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Abstract. A one-dimensional high-symmetry growing surface in presence of step-edge bar-

riers is studied numerically and analytically, through a discrete /continuous model which neglects
thermal detachment from steps. The morphology of the film at different times and/or different

sizes of the sample is analyzed in the overall range of possible step-edge barriers: for a small

barrier, we have a strong up-down asymmetry of the interface, and a coarsening process

with an increasing size of mounds takes place; at high barriers no coarsening exists, and for

infinite barriers the up-down symmetry is asymptotically recovered. The transition between the

two regimes occurs when the so-called Schwoebel length is of order of the diffusion length.

1. Introduction

The stable growth mode of a high-symmetry surface in Molecular Beam Epitaxy is layer-by-
layer growth: newly fallen adatoms diffuse on the surface till they meet a "trap", which may

be another adatom, or the step of a growing island. Afterwards, islands coalesce by leading to

the completion of the layer, and the process starts again. Nevertheless, adatoms approaching

a step from above may be hindered from descending it, because of step-edge barriers (Ehrlich-
Schwoebel effect ill). This causes on one side a higher adatom density and therefore a

higher probability of nucleation, and on the other side an up-hill current [2] (also called

diffusion bias) both effects determine the formation of mounds.

If the main relaxation mechanism of the surface is surface diffusion and vacancies /overhangs

can be neglected, the surface evolves by preserving the volume so that the following Langevin-
type equation can be written for the local height z(x, t):

btz
=

-b~j + F + ~. (l.1)

(*)Present address: Dipartimento di Fisica, Universith di Firenze, L-go E-Fermi 2, 50125 Firenze,
Italy (e-mail: politipflfi.infn.it)
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Fig. 1. Profile of the one-dimensional high symmetry growing surface. F is the flux of particles
(per unit time and unit surface). Top, vicinal and bottom terraces are indicated, D and D'

are the

sticking coefficients, from above (D') and below (D). Their asymmetry defines the Schwoebel length
(see the text),

Here and throughout the paper, the lattice constant is put equal to one. F is the flux of atoms:

it will be incorporated in z (z ~ z
Ft). Finally, ~ is the noise, which may have different

origins (shot noise, diffusion noise, nucleation noise). A most used expression for j is [3-5]:

j
=

j~(mj + Km"jxj
m -

o~zjx,tj. ji.2j

The first term will be called Schwoebel current and it is due to the above mentioned diffusion

bias. It depends on the Schwoebel length, which is a measure of the asymmetry in the sticking
coefficients to a step (see Fig. Ii, from above (D') and below (D):

is
=

~) l) (1.3)

Its actual form may have [4] or not [5, 6] zeros at finite slopes m =
+m*. In the former case,

the growth equation (I.I) is equivalent to the Cahn-Hilliard equation, where
m

plays the role

of order parameter:

o~m
=

oj(£)+o~~ (1.41

F
=

/
dx (((b~mi~ +

(mij
U'(mi

=
-Js(mi (isi

So, the surface undergoes a spinodal decomposition process, with the formation of regions
of size L, where the slope is alternatively in the two minima m =

+m* of the potential U(m).
These regions are separated by domain walls and their typical size increases in time according

to a power law: L
+~

t". For a conserved order parameter, n =
1/3 [7] if ~ is due to shot-noise,

while L increases logarithmically if ~ is absent [8]. In 2+1 dimensions, as pointed out by Siegert
and Plischke [4], the growth equation has no exact counterpart in the Cahn-Hilliard equation
(one reason is that

m
satisfies the extra-condition: T7 Am

=
0), but the evolution is very

similar and numerical solutions of the corresponding Langevin equation give [4] n =
1/4.

The previous scenario is expected to be valid if a strong term of the form j
=

Km"(x)
is present in the current, also at the largest slopes allowed by the dynamics. Such term was

introduced by Mullins [9] to explain the relaxation of a grooved surface via surface diffusion. Its

microscopic origin is thermal detachment from steps, and its form simply translates a current

deriving from a chemical potential proportional to the surface curvature.

