
HAL Id: jpa-00247232
https://hal.science/jpa-00247232

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An X-ray Scattering Study of Laterally Modulated
Structures: Investigation of Coherence and Resolution

Effects with a Grating
Alain Gibaud, J. Wang, M. Tolan, G. Vignaud, S. Sinha

To cite this version:
Alain Gibaud, J. Wang, M. Tolan, G. Vignaud, S. Sinha. An X-ray Scattering Study of Laterally
Modulated Structures: Investigation of Coherence and Resolution Effects with a Grating. Journal de
Physique I, 1996, 6 (8), pp.1085-1094. �10.1051/jp1:1996117�. �jpa-00247232�

https://hal.science/jpa-00247232
https://hal.archives-ouvertes.fr


1. Phys. I France 6 (1996) 1085-1094 AUGUST1996, PAGE 1085

An X-ray Scattering Study of Laterally Modulated Structures:

Investigation of Coherence and Resolution Elllects with
a

Grating

A. Gibaud (~,~>*), J. Wang (~), M- Tolan (~), G. Vignaud (~) and S-K- Sinha (~)

(~ Équipe de Physique de l'État Condensé (** ), Université du Maine, Faculté des Sciences,

BP 535, 72017 Le Mans Cedex, France

(~) Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

(~) Institut für Experimental Physik, Christian-Albrechts-Universitat Kiel Olshausenstrasse 40,

2300 Kiel 1, Germany

(~) E-S-R-F-, BP 220, 38043 Grenoble Cedex, France

(Received 17 November1995, revised 22 February1996, accepted 25 April 1996)

PACS.61.10.Dp Theories of diffraction and scattering

PACS.78.70.Ck X-ray scattering

Abstract. An X-ray scattering experiment at small angle of incidence from trie laterally

modulated structure of
a

grating is reported. The attention is mainly focused
on

the determi-

nation of trie linewidth of trie diRerent diRracted orders observed in transverse scans parallel to

the surface of the grating. It is shown that the width of the diRerent orders decreases when the

incident angle increases and that the evolution of the width is consistent with the evolution of

the instrumental resolution. It is also shown that if the spatial coherence of the beam is defined

by the angular apertures of the incident and outgoing beams a
identical behavior is expected at

least when the diRracted orders are
well separated.

Résumé. L'étude par diffraction des rayons X aux petits angles de la structure modulée

latéralement d'un réseau est présentée. Notre attention a
été portée plus particulièrement sur

la détermination de la largeur à mi-hauteur des différents ordres de diffraction observés dans

des mesures faites parallèlement à la surface du réseau. Nous montrons que la largeur à mi-

hauteur des ordres de diffraction décroît avec
l'augmentation de l'angle d'incidence du faisceau

sur
la surface

ce qui est en
accord avec

l'évolution de la fonction de résolution instrumentale.

En prenant en compte la divergence angulaire du faisceau incident et du faisceau diRracté pour

définir la cohérence spatiale du faisceau, nous obtenons une
loi d'évolution identique ce qui

nous permet de conclure que, pour des pics de Bragg bien séparés, les effets de cohérence et de

résolution sont indiscernables.

X-ray diffraction by laterally modulated surfaces is presently one of the very up-to date topics

in X-ray diffraction at small angle of incidence. The relevant surfaces are
usually the surfaces

of etched mesoscopic gratings some of which present a nearly perfect lD mesoscopic structure

of period, d, varying from 1 ~lm to several hundreds of microns. The use of such surfaces
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at small angles of diffraction is particularly appreciated to investigate the coherence length
of X-rays. The periodic structure of the grating produces a periodic diflracted pattern when

scans are performed parallel ta the stepped surface of the mater1al. The location of the various
orders of diffraction is given by 27r/d. A few studies have already been reported in which
the spatial coherence length of X-rays has been investigated either with help of gratings or

with pinholes [1-5]. In the case of gratings, the spatial coherence length is deduced from the
width of the diflerent diflracted orders. The first experiment reported by Tolan et ai. il, 3]
was performed by rocking the grating at a fixed position of the detector whereas Salditt et

ai. [4] performed similar experiments at fixed incident angle but moving the detector. In such
experiments the grating is mounted in the vertical plane and the reflected intensity measured

in the horizontal plane. The lateral period of the grating can be modified by rotating the
grating about an axis normal ta its surface, 1-e about qz. The stepped surface has then an

apparent periodicity in the q~ direction which is related ta the period d of the grating and
to the angle ~ of rotation by d~

=
dl cos~ (a similar eflect is observed in the perpendicular

direction). The basic idea to measure the spatial coherence of the beam il,4] is ta rotate the
grating until the apparent periodicity becomes larger than the coherence length of the X-ray
beam sa that the periodic structure is washed eut. A condition for carrying eut experiments

is that the resolution must be coarse enough Dut of the scattering plane and extremely good in
the scattering plane. Such a condition is easily obtained at small angle of scattering. However

a complete understanding of coherence effects is only possible if one can discriminate between
resolution and coherence eflects.

