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Abstract. We study the dynamic fluctuations of the soft-spin version of the Edwards-

Anderson model in the critical region for T
-

Tf. First we
solve the infinite-range limit

of the model using the random matrix method. We define the static and dynamic 2-point and

4-point correlation functions at the order Oil IN) and
we

verify that the static limit obtained

from the dynamic expressions is correct. In a
second part we use

the functional integral for-

malism to define an effective short-range Lagrangian L for the fields bQ$~(ti,t2)
up to the

cubic order in the series expansion around the dynamic Mean-Field value Q"~ Iii, t2). We find

the more general expression for the time depending non-local fluctuations, the propagators
[(bQ)~(ti,t2)bQ)~(t3, t4))j]J, in the quadratic approximation. Finally

we compare the long-

range limit of the correlations, derived in this formalism, with the correlations of the infinite-

range model studied with the previous approach (random matrices).

1. Introduction

The static and dynamic Mean Field (MF) theory of Spin Glasses (SG) systems for T > T~

is well defined and understood. This theory has been studied through different approaches
all consistent among themselves. Many important results concerning the equilibrium static

properties of SG have been derived using the replica method [1j. Sompolinsky and Zippelius

(3,4, 6j studied a soft spin version of the Edwards-Anderson model with the dynamic formalism,

avoiding the replica trick. They defined a Langevin dynamics on the system and analysed the

infinite range limit where the MF solution is exact. The static limit derived from the dynamic

expressions is in agreement with the static prevision obtained with replica. Moreover, dynamic
characteristics of the model have been well defined.

Unfortunately the behaviour of short-range SG system is not clear yet. There are different

analytic works and simulations about the Ising and Heisemberg SG in finite dimensions, [8-11],
that do not agree with each other.

On the other hand, in order to study the corrections to the MF behaviour of the Green functions

one can use the Renormalization Group theory and the E-expansion- Chen, Lubensky (16,17]
and Green (18] studied a static Ising model in d

=
6 E

dimensions (6 is the upper critical

dimension) with the Replica method and they found the corrections to the second order in E

for the critical exponents.

(*) Author for correspondence (e-mail: ranieri@romal.infn.it)
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In this work, ~ve want investigate the behaviour of the dynamic fluctuations of the short

range SG in the critical region for T
~

T+ We study the soft-spin version of the Edwards-

Anderson model that evolves through Langevin dynamics. We adopt the same procedure that

Sompolinsky and Zippelius used in (5], and we manage to explicit write the time-dependent

propagators ((bQ)~(ti,t2)boj~(t3, t4))t)J for any value of ti,t2,t3,t4 in the critical region,
while in [5] they were defined only in the limit of two complete time separation. They are the

elementary building blocks in a renormalization group calculation expanded in E =
6- d and can

be used for future studies of the dynamic effects of higher-order terms (the cubic interactions).
For evaluating these propagator we define an effective Lagrangian of the fields bQ$~(t,t')

(which represent the fluctuations around the MF order parameter value Q$~(t,t')) through
the functional integral formulation of the dynamics. In order to have a comparative term order

by order in perturbation theory, we solve the infinite-range limit and the Oil IN) corrections

of this dynamic model, by using the distribution of the eigenvalues of the random interaction

matrix. We verify that the expressions derived with the two different and independent methods

are consistent each other.

The aim of this work is to pursue the study of the quadratic fluctuations of the soft-spin
model in the general case, without having recourse to the Glauber model (hard-spin limit) iii.

We define the quadratic fluctuations as a perturbative series in g (the coupling constant of

the fourth order term of the soft-spin Lagrangian) which we succeed in resuming and therefore

in obtaining a g independent expression that could be directly used for further diagrammatic
expansions of the theory. The results are qualitatively different from those obtained by Zip-

pelius iii and this may be related to the approximations done in going to the hard case.

This paper is organized as follows: in Section 2 we define the theory; in Section 3 we find the

form of the quadratic corrections to the MF limit (order Oil IN), where N is the sites number)
using the diagonalization of the interaction random matrix; finally in Section 4 we find the

general propagator for an effective short range Lagrangian of the field bQ"~ It, t') (fluctuations
around MF limit); in the conclusion we present the possible development of this work.