In the present article, we will study the opposite limit of
a

far from equilibrium system,

when thermal detachment can be neglected (as found experimentally in Fe /Fe [10] at not too

high temperatures), and other terms appear in the current.
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A first important issue is the following: the current 11.2) changes sign if
z ~ -z, meaning

that the resulting morphology is up-down symmetrical. This property is not always satis-

fied, neither in experiments ill,12],
nor in simulations [6,13,14]. So, a term of the form

jc
=

b~A(m~), whose justification
was given in reference [6], will be added: it has the simplest

form which breaks the up-down symmetry, by keeping the reflection symmetry (x ~ -xi.
Even if thermal detachment is neglected, other mechanisms [6,15] may contribute to a

Mullins-like term in the current: for example, random nucleation and diffusion noise. In the

limit of large terraces, random nucleation prevails [15], and only this one will be retained.

However, since nucleations depend on the length of the terrace (see below), this means that

K is indeed a function of the slope: K
=

Kim), which vanishes if nucleation events are very

rare. This is one of the main reasons why the resulting morphologies in a far from equilibrium

system differ a lot from the quasi equilibrium case.

2. The Model

The discrete/continuous model which will be used throughout the paper was introduced by
§lkinani and Villain [16]. In this model, a one-dimensional high-symmetry growing surface

"contains" steps, but not adatoms, which are treated in a continuous way via a diffusion

equation, whose boundary conditions at steps give step velocities.

The diffusion equation is integrated by an expression giving the probability of nucleation

Pit) per unit time on a given terrace of width t. Let us briefly recall its form.

The probability Pit) may be determined as the rate (Ff~) of incoming atoms on a terrace

of dimension d id
=

1, 2) times the probability p for each adatom to meet another one
(before

sticking to a step). p is approximately given by the number of distinct sites visited'by the

adatom (+~ f~, if logarithmic corrections are
neglected) times the (average) density (pi of

adatoms. Finally:
P(f) m

Ff~ f~ (pi. (2.I)

We want to stress that (pi depends on is and on the- type of terrace. By characterizing a

terrace according to the number of ascending and descending steps (see Fig. Ii,
we will speak

of top terraces (no ascending steps), vicinal terraces (both types of steps) and bottom terraces

(no descending steps). Adatom density is not influenced by step-edge barriers on a bottom

terrace, whilst on a top terrace (pi goes to infinity when is ~ cc, and this strongly increases

the probability of nucleation P(f) (see the Appendix).
For a weak Schwoebel effect we can neglect the dependence of (pi on is and the solution of

the diffusion equation gives (pi
rs

Ff~ ID, so that

~n2~2(d+ij
P(f) m

(2.2)

We define nucleation length the typical linear size of a terrace just before a nucleation process

takes place, or in other words as the typical size of a terrace for which the probability
of nucleation during the deposition of one layer (t

=
I IF) is of order one:

P(f) IF m I. For

a bottom terrace, or equivalently in the submonolayer regime, we will use alternatively
the more common term of diffusion length (fd). So, from equation (2.2) we obtain

D
+

id "
~-) (2.3)

F

This well-known result [17] is valid in the hypothesis that the nucleation of two adatoms

is an irreversible process (not too high temperature) and that islands are not fractal (not too
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low temperature). More details and the explicit expressions for the nucleation lengths of
a top

(f)),
a bottom iii

e id) and a vicinal (f$) terrace are given in Appendix.
In this paper, the following general expression for the surface current will be used [18]:

" ~~ ~ ~~ ~ ~~ ~
211 + ts/td ~~~/)(i

+ imifd)

-b~
~j~

()~~~j) + K(m)m"(xi 12.41

It is noteworthy that jc does not depend on is (see also Refs. [19,20]); on the other side, the

actual dependence of K on is and m is not exactly known. This equation will be exploited in

the following sections to accompany the numerical simulations of the model described above.

3. Aim of the Paper

The aim of the present work is to study the different morphologies of a I+I dimensional growing
surface which is strongly out of equilibrium. In this limit, it has been shown in reference [6]
that deep crevaces appear at sufficiently long time /length scales.

The scenario given in reference [6] is representative of a low is regime ifs < id In this case

two critical wavelengths exist, a lower one (~)~~) and an upper one (~[~P). For scales smaller

than ~(~~ the flat surface is stable, but after a typical time t* mounds develop with a size

L (= ~(~~) which increases in time via a coarsening process. These mounds are not (up-down)
symmetric and are separated by angular points.