The aim of this paper is ta denve in a very simple way a genera1expression of the reflected
intensity

in
the q~,qz scattering plane of a laterally modulated structure which presents a

quantized distribution of thickness in the
z direction. We present a complete calculation of

scans performed parallel ta the surface of the grating. We use the two diflerent approaches of
infinite spatial coherence corrected from instrumental resolution and of finite spat1al coherence

by studying the linewidth of the diflerent diflracted orders and by comparing the observed
results with those calculated from resolution and coherence eflects. We do net consider the
eflect of the time coherence length which has the same eflect

as a wavelength spread and we
therefore assume that this quantity is infinite.

We consider the stripes of the grating are parallel ta the y direction and that the scattering
plane will be define by the q~,qz >-directions with qz normal ta the face of the grating. We
aise assume for sake of simplicity that the grating presents a uniform electron density inside
the material which makes its structure. The structure is supposed ta be characterized by two
specific thicknesses called Li and L2 which are the thicknesses of the bottom B and top T

parts of the mater1alwith respect to the reference level of the flat substrate on which it has
been deposited (see Fig. l). We neglect in this calculation the roughness of the two quantized
surfaces and we aise consider that one moves from B ta T by a step function.

The passage from the altitude Li to the altitude L2 is defined by a two-dimensional proba-
bility function P(x, y) which is zero or 1 when one is respectively at the level Li or L2 in the

structure. This is a way of seeing the structure of the surface as a binary abject. We then

use the kinematical approximation in which the scattered amplitude is defined
as the Fourier

transform of the electron density:

A(Q)
=

/~ P(r)e~~~'~dr (1)

>

The integration is carried Dut in the 3 directions x,y and z and separated into two terms

according ta whether the scattering point belongs ta the bottom or top part of the materai.
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Fig. 1. A schematic representation of the grating structure.

'This yields ta the following scattering amplitude:

o Li

A(Q)
= p~ dze~~~~~ dxdye~4~r+~YY)+p dze~~~z~ dxdye~~(~~~+~YY)

m Î Î Î Î Î

+p /~~ dze~~~z~
/ /

dxdyP(x, y)e~4~~~+~YY) (2)
Li s

where S is the surface of the sample which is illuminated coherently by the X-ray beam. In the

absence of a general formalism ta describe the scattering in terms of partial coherence of the

X-ray source, there are two ways ta perform the above integration. One con consider either

a
perfectly coherent beam of infinite coherence length and take into account the resolution

function, or a beam of finite coherence lengths and integrate over the limiting values (~,(y

which are the coherence lengths of the beam along the x and y directions. In the first case

(called the R case in the following) the surface S is infinite and integration of (2) leads to:

Am(Q)
"

(- ~~
+

pLie~~
sin c

~~~~
ôq~ôqy (3a)

iqz 2

+PiL2 Li) Sin C l~~~~~i
~~l e- / £-~ dxdvPixv)e~i~~~+~YY>

The scattering cross-section is then given by:

Smlo)
=

Amlo)AL(Q) 13b)

and the measured intensity is the convolution of the scattering cross-section with the instru-

menta1 resolution function. In reflection geometry and at small angle of incidence this yields:

IRIQ)
=

j / SIQ')RIQ Q'ldo' 14)

In the second case
(called the C case in the following), the integration along the x and y

directions is limited to the coherence lengths of the beam in
these directions and produces a

similar eflect as to truncating the electron density of the materai by a two-dimension step

function fl of FWHM (~, (y:

Pc(T# " Pcc (Té ). fl(T#) là)
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The scattered amplitude is then the convolution of the infinite scattered amplitude with the
Fourier transform of the step function and leads to:

Acio)
-

11
+ PLie -

sm c

~~l~1
f~fY sin C

~l~
sm C

i~~
16)

+p(L2 Li) sin c

~~~~~ ~~~ eh~ / /
dxdyP(x, y)e~~(~z~+~YY)

~
~-~~~~

Taking into account the geometry of the scattering experiment, one gets the expression of
the measured intensity for finite coherent scattering:

~~~~~
i

ii +
PLie-

Sinc
~~l~ II f~fY

inc~~l~
Sin

~i~~

~~~~~ +p(L2 Ll SIn C
~)

e~
~~~~ 2~~

/ /
dXd§P(X, §)e ~~~~~~~~~~

~

S=f~fy

In the following,
we restrict ourselves to the case of the grating that is to say to the case of

a laterally modulated structure which is penodic. We assume that the grating has a uniform
electron density so that Li

=
0, L2

=
h and p~ = p. Expressions (3a) and (7) then transform

into:

Sm(Q)
"

Î~ ôq~ôqy + ph sin c