2. Definition of the Model

Let us consider the soft spin version of the Edwards-Anderson model given by the Hamiltonian

fl~i
=

-fl ~ flJiJ8~8J +
To ~ 81+ (g ~ 81 ii)

iv) i 1

where the sum
(ij) is over z nearest-neighbor sites and the couplings J~ are quenched random

variables with the following distribution:

~~~~~ 2~~)1/2
~~~ ~

~~~~ ~~~

A purely relaxational dynamics can be described by the Langevin equation:

y-1°8~ It) _w
~ j~~ j~~

° at as~jt) ~

(~(t) is a Gaussian and white noise with
zero mean and variance

it~it)tjit'))
=

)bvbit t'),
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which ensures that locally the fluctuation-dissipation theorem holds.
In the MF theory the physical quantities ofinterest are the average local (at the same point)

correlation function

Clt ~')
"

l18~l~)8~lt'))flJ 14)

and the average local response function

G(t t')
= )jjs~(t)(~(t'))~ij. (5)

where the angular brackets refer to averages over the noise (~ and square brackets over quenched
disorder J~j.

Beyond the MF approximation we evaluate the non local fluctuations that are non vanishing

G"~~8 ii j; ti, t~, t~, t~)
=

ii~iliti)~ifit2)~ijit3)~ijit4))tiJ ii~iiiti )4fit2))tiJii~ijit3)~ijit4))tiJ
,

16)

where a, fl,~, b can take the values I or 2 being #)
= (~ and ~i) = sz. We shall see that these

quantities represent the propagators of our theory. We will focus on the properties of the small
frequency and small momentum of the propagators that have a critical slowing down near T~.

In this formalism the time-depending spin-glass susceptibility is

xsG(I- j; ti -t3, t4-t2)
"

((sz(ti)(j(t3))t(sj(t4)(z(t2))t)J
=

G(~~~(i- j;11 -t3,t4-t2) Ii)
N '

where the G[~~~ functions represent the fluctuations in the limit iii -t2 - cc and (t~ -t4
~ cc.

3. Mean Field Limit and Quadratic Fluctuations by Diagonalization of the Inter-

action Matrix

The theory defined with the Hamiltonian (I) where the J~ are quenched random interactions

can be solved by using the general properties of random matrices. It is convenient to apply this

approach to an infinite range model (z
=

N and N
~

cc), where the non local propagators
G"P~~(I,j;ti,t2,t3,t4) represent the corrections at order O(I/N) to the MF correlations. By

an appropriated base change, from the unidimensional spin variables s~ to the eigenvectors il~
of the J~ matrix, we will manage to decouple the interaction.

We define ~":
~ Jv~)

"
l~~)i

J

where
a =

I... .,N and I" is the a-th eigenvalue. The properties of the eigenvalues and the

eigenvectors of the random matrix Jzj are the following (see (2]): the shape of the eigenvalues
density ail), for symmetric matrices with random and statistically independent elements, such

as J~j, in the limit N
~ cc

IN dimension of the matrix), is:

ail)
= /«~~

'~~~~~ ~) ~ (8)
>

the eigenvectors are statistical variables which have the components independent and following

a Gaussian distribution defined by the moments:

~
~ ~> ~~j
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lQ1)~~
" ~~~~~~~ j10)

they are found to be orthogonal and we can choose them to be normalized:

N

~~$~~
~

~ap, (~~)

i=1

N

~jl~l)~)
=

b~ j12)

~=i

finally, the eigenvectors are uncorrelated among themselves (apart from the orthogonality con-

straint) and they are not correlated to the eigenvalues,
If we write s~ =

£~ V"~f in the base of the eigenvectors we obtain:

fl~y
=

~ ~j(-fll"
+ ro)(V")~ +

, ~j V~V~V~V~ ~jq)q$~/q). (13)
~

o

~'op~s
~

We can evaluate the Green functions for the component V" and, by using (8) and (9)-(12), go

back to the correlation functions of sz field,

We can start evaluating the correlation functions in the static theory. In the time-independent
limit for the Hamiltonian (13) we may consider the non-linear interaction as a perturbation
and make

a
series expansion in the coupling constant g, We can show that only the diagrams

considered in the Hartree-Fock approximation give relevant contributions to the free theory;
in the thermodynamic limit. This is due to the relations (9)-(12) satisfied by the eigenvector

q~. In fact, in the MF limit the relevant contribution to the interaction term in the (13) is

£~(q")2(qP)2
c~ I IN, and in this way one can see easily that the eigenvector index la for Y")

plays the same role of the component index in the theories of vector fields, where the Hartree-

Fock approximation has been demonstrated valid when the number of the components goes to

infinity. We can thus resum all the diagrams at the next orders in g and find a renormalization

of the mass term (the coefficient of the quadratic term in (13)) that for T
~

T/ is

m~
c~ ~~ ~)

=
~~)

,

(14)
Tc

~

Tc

~

and a renormalization of the coupling constant g, that in the same region is

gr =
12m~)1 iis)

The static susceptibility shows a divergent behaviour for T
-

T/ with the critical exponent

~ =
l, in agreement with the results obtained with the replica method [1]