When L
=

~[~P coarsening stops and deep crevaces form in between. It is noteworthy that

the existence of the coarsening process may be explained in terms of the stability properties
of stationary mounds, which exist in the interval ~(~~ < L < ~[~P. mounds are stable with

respect to height fluctuations (which
means that they keep their form during coarsening) and

unstable with respect to width fluctuations (which
means that a large mound "eats" a smaller

one).
When L ~ ~(~~ the height of mounds goes to zero, meaning that the flat surface is sta-

ble at sufficiently small scales, while for L > ~[~P mounds become unstable even for height
fluctuations.

The case of infinite Schwoebel effect has been studied, for a far from equilibrium system, by
Krug [19]. He asymptotically finds up-down symmetric configurations, which he calls "wedding
cakes". He also find their analytical profile, which is given by the inverse of the Error function.

In the following we will study the transition between the two regimes, by focusing on the

following questions: ii is the scenario found in reference [19] for is
= cc valid also for sufficiently

large is? iii how does the transition between the two regimes occur? iii) why at infinite is is

the up-down symmetry asymptotically recovered?

4. Results and Discussion

In the following we will call the behaviours described in reference [6] (is « fd) and in refer-

ence [19] its
=

cc), respectively as "small-ts" and "large-ts" regimes. To understand how a

transition between them can occur, let us focus on the upper critical wavelength. First of all,

we will show that ~[~P is a decreasing function of is.

If we adopt a purely deterministic point of view, according to which nucleation takes place

on a terrace only when its width equals its nucleation length, we have a much simpler model
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which is unable to explain ~)~~ (whose origin is just random nucleation), but which can explain
qualitatively well ~[~P In the limit (m( > I lid, the current (2.4) writes:

~ ~~ ~ ~~ 2(1+ (m[is)[m[
~

4m3 ox
~~'~~

The equation j
=

0 can be solved if the "starting" slope mo is known. In a deterministic

model mo is nothing but the inverse of the nucleation length of a top terrace (the only one

where nucleation takes place). This way, we can writ,e down the expression of ~[~P.

~

[i) (is)) ~ i~ (is)
~c~~(det " ~i

+ ~

~
(4.2)

where we have stressed the is dependence of I). As detailed in Appendix, I) goes to zero

when is ~ cc, so that ~[~P is a decreasing function offs and ~[~P(cc)
=

0.

Anyway, the previous statement may be misleading, since the minimal meaningful length

on a high symmetry surface is the diffusion length id- In other words, the minimal distance

between crevaces is set by the nucleations in the very first layers, which give rise to islands at

an average distance id (see, for example, Ref. [10]). Therefore ~(~P can not be smaller than

this distance:

~[~P(is) > id ~ is < I(~P (4.3)

By using the deterministic formula (4.2) it is found I(~P
=

0.lsid and I)(I(~P)
=

0.8id.
If is > I(~P the flat surface is already unstable at the "minimal" scale id- This morphology

(see Fig. 2c) is rather similar to the one found by Krug [19] (see Fig. 2d) in the extreme case

is
= cc, but while at finite is an up-down asymmetry is maintained at all times, for is

= cc

the symmetry is asymptotically recovered. At this regard, a first trivial observation is that I)
keeps finite for finite is and it vanishes only for is

= cc. This implies that the top of the profile
naturally differs from the bottom. On the other hand, the comprehension of the recovered

up-down symmetry at large times for is
= cc requires a more deep analysis.
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Inspection of equation (4.I) shows that both js and jc keep finite for is
= cc

(indeed, jc
does not depend on is). Anyway, for is > I(~P no stationary configuration exists and therefore

there is no need for js and jc to compensate.
Let us evaluate the ratio between the curvature term and the Schwoebel term, in the surface

current (the slope m will be supposed to be positive)

)
1~2 ~ilts ~ ~l' ~~'~~

For a strong Schwoebel effect, the ratio (I /mts) is smaller than one and

j~ m' b~js btz[~~=~
~ ~

2m2 F F
~~'~~

So, the condition jc « is is satisfied if the rate of growth (btz) of the surface, due to the

Schwoebel current, is much smaller than the rate (F) of incoming atoms. (Let us remind that

the "real" height of the surface is z(x, ii + Ft.)
We can check the previous condition by using the solution for jc e 0 [19]. The evolution

equation btz
=

Fz" /2(z')~ is separable and the differential equation can be solved: the profile
is given by the inverse of the Error function and it is easily proved that

is " 2Ft
~~'~~

Since the height z(x, t) increases as
/, in the limit t ~ cc the curvature term (jc) is negligible

with respect to the Schwoebel term (js). This means that the up-down symmetry is recovered,
but only asymptotically.