~~~ e~ / /
dxdyP(x, y)e~~l~~~+~YY)

~

(8a)
%qz 2

s=m

Sclo)
=

-

ii i~iy Sm

~~l~
Sin

~i~~
+ Ph sin c l~i~l e~~à~

/ -~~~~
dxdvPix v)e~i~~~+~YY>

~

(8b)

Before completing these calculations,
we point eut that the first term of the modulus which

is observed only in the specular part of the scattenng, produces an obvious phase shift between
the specular and the ofl-specular contributions. This behavior has been already evidenced by
Tolan et ai. il, 6] and is dearly illustrated in this calculation. It is thus clear that the phase
shift cames from the substrate and it can even be inferred that if it was possible to maintain
the grating without its substrate in the reflection geometry, this feature would disappear.
We aise note that this phase shift can be more subtle

in the case of asymmetric non-square
structures [6].
We now consider the second term of (8) and we derive P(x, y). The width of the stripes is

called a, and their periodicity, b, with a profile which is a step function. The two-dimensional
probability function reduces

in such a case to:

N-1

P(X, §)
#

fl(X)
*

~j à(T pb) (9)
a p=0

in which fl is the symbol of the step function of FWHM
= a, à is the Dirac distribution and

* stands for the convolution operation. The summation is carried eut over a number N of
periods which really depends

on the coherence length of the X-ray beam. In the R case N is
infinite and in the C case N depends

on the projected value of the coherence length along the

x direction. For a beam presenting an incident angle a and an exit angle fl with respect to the
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,urface of the sample, it is important to compare the following parameters:

.
the footpnnt F of the beam on the sample surface, 1-e, F

=
t/sina where t is the

thickness of the beam defined by the front collimation;

.
the coherently illuminated part of the sample, I.e. the incoming coherence cut-ofl length
of the beam projected on the surface il

=

(~/sina;

.
the coherently "seen" part of the sample

,

1.e. the outgoing coherence cut-ofl length of

the beam projected on the surface (]
=

(~ / sin fl;

.
the characteristic length Lll associated to the resolution of the instrument in the trans-

verse direction, 1-e-, L#
=

27r/Aq~;

.
the period b of the grating.

To properly measure a diffraction pattern from a grating, the following condition must be

Îulfilled:

F > f~, Lj > b (10)

It is then interesting to understand what we can expect from the two calculations. In the C

case the incident number of periods which is illuminated coherently is
ôÎ~

=

fi. This number

is net constant for a q~ scan at a constant qc wavevector transfer. Its dependence with the

,~ngle of incidence o is given by:

~'~~~' ~~ ÎÎ
~~

)~'q~47r ))ÎÎÎÎ ~~

z ~ ~ ~~2qz
z

where is the wavelength of the X-ray beam. An alternative approach to maintain ôÎ~ constant

has been recently proposed by Salditt et ai. who use a non-classical set-up to perform the

measurements. It must be stressed at this stage that N~
can be very different from one source

to another one and that typically for a normal tube a coherence length of several tenth of

microns can be expected and that for a synchrotron source the coherence length can be a

hundred time greater as reported in [2,3]. Further progress can be made in (11) by introducing

the expression of the coherence length of the beam. Using the criterion of Rayleigh and

following the Van Citert-Zernike theorem [6] we have:

f'
=

£
l12)

where ôa is the divergence of the incident beam. The number of stripes which is coherently

illuminated by the incident beam is then:

~Î'lq~, qz)
"

~~

~~~~
l13)

bqzôo (1+
j)

Àqz

We now express a similar quantity which can be defined from the point of view of an observer

located at the detector position:

3Î~iq~, qz)
=

~°~

~~~~
i14)

~~~~~
~ WÎ
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and we finally assume that these incident and exit quantities are mixed together so as to define

an average number N of stripes coherently illuminated.

The Fourier transform of equation (9) is respectively for trie R and C cases:

~°° ~~~' ~~ ~~~ ~~~ ~ ~Î~
~ ~~

~Î~

q~
ôlb

~~ ~~~' ~Y ~Y~ ~~~ ~ ~~~ ~~~ ~ ~Î~
~~

qlb ~ ~
~~ ~ ~~

~~~

2

and the off-specular measured intensity is given at qy =
0 by:

ÎR(q~, qz

~Î~
~~~ ~~

~~
~~~ ~~ ~Î~ ~j ~

~~
~Î~ ~ ~~~~~

I~ (q~, q~)
=

jj h~j~ ~~~ ~2
qz h

~~~ ~~
q~a

sin~ ~~)~

~~ ~ ~
~~~2

q~b
(16)