~~~ ~~~~~~~~(~) /~ ~(fl~~
~)~

ik

~~~)l/2
~ ~~~~

The generic 4-point function

iisis~s~s~)~iJ
=

nisi)2)~iis~)2)~iJ + 211sis~)~)2)iJ + iisis~sis~)~ conniJ 11?)
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is Oil IN) order and is regular in the critical region. In fact, for T
- T~ the first term is

regular and the divergence of the second term

~ ~ l(~~/)l/2
'

~~~~

is compensated by that of the last one

l12m~)~/~l x

~~mi~i/~)
x

~~mi~i/~)
- -~~m'~i/~. i19)

Also in the replica approach one can verify that the 4-point function (17) is not singular for

T
~

T~.

In the dynamic case we have to solve the Langevin equation for the time-dependent compo-

nent Y"(t) (we put Fo
"

I):

V"
=

(fll" To )Y" g
~j Y"Y~V~ ~j'ilfil$~/~/ + ("

,

(20)

a,P,~ i

If we define G"(t t')
=

lI2(Y"(t)f"(t')) and C"(t t')
=

(Y"(t)Y"(t'))
we find the formal

solution

vnjt)
=

j~ Gnjt t')jnjt')dt'

-g /~ dt'G" it t') ~j Y" (t')Y~(t')Y~ it') ~j ilf~$~/~/, (21)
~ a,P,~ i

This is a self-consistent equation, which can be solved with an iterative procedure. At finite

order in g, Vn is a polynomial in the variables (n(t). We can obtain the dynamic physical
quantities averaging Gn and Cn over the distribution of the eigenvalues (8) and of the eigen-
vectors defined by (9)-(12). We can show that, as in the static case, only the diagrams of the

Hartree-fock type are relevant in the correction to the Green functions. The correction terms

do not change the dynamic behaviour of the 2-point functions for T
=

T~, because the time

dependent part of the self-energy is regular at T
=

T~ [4]. After some algebraic calculation we

find only a mass renormalization effect for C(uJ) and G(uJ)

~~~~
/ did(1)

~ (-fll + lll~ iLd)

=
2 + /hT~ + T

2~
,

(22)

Cr(~J)
=

/
11 -~>

l'illll
iu~~~~ ~

2(m2 + iuJ)
~~~~

where m2 is the renormalized static parameter (14), /hT~
=

T~ T) is the difference from

the renormalized and the bare critical temperature (T)
=

2), while as usually T =
T T~,

The relations (22) and (23) are in agreement with the critical behaviour indicated in [4] by
Sompolinsky and Zippelius. The susceptibility, according to the definition ii), results

xSGi~Ji~J2)
=

/
1-fl> + m~

lll~'l>
+ m~ i~~). l~~~
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~k
+

k

+

,

+

k k

Fig. 1, Diagrams for the correlation function [((~s~skfk)] in the series expansion in g.

C~~
+

Fig. 2. I-particle irreducible diagrams that contribute to the renormalization of the coupling
con-

stant.

It is clear that jsG(uJi, uJ2) has a finite limit for uJ ~
0 when T > T~, while at T

=
T~ it shows

a critical behaviour such as

X CC fi. (25)

For the generic 4-point function the connected terms occur. For example, for

((z(ti)sz(t2)sk(t3)(k(t4)),
we have the diagram of Figure 1, where, as usual, a line with an

arrow represents a response function(the time order follows the arrow) and one with a cross a

correlation function. The diagrams that we have to sum in order to evaluate the renormalized

coupling constant are drawn in Figure 2 and in the low frequency limit we have:

gr =

V§ 2(2m2 iol. (26)

where o
= uJi uJ2

Therefore the total contribution to the connected part of the ((~szsk(k) function, represented
in Figure 3, is the sum of the following terms:

k ' k

gr gr

' gr gr k

Fig. 3. The renormalized function [(f~8~skfk)]conn



N°6 DYNAMIC FLUCTUATIONS IN SPIN GLASS 813

1)

2)

3)

~~~~~ ~~~~~
21v5 1 4

~
ll 2(m2 iO) 2(m2 + io) 2(m2 iuJi) + 2(m2 + i~a2)

~
2(m2 iuJ3) 2(m2 + i~a4)

~~~~

In the same way we can evaluate all the 4-point functions. The static limit derived from the

dynamic functions coincides, order by order in g, with the static results. This is true also for

the renormalized functions.