After having discussed the region is > I(~P, let us turn to the region is < I(~P In general
terms, the lower critical wavelength ~(~~ is determined by the linear stability analysis of the

flat surface. In this case jc (+~ b~m~ at small slopes m) is irrelevant and j has the form:

j
=

jj(o)
m + Km"jxj j4.7j

where j((0)
=

Fisid/(2(1+ is lid)) The exact expression of K is not known, but K surely does

not increase with is. For small ifs lid), dimensional analysis suggests the form K
=

Kofi(,
Ko being a numerical constant [6].

The solution of the linear equation btz
=

-b~j gives the following expression for ~)~~.

~~ ~

~~fi~
~~ i ~[ ~

ll'
~~'~~

So, ~(~~ too is a decreasing function offs. Furthermore, the limiting value does not depend too

much on the actual form of K: if K(is
=

ccl
=

0, then ~(~~ (is
=

cc)
=

0; conversely, if K has

a weak dependence on is (K m
Kofi(), then ~(~~ (is

=
ccl

=

2~@Gid. By comparison with

the numerical results at small is, where ~(~~ is well defined (see Fig. 3), the determined value

of Ko gives rise to ~(~~(ts
=

ccl
ct

0.8/1.2 id- Since lengths smaller than id are meaningless,
there is not a big difference between the two cases (constant K and decreasing K).

Now, what does happen to ~(~~, when is is smaller, but of the same order of I(~P? Since

by definition ~(~~ < ~[~P, a second critical value I(~~ is expected, but two possibilities exist:

~(~~ =
~[~P (Fig. 3a)

or ~[~~ =
id (Fig. 3b), when is

= I(~~ (The two possibilities coincide if

tint
=

fsup
s s
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Fig. 3. Schematic forms of the two possible "phase diagrams". The coarsening region is in between

the two curves. Note that i~ varies in [0, cc], while L in lid, cc].

The evolution of the surface, in the interval I[~~ < is < I(~P, differ in the two cases. In

the former one, at increasing L (or the time t),
we pass directly from a stable flat surface

to an instability with formation of deep crevaces. In the latter case, mounds appear with a

wavelength ~
=

id, we have coarsening, and afterwards the upper instability takes place. In

other words, the flat surface is never stable (on scales larger than id).
Which scenario really occurs is not evident. In fact, for is m I(~~ the coarsening region if

exists! is very narrow and mounds have a typical size which is only slightly larger than id

This means that fluctuations are very important, because nucleation events take place exactly

on a length scale id A second difficulty is that ~(~~ and ~[~P can not be located with extreme

precision. ~[~P can be determined for example by changing the value of L (small size

of the sample) and by checking when a mound is no more stable. Nevertheless, if L m id

stochasticity in nucleation makes the interface thickness /hz(= zmax zmm) neither constant in

time (meaning
a stationary mound)

nor constantly increasing in time (meaning an
instability)

rather, /hz shows an intermittent behaviour, with formation and healing of deep crevaces.

The location of ~(~~ is even more difficult: some reasons were explained in reference [6], but

here we will add a more pertinent comment. A continuum local equation results from a spatial

average on a distance of order id, so the notion of lower critical wavelength which results

from a linear stability analysis of the current (4.7) breaks down if ~(~~ ct
id-

This happens just when is ci I(~~, therefore the difficulties in drawing the phase diagram
(see Fig. 4) in the region is m I(~~, L m id-

In Figure 2, different morphologies, for different values of is are shown: for is lid
=

0.I

(Fig. 2a) we have mounds which would be stationary in absence of coarsening, and whose cur-

vature is always negative. All the other structures (Figs. 2b, c, d) are unstable configurations,
which are also characterized by the appearing of pieces of curve with a positive curvature. The

size of the flat region, on the top, equals I), which decreases at increasing is. For is
= cc this

size vanishes, but the up-down symmetry appears only at large times.