2

These two expressions are extremely similar and only differ by the fact that in one case we

measure diffracted peaks having a width given by the instrumental resolution and in trie other

case a width given by the coherent limited term in the q~ direction. We now present a com-

parison of these two quantities. We assume that the resolution function is Gaussian and has a

width Aq~. This quantity is obtained by differentiation of the x component of the wavevector
transfer [8,9] and by assuming that the different terms are random Gaussian variables. It can

be then shown that:

~~ qzw 47rq~ ôa2 ôfl2 47rq~
q~ = $ 1+ j 2

~
+ ~ (17)

qz W qz

where w =
ôo2 + ôfl2 is the HWHM ofthe direct beam and ôfl the divergence of the outgoing

beam.

TO estimate how this quantity differs from what one can expect from the coherent model,
we define the coherent widths as:

~,
27r qzôo lq~47rjcq~ " j"~ l+~

qz

~~
27r qzôfl ~47rj

cq~ = ~ = ~ l ~ (18)
qz

and we consider that these quantities are random Gaussian variables so that we define the real
width for coherence as:

~~~~ ÎÎÎ ~
~~~~

It then tutus out that under these assumptions of random Gaussian variables, the coherent

and the resolution expressions (17) and (19) are ngorously the same and in the case where

ôfl > ôa they lead to the narrowing of the peaks when one goes from q~ negative to q~
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lfig. 2. Observed and calculated scattering intensities in transverse scans at qz =
0.19 À~~ lai and

~t qz =
0.216 À~~ (b). Trie calculation is made aceording to the model proposed by Tolan et ai. [6].

positive. The experimentalverification of this statement is made possible by the analysis of

the width of the different diffracted orders of the grating. Experiments were performed at

the NSLS (Brookhaven National Lab.)
on the X10B Exxon beam fine. We used a 9832 À

periodic silicon grating and a wavelength À
=

1.185 À. The incident beam and outgoing beams

were collimated to yield a direct beam of FWHM
=

0.032°. The rear collimation slit was

more opened than the front one so that ôfl > ôa. We present in Figure 2 typical transverse

scans at a maximum and a minimum
value of the reflectivity curve. The well defined peaks

<ùlow the determination of the width which is in tutu compared to il?) and (19). The results
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In addition a complete calculation of the transverse scans is also performed. However it

was found that equations (16) do net completely agree with the observed data because the

a.ssumption of a step profile is toc severe. The complete calculation is then carried out by
convoluting the transverse resolution function with the expression given by Tolan et ai. [6]
which is equivalent to expression (16) in the case of a step profile but which allows a more

general trapezoidal shape. Tolan et ai.'s expression is useful to describe the form factor of a

non-square grating and beautifully provides the analytical expression of the peak intensity of

the different diffracted orders. The calculation is carried out after having determined the height
h, of the grating from the specular reflectivity as shown in Figure 4. From the calculation of the

specular reflectivity we obtain h
=

132 À,
a value which is then held fixed in the calculation

of the transverse scans. It is found necessary to introduce an asymmetry in the trapezoidal
lineshape to descnbe the intensity of the different orders observed in transverse scans

(Figs.
2a and 2b). This yields a profile defined by bi

=
1500 + 50 À, b2

=
3200 +100 À and

g< =
3500 + 100 with the notation of [6].

In conclusion, we have shown in this paper that the narrowing of the width of the diffracted

peaks observed in the transverse scans when q~ goes from negative to positive values is consis-

tent with the evolution of the resolution function
in

this direction. In addition, by calculating
the evolution of the linewidth of the various orders in two different manners, i.e. the coherent

a.pproach (in which we assume perfect incoming and outgoing coherence cut-off lengths) and

the resolution approach, we show that the evolution of the width in terms of coherence eflects

ii identical to what one can expect from a resolution eflect at least under certain circumstances

which are a coherence length less than the size of the beam and non-overlapping reflections.

01his agreement is caused by the fact that the coherence length is defined by equation (12) as

stated in the Van-Citert-Zernike theorem [7] and that we incoherently add up the contributions

c>f coherent areas over the size of the beam. However the agreement is only valid if we take in

a.ccount both the incident and scattered beams to define the coherence length and as long as

the diflracted orders do net overlap. This latter point is imphcitly expressed in equation (16)

a,nd if this condition is not fulfilled we expect the resolution-folding process to give a wrong

description of the scattering. In this paper, the experimental venfication of this statement

which is made clear in the two parallel calculations of (16), has been established in the simple

case of non- overlapping reflections. A more general formalism in which it will be shown that

coherence and resolution eflects can be separated when the scattering arises from overlapping

reflections analyzed with a part1alcoherent beam will be soon presented [loi.
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