It is not easy to extend this formalism to the short-range model, because in that case the

eigenvalue density ail) is not given by the simple expression (8). Although the results of this

section have been useful to us for understanding some properties of the correlation functions

iii the critical region, to go beyond the MF approximation we have to leave this approach. In

the next section we will use the functional integral formalism for a dynamic SG model in finite

dimensions. The results obtained in this section will be used as comparative terms for the

long-range limit of the short-range correlation functions.

4. Fluctuations in Short Range Spin Glasses. Functional Integral Formulation

To solve a theory with quenched parameters we can use the functional integral formulation for

dynamics, introduced by De Dominicis [13]. So we consider an auxiliary field lilt), [12], and

we define a two-component vector field

~il
=

(iii, s~). One can show [4] that iii this formalism the factor ii~ it) in a correlation function

acts like j, where h~ is the external field:

is~itiii~it/jj~~~
~~

°18~it))~~s,s~
,

°flhiit')
~i~ 130)
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So iiz(t) replaces the noise tilt) to generate the response functions.

After averaging over Jzj (in this case we can avoid the replica trick because the functional Z

is normalized), a 4-spin interaction is generated. It is convenient to decouple this interaction

by a Gaussian transformation (4]. Then the theory can be defined with a generating functional

in the Q)~(t, t') variables:

Z
=

/ fl (DQ)~(l, 2)] exp
(- f dld2 £~

~

K[~Q$~(l, 2)A"P~~Qj~(1, 2)

o,p=1,2
'

+ In f ids] [di] exp(Li Is, I, Q$~))
,

(31)

where kj~
=

Kj~ (K~
=

I if I, j are nearest neighbors and zero otherwise) and A"P~~ is
fl

such that A~~22
=

A22~~
=

A~~~~
=

A~~~~
=

I and 0 otherwise.

Li is:

Li
"

Lo +
/

dld2 Q$~(12)~bf (I)~b$ (2), (32)

where the field ifif is defined:

~fil = §i1 =18z, iii)
,

133)

and Lo is the local part of the theory:

Lo
"

/
dl ~j ii~(1) -Fp~01sz(1) rosz(I)

j gs)(I) + Fp~iiz(1) (34)

~

3.

The value of the Jacobi determinant J, associated to the integral formulation of the b-function

[13] depends on the discretization chosen to regularize the Langevin equation. With the fol-