In Figure 4, it is shown the "phase diagram" of the one-dimensional surface, in the plane
its lid, Llid). The variable L may have two different meanings: for a small sample size, L

is the sample size; for a very large sample, L is the typical size of the emerging structure.

Because of the dynamics, this size increases in time, so L may even be thought as the "time".
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Fig. 4. "Phase diagram" of the one-dimensional surface. Both is and L are given in units of the

diffusion length id- The full rhombuses mean that the flat surface is stable; the circles that stationary
mounds are present; the crosses that no stationary configuration exists and deep crevaces form. Other

details are given in the text. For a given value of is, if a cross is marked for L
=

L~ then other crosses

are present for all the L > L~. Analogously, if a rhombus is marked for L
=

Lo then other rhombuses

are present for L < Lo.

The lower critical wavelength is located between full rhombuses and circles, and the upper one

between circles and crosses. When two different symbols are superimposed, it means that it

has not been possible to discriminate between them: for example, that it has not been possible

to decide if the flat surface is stable or not, at the corresponding lengthscale. This occurs when

is ct I(~~ From the figure, it is possible to locate t(~P in the range 2/4 id

5. Conclusions

We have studied a one-dimensional high-symmetry surface, whose growth in presence of

step-edge barriers is unstable (Ehrlich-Schwoebel instability).
If the flux is not too high and thermal detachment from steps is effective, current (1.2)

should be relevant and the picture given in previous works [3,4] applies. In this case, the

up-down asymmetry is weak and the actual value of the Schwoebel length should not influence

qualitatively the resulting morphology; nonetheless, it determines how long the crystal surface

keeps flat.

In this paper we have studied the opposite limit of a far from equilibrium surface. Even

if thermal detachment is absent, a Mullins-like term in the surface current is induced by
random nucleation, so the linear description of the surface evolution is the same as in the

quasi-equilibrium case.

When slope increases, a strong up-down asymmetry in the surface profile appears: it is a

consequence of the nonlinear symmetry breaking term, but also of the inability of random

nucleation to heal the surface at large slopes. Furthermore, the morphology of the growing
crystal at variance with the quasi-equilibrium case depends on the value of the Schwoebel

length, and for is
= cc, the up-down symmetry is asymptotically recovered.
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The main features of the present model are I) the neglect of thermal detachment, and it) the

vanishing of the lattice constant a
(continuum limit). The former determines an upper critical

wavelength, the latter that slope can go to infinity. In reference [6] we have argued that ~[~P
should survive even if ii is relaxed, if detachment is weak. Anyway, it will be important to study

more carefully this point, so as to investigate the transition between the quasi-equilibrium case

and the far from equilibrium one, treated here. We want also to stress that the existence of

~[~P does not depend on iii
: in fact, the maximal slope at the angular points, just before the

formation of deep crevaces, is weaker than I la. Crystalline effects come into play after crevaces

have appeared, and m ci I la.
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Appendix

Nucleation Lengths

The nucleation length in of a terrace is determined by the condition (see Eq. (2.I)):

P(in)
'j

"
f]~(Pl

" 1 ~~'~~

where (pi depends on the type of terrace.

The diffusion equation F + Dp"(x)
=

0 is solved in the interval x E (-i12,i12), with the

following boundary conditions (x
=

+i12):

p'(x)
=

p(x) descending step
is

p(x)
=

0 ascending step.

So, if is
=

0 we need p(x) [step "
0, because adatoms are automatically incorporated. For

is
= cc, we have p'(x) [step "

0.

It is found that (capital letters B, T, V refer respectively to a Bottom, a Top and a

Vicinal terrace):

PB(Xl
"

~
~~)

X~l~

PTIXI
"

~)+PB(X)

~~ ~~~ 2D~~~ t) ~) ~ ~~ ~~~'

It is manifest that pT ~ cc if is ~ cc, whilst pv keeps finite. Finally, from (A.I)
we obtain

the following expressions lequations for the nucleation lengths, in I+I dimensions:

~

l2Dj~/~
~~ ~~

F
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ltl)~ + fits ltl)~ tl
"

o

(t$)~ + 4is(I$)~ t((I$ + is)
=

0.

For is » id, I)
ci id (id /6is)~/~ and t)

ci id Il.
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