be

obtained via projection. So this remains an open question for the future.
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Fig. 2. Inflation rules for the square-triangle tiling class LI[ST].

Fig. 3. A finite patch of the maximally symmetric tiling from LI[ST].
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Appendix: Inflation Rule for LI[ST]

A method to construct twelvefold symmetric square-triangle tilings was first presented by
Stampfli [15]. His tilings, however, do not possess local inflation. Here, we use an inflation

rule due to Martin Schlottmann [16], see Figure 2. The resulting tilings are indeed of cut-

and-project type, as can be proved directly and follows from more general arguments outlined

in [17]. The windows have fractal boundaries (of
zero Lebesgue measure) which of course does

not affect the symmetry analysis. A larger patch is shown in Figure 3.
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