lowing regiilarization:

~~~ ~ ~~ ~~~~ ~ ~ ~~~~ ~~~~~ ~~~~

where Dj(t)
=

f/~~ fz(t') dt',
one has J

=
I (and it has been omitted in all the previous

formula).
In the previous expressions and in the followings of this section we shall write I for ti, 2 for

t2 and soon-

The solution of the MF theory is well known [4], and it is consistent with the results ob-

tained in the previous section. Let us consider the fluctuations around the saddle point value

Q)~(l, 2)
=

Q$~(l, 2) + bQ$~(l, 2). As a result the model can be formulated in terms of the

dynamic fluctuation field bQ)~(l, 2):

Z
=

/ fl D(bQ$~) exp(L(s, I, Q)~ + bQ)P)), (36)
a,P=1,2

where L contains the quadratic and the cubic term of the series expansion around the MF
value:

L
=

£ £ kj~~bo$~(l, 2)A"P~~bQ)~(l, 2) +

1,2 1,j
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+
£ ~j bQ)~(l, 2)C"P~~(1, 2, 3, 4)bQ/~(3, 4) +

2
1,2,3,4 1

+
j ~j ~j C"P~~~"(1, 2, 3, 4,5, 6)bQ$~(l, 2)bQ/~(3,4)bQ("(5, 6) (37)

1,2,3,4,5,6
~

The higher order terms can be neglected because we are interested in the behaviour of the

Green functions near the critical temperature in the paramagnetic phase. The C"P~~(1, 2, 3, 4)
and C°P~~~"(1, 2, 3,4, 5,6) vertices are the 4-spin and 6-spin correlation functions of the one

site MF theory described by the partition function

Z,
=

[dsz][diz] exp
Lo

+ dld2 ~j Q$~(l, 2)ifif(I)ifi$(2)
,

(38)

~

connected with respect to pairs. For example for C"P~~(1, 2, 3, 4) we have:

C"~~~ii,
2> 3> 4)

=
l~filii)~fif12)~li13)~fii14))MF l~filli)~fif12))MFl~fili3)~fii14))MF 139)

The form of the functions C"P~~ and C"P~~~" is crucial in the following. We want to study
the universal behaviour of the system near the critical fixed point, so we are interesting in the

singular part of these functions for T
=

T~, and for
uJ -

0. Thus we consider T
=

T~ from the

beginning in the MF theory described by the functional (38) for the soft-spin model. Because

of we are not able to compute the 4-point and 6-joint functions analytically in a closed simple
form, a perturbative approach will be used. We perform an expansion in the quartic vertex

[)g(sz)~ii~) using the MF expressions (22) and (23) for the propagators [(s~(t)iiz(t'))]j and

[(sz(t)sz(t'))]
j

respectively ([(iiz(t)iiz(t'))]
j e 0).

We can demonstrate that the critical behaviour of these functions is determined only by the

zero loop contributions. In fact the loops that we can form with the quartic vertex of Lo, in

the uJ space, are:

The first is infrared converging and the latter is only logarithmic infrared

evaluation of any renormalized
correlation function,

these iverging oops
occur

lways mul-

tiplied by orrelation nctions'which are less ingular for T T~) than the ee level ones.

For
example,

for the C~ ~~ ~
(~ai

,

uJ2,

uJ3, ~a4) " G(uJ4)G(uJi)b(uJ4 +
2)b(uJi + J3)+

g
x

G(-uJ2)G(-uJ3) +
b(uJi

+ uJ2 + ~a3 +

g2 x (uJi)G(uJ2)G(uJ3)G(uJ4) x og(o)b(uJi + uJ2 + uJ3 + uJ4). (40)

From the expression (22) and (23) for the response and
correlation nctions, we can see that

the
I-loop

to the connected part of C~~~~ is
negligible

lit is of order log(uJ) in the

limit uJ ~ 0) with
respect

to the zero loop one (that is of order
I/(uJ)~/~in

the ame

the
same way, we find for C~~~~

that

It is reasonable to assume that this phenomenon, which we have seen in a perturbative expan-

sion in g, holds beyond the perturbative theory, so, in order to study the critical behaviour of
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the system we can neglect the loop contributions. In iii these correlation functions were not

considered at the critical point and a factorized functional expression was proposed for them in

the hard-spin limit. The functional form that we obtain is obviously different, but we have not

yet verified if we obtain also a different value for the universal physical quantities (I.e. critical

exponents).
The correlations of the ~i) fields, which we are interested in, are related to those bQ$~ by

the relations:

il~illi)~if12))tiJ
=

2 ~lk~~)v (@li, 2) + lboj~li, 2))L(Q~p))
,

142)

il~illi)~if12)~ii13)~ii14))tiJ =4 ~lk~~ )v ~ik~~)ki

(Q)~ll> 2) + bQ)~ll> 2)) (Q/~13> 4) + bQ/~13> 4)) )Ljonp)+

-2(k~~)zkA"P~~b(1 3)b(2 4) (43)

In the next section, therefore, we will to evaluate the correlation functions of the fields
bQ$~(l,2).

4.I. THE PROPAGATORS. Let us consider the expression (37) with the vanishing cubic

interaction. The generic propagator

Gn~~fiji j; 1, 2, 3, 4j
=

j44j

11§iill)4(12)§ij13)§i(14))tlJ 11§iill)§i$12)ltlJll4jl3)4(14))tlJ
=

4 ~jlk~~)zi ~jlk~~)jklbo/~ll> 2)bQl~l3, 4))L(Q~p) 21k~~)zjA"~~~bll 3)ij2 4)
,

is calculated in free theory and will be used to evaluate the corrections of terms in the loop
expansion. In the free theory G"P~~(I j;1,2,3,4) is the solution to the following integral
system:

~j (-2 k~~ (k)A°P~~b(1 3)b(2 4) + C"P~~(1, 2, 3, 4)) x

3,4

(G~~~"
(k; 3, 4, 5, 6) + k~~ (k)A~~~vb(3 5)b(4 6)) =

2

~ba,~~P,vk~~lk)bll 5)b12 6)
>

145)

For each value of
/L and v (45) is an integral system of four coupled equations in the G~~~",

G~~~", G~~~~, G~~~~ variables. Obviously we consider G"P~~(I, j; ti, t2, t3, t4) invariant under

permutation of the index o, fl, /~, v and of the relatives times ti, t2, t3, t4. First we solve the

system for p, v =
1, 2. We are not able to solve the system (45) exactly, so we use a recursive

procedure by considering G"P~~
as a perturbative series in g. For g =

0 the coefficients

C"P~~(1, 2, 3, 4) are factorized in the time-difference and the integral kernel show a complete
separation of the internal time. This is the limit in which the propagators have been computed

in (5]. In Fourier space we obtain:

G(~~~(k;uJi,uJ2,uJ3,uJ4)
=

o
,

(46)
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G(~~~ (k; ~i, ~2, ~3, uJ4) "

~
~~~~~$~ ~~~ ~~~~~~~ ~ ~~~~~~~ ~ ~~

,

(47)
~

K-~lk) GluJi )Gl-uJ~)

cj~J~)G(-uJ4)x
G2221(ki bJl> bJ2>~J3> ~J4) f,-1(~) G(bJl)G(bJ2)

Also at the zero order of the perturbation series in g we consider the mass term (m~) renor-

malized by the interaction.

At low frequency and for T
~ T~ we have

K~~(k)
=

~K~~(k)
=

(4 + 4/hT~ + 4T)(1+ ck~), G(uJ) given by the (22) and C(uJ) by the
fl

(23) and the expression (47) and (48) become:

~~~~~ ~~' ~~' ~~' ~~'~°~
ck2 +

/2(~~~~~~ i~~~~~2~~2
+ i~2 fro '

~~~~

~~ u~2 uJ4
~G(22~ (k; uJi, ~J2, ~J3 °~4

~~~~ ~~~~
~~~ ~~~~~~~~~

~~~~~

4
x

j~k2 + ~/2(m~ ~°~3/~°~ ~ ~~~~~ ~ ~~~~~~~~

4 x 2 x 2
~~~~~/~~~2 j~~ fro) + ~/2(m~ +1°~3/~°~~

In the same way, if we calculate the system for /L, v =
2, 2 we obtain the propagator G~~~~ that

for g =
0 results:

~2222j~,~
~ ~

~)~
~(~Jl+~J3)~(~J2+~J4)

~
° '

~' ~' ~' ~ 4(ck2 + ~/2(m2 i~i fro) + ~/2(m2 i~2/Fo))

2(ck2
+ ~/2(m2 + i~3/Fo) + ~/2(m2 i~4/Fo))

~

2
+ x

(ck2 + ~/2(m2 iuJ3/Fo) + ~/2(m2 +

~4/Fo)~

2 x 4 x 2 2 x 4 x 2

(~/2(m2 i~2 fro + ~/2(m2 + i~2 fro )) (~/2(m2 i~3 fro + ~/2(m2 + i~3 fro)
~

(ck2 + ~/2(m2
~3fF~)

+ ~/2(m2 i~4 fro)) '
~~~~

plus another term of the same form proportional to (b(~i + ~4)b(~2 + ~3)).
For xsG(k,uJ)

=
G(~~~(k;uJ

= uJi " uJ2) we obtain the following scaling behaviour for

T
- T~+:

XSG(k, ~J) " ~~ ~f(k~> ~J~~) (52)

where ( is the correlation length and ~ and
z are the usual critical exponents that, at the MF

approximation, take the value of 0 and 4 respectively.
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j~j
+ +; i~

+ +

+; +
'

+

+
i

~j
+ .o..

Fig. 4. Diagrammatic representation of the propagator G~~~~(I j;uJi,uJ2,uJ3,uJ4) in the series

expansion in g.

At the first order in g we consider G"P~~
=

G(~~~ + G[~~~ For G(~~~ we use the former

solution and we solve the system in the Gi variables. We apply this procedure in an iterative

way and we can show that, defining from a diagrammatic point of view

G(22~ (1 j; uJi, uJ2, ~a3> uJ4)
=

G(22~(I j; ~ai, uJ2) =

I j

~
(53)

~i~~~~ Ii ) ~Jl1~J21~J31~J4)
" G(~~~ Ii J bJl1~J2) "

I j + I j

~ ~
(54)

~(~~~ Ii J( bJl1~J2> ~J3> ~J4) "
G(~~~(l j( bJl> ~J2) "

I j + I j

~ ~
(55)

we obtain, for the following orders in g, recursive expressions that can be resumed. For istance,
the terms that occur for the function G~22~(I j;uJi,uJ2,~a3,uJ4) can be represented with the

diagrams in Figure 4.

The expansion that we obtain can be seen as a perturbative series in the quadratic vertex

Cjjj) (1,2,3,4)bQ)~(l,2)bQ)~(34). (56)
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In fact,
we evaluate the free propagator Go considering only the disconnected part of the

C"P~~(1, 2,3,4,), and we use a perturbative approach to take account of the connected part.
The number of the topologically different vertices of form

Cff]((1, 2,3,4)bQ)~(l, 2)bQ]~(34)

are 4 (the number of the superscripts equals one or two, and C~222
e 0). By an explicit com~

putation, one can see that the diagrams obtained with the vertex (56) are the most diverging

ones.

Indeed, for example, the contribution to the function (bQ~2(1, 2)bQ~2(3, 4)) at the first order

in g from the vertex (56) is

(bQ~~(1, 2)bQ~~(3, 4)bQ~~(5, 6)bQ~~(7, 8)Cjjj],(5, 6, 7, 8))
c~

lbo~~li> 2)iQ~~15, 6))jiQ~~l3> 4)io~~li, 8))cllll.15, 6, I, 8) ~fi~

j
x

)
x g x I

= g x (I /uJ~) (57)

as one can verify from (22) (23) and (41), while from the vertex

~2121j~ ~ ~ ~)~Q21j~ ~)~Q21j~ ~)
~~~~ , , , , ~ ,

one obtains a weaker singularity of order:

lbQ~~lii2)bQ~~13>4)bQ~~1516)bQ~~1718)Cllll.lsi 61718)) ~

(bQ~~(1, 2)bQ~~(5, 6))(bQ~~ (3, 4)bQ~~ Ii, 8))Cj)j],(5, 6, 7, 8) ~fi°

%
x

%
x g x

%
= g x 11/uJ~/~i. 158)

At this order in g we do not have any other contribution to (bQ~~(1,2)bQ~~(3,4)), because the

corrections, that one can obtain with the vertices

Cj)j] (5, 6, 7, 8)bQ~~ (5, 6)bQ~~ Ii, 8)

and

C))]] (5,6, 7,8)bQ)~(5, 6)bQ)~(7, 8)
,

involved the propagator (bQ~~bQ)~) that are vanishing at the zero order in g.

Similarly, other functions can be calculated to verify that stronger singularity all arise from

the vertex (56).

Therefore, as usual in the case of expansion in a quadratic vertex, we can resum the series.

Moreover we deal with an order parameter depending on two times and we have to consider,

in the Fourier space, the integral over the free internal frequencies.

To evaluate the complete propagators at T
=

T~, we can define the renormalized coupling

constant
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where I(o, k), correspondent to the loop

is given by the integral:

~ ~°~'~~ ~~ ~~
(ck2+ -21w

/ro~ -21(a-w) fro
~

(ck2+ 21w/ro~ -21(a-w)/ro -21w/r~~ 21w/Fo~

~

l ~ ck~ j~~)
ck2+ -21©/Fo ~ ~(~2/ro)~ ~

~~2
Fi is a function of the variable that exhibits a constant limit for

uJ -
0 and for

(iO)~
2

k
~

0 The coupling constant in the low frequency and small moments limit is, according to

(59) and to (60),

gr =
(ck~ + 2io/Fo)I/Fi (61)

To evaluate the total contribution of the loop corrections we must consider the term given by
the following diagram:

with renormalized vertices. The value of the loop is:

j j~ ~) jC° dw I 1
~~

'

"~~"ck2+
-2~~/Fo+ -21(a-w)/Fock2+ 21w/Fo+ 2~(a-~)/Fo

ck2+
-2w/Ff+ 2~(a-w)/Fo~ck2~ 2w/Fo/

21(a-w)/Fo~
~

8 8
~2w/Fo+fi -21(a-w)/Fo+ 21(~-w)/Fo

~ ck2+
~2m/Fo~'~ ~'~)l 21' ~~~~

where F2 lx), like Fi lx), ha8 a constant limit for
uJ ~

0 and k
~

0.

The connected part of the free propagator G~~~~ at T
=

T~ is computed adding up all the

diagrams in Figure 4. We have:

l

+G(~~~(kj bJi.
bJ2)G~~~~(k; °~~ £ ~

bJ (k'bJ)9 (k

'
' ° ' '~ ~ ~ ~ ~

I ~ ~~ j(~~ +
uJ2 + bJ3

(63)

which corresponds to the diagrams in Figure 5 with the constant gr given by (61) and

a=uJ2-uJi



N°6 DYNAMIC FLUCTUATIONS IN SPIN GLASS 821

,

k ' k

gr gr

' gr gr k

Fig. 5. The connected part of the propagator G~~~~(I k; uJi,uJ2,uJ3,uJ4).

5. Conclusion

The connected term of the propagators is zero only in the limit of two complete time sepa-

rations. In all the other cases we must calculate the complete correlation function. In this

way we compute G~P~~ for all the values of the indices afl~b and for all the time distances.

It is easy to see that the long-range limit (k
~

0) of the connected part of the expressions
(63) coincides with the sum of the terms (27) (28) (29) of the third section. On the (eve( of

the Gaussian approximation, I.e. cubic interactions are neglected, the connected part of the

propagators does not contribute to the susceptibility and the dynamic scaling (52) is correct.

Therefore, we have analysed the critical behaviour of the propagators of the soft-spin model

in the quadratic approximation and we have put the bases for
a short-range theory of SG in

the renormalization group formalism. In fact the expressions that we have derived could be

used to evaluate the contributions of the Feynmann diagrams that occur in the loop expansion
when the cubic term of the Lagrangian (38) is considered non vanishing. The expression which

we have obtained in the soft-spin case are quite different from those obtained by Zippelius in

reference iii. It is certainly interesting to understand if the value of the dynamical critical

exponent is affected by this difference. The computation of the loops will be crucial to clarify
this point.

Acknowledgments

am grateful to Giorgio Parisi for his support, essential for the realization of this work. I also

would like to thank Enzo Marinari for useful discussion and suggestion.

References

[1] Mezard M., Parisi G. and Virasoro l/I.A., Spin Glasses Theory and Beyond (World Scien-

tific, Singapore, 1987).

(2] Mehta M.L., Random matrices (Academic, New York, 1967).

(3] Sompolinsky H. and Zippelius A.~ Phys. Rev. Lett. 47 (1981) 359.

[4] Sompolinsky H. and Zippelius A., Phys. Rev. B 25 (1982) 6860.

[5] Sompolinsky H. and Zippelius A., Phys. Rev. iett 50 (1983) 1297.

[6] Sompolinsky H., Phys. Rev. Lett. 47 (1981) 935.

(7] Zippelius A., Phys. Rev. B 29 (1984) 2717.

(8] Paulsen C.C., Williamson S-J- and Maletta H., Heidelberg Colloquium on Glassy Dynam-

ics, Proceedings (Heildeberg, 1986).



822 JOURNAL DE PHYSIQUE I N°6

(9] Ogielski A-T-, Phys. Rev. B 32 (1985) 7384.

(10] Young A-P-, Phys. Rev. Lett. 50 (1983) 917.

(ll] Marinari E., Parisi G. and Ritort F. J. Phys. A 27 (1994) 2687.

(12] Martin P-C-, Siggia E.D. and Rose H-A-, Phys. Rev. A 8 (1978) 423.

(13] De Dominicis C. and Peliti L., Phys. Rev. B18 (1978) 353.

(14] Hohenberg P.C. and Halperin B-I-, Rev. Mod. Phys. 49 (1977) 435.

(15] Hohenberg P.C., Halperin B-I- and Ma S.-K., Phys. Rev. Lett. 29 (1972) 1548.

(16] Harris A-B-, Lubensky T-C- and Chen J.-H., Phys. Rev. Lett. 36 (1976) 415.

iii] Chen J-H- and Lubensky T-C-, Phys. Rev. B16 (1977) 2106.

(18] Green J-E-, J. Phys. A L43 (1985).


