
HAL Id: jpa-00247020
https://hal.science/jpa-00247020

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interfaces and louver critical dimension in a spin glass
model

S. Franz, G. Parisi, M. Virasoro

To cite this version:
S. Franz, G. Parisi, M. Virasoro. Interfaces and louver critical dimension in a spin glass model. Journal
de Physique I, 1994, 4 (11), pp.1657-1667. �10.1051/jp1:1994213�. �jpa-00247020�

https://hal.science/jpa-00247020
https://hal.archives-ouvertes.fr


J. Pllys. I France 4 (1994) 1657-1667 NOVEMBER 1994, PAGE 1657

Classification

Pllysics Abstracts

05.20 75.10N

Interfaces and lower critical dimension in a spin glass mortel

S. Franz (1), G. Pansi (~) and M.A. Virasoro (~)

(~) NORDITA, Blegdamsvej 17, DK-2100 Copenhagen kl, Dellmark

(~) Università di Roma I "la Sapienza", P-le A. Moro 5, 00185 Rome, Italy

(Received 20 May 1994, accepted 18 July 1994)

Abstract. In this paper we try to estimate the lower cntical dimension for replica symmetry
breaking in spm glasses through the calculation of the additional free-energy required to create

a domam watt between two different phases. This mechanism atone would say that replica

symmetry would be restored at the lower critical dimension D~
=

2.5.

Trie calculation of free energy mcrease due to an interfaces is a well known method to

obtain information about trie lower cntical dimension for spontaneous symmetry breaking. We

perform trie first analytic computation of this free energy increase m spm glasses and we use

it to suggest trie value of trie lower cntical dimension.

Let us introduce trie basic definitions. In trie simplest case we can consider a system with

two possible coexisting phases, A and B (which bave trie same free-energy). We will study
what happens in a finite system in dimensions D of size M~ L with d

=
D -1. Let us assume

that in trie d transverse direction we bave penodic or free boundary conditions, while m trie

other direction (which we call t),
we put trie system m

phase A at t
=

0 and in phase B at

t
=

L. Trie free energy of trie interface is trie increase m
free energy due to this choice of

boundary conditions with respect to choosing trie same phase at t
=

0 and t
=

L.

In many cases we bave that trie free energy mcrease ôF(L, T) behaves for large M and L as:

ôF(L, M)
"

M~/" (1)

where w is mdependent from trie dimension. There is then a cntical dimension at which trie

free energy of trie interface is finite:

D~
= w +1. (2)

Heunstic arguments [1], which sometimes can be made rigourous, tell us that at this dimension

(the lowest critical dimension) the two phases mix m such a way that symmetry is restored.

In most cases the value of w from mean field theory is the exact one and therefore we can

calculate m this way the value of the lower cntical dimension. The simplest examples are the

ferromagnetic Ising model w =
0 and the ferromagnetic Heisenberg model w =

1.
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In this note we study trie problem for spin glasses. For convenience we consider two replicas
of trie same system described by a total Hamiltonian:

H
=

Hlal + Hlsl (3)

where H is trie Hamiltoman of a short range spin glass.
In this case trie order parameter is trie local overlap q, =

(ais, between trie two replicas. In

mean field theory one finds that this overlap is constant in space, and ail values in trie interval

[qm;n,qmax] are possible. A perturbative expansion around trie solution with q constant in

space can be done in suliiciently high dimensions, while infrared divergences appear in low

dimension.

Trie aim of this note is to compute trie free energy mcrease corresponding to imposmg an

expectation value of q equal to pi at t
=

0 and p2 at t
=

L. We consider here only trie case

where both p's are non zero and are in trie interval [qm;n, qm~x].
We find that

ôF
"

v(lPl P21/L)~/~, (41

with V e
M~L. As a consequence, trie naive prediction of mean field theory for trie lower

critical dimension for spontaneous rephca symmetry breaking is D~
=

2.5. If a similar value

would bave been obtained for trie interface free energy in zero magnetic field and with pi and

p2 of opposite sign, one would argue that trie EA parameter should vanish at D
=

2.5.

We stress that these predictions are naive; corrections to trie mean field theory are neglected.
While in ferromagnets there is regime (low temperature) at which these corrections can be

shown to be small, in trie spm glass case trie corrections to trie mean field theory do not vanish

even at zero temperature. We do not bave here a regime in which we can show that trie

corrections to trie free energy interface do not change qualitatively its L dependence.
A simple testable prediction of our computation is that on a

L~ system with boundary
condition q = qEA, trie expectation value of q m trie centre of trie box should go for large L as

q(L)
= qEA const /L(~~/~~~~ (5)

Our paper is organized as follows. In section 1 we briefly outline trie results of trie mean field

theory for short range spm glasses and we discuss its extension to trie case of two constrained

real replicas. In section 2 we show that equation (4) can be derived usmg rather general
scaling arguments under trie technical assumption that trie overlap between trie two constrained

replicas varies lmearly m space. A confirmation for that behaviour is found in section 3 where

we find a vanational approximation to trie free energy mcrement ôF. In trie final section we

draw some conclusions.

1. Trie model.

The mortel we consider is trie standard D-dimensional Edwards-Anderson spin-glass [2] on a

square lattice m a finite volume V, which for simplicity will be taken as a box of size L » 1.

This is defined by trie Hamiltoman:

H[si]
=

~j Àjsisj h ~j
si (6)

<iJ> i

where with standard notations we bave denoted by < 1, j > trie nearest neighbours on trie

lattice. Trie spins are Ising variables s, =
+1, and trie couplings J~ are mdependent Gaussian

variables with zero average and vanance
J(

=
J~

=
1. h is trie magnetic field.



N°11 INTERFACES IN SPIN-GLASSES 1659

In our discussion we will make extensive use of trie results of trie mean field theory (MFT) of

the model near the critical temperature. Let us summarize here, without derivation, the main

results. For a more complete exposition of the theory see e-g- [3-6].
The study of the equilibrium properties of the model can be performed in trie frame of replica

method. Trie relevant order parameter is a space dependent overlap matrix Q[~
=

(s[s( which,
analogously tu trie long range case, describes trie statistics of overlaps between pure states. In

MFT, where trie system is treated in trie saddle point approximation, one finds
a

(de Almeida-

Thouless) line of second order phase transition to a glassy phase, which terminates for h
=

0

m T~
=

1. In trie vicinity of T~, trie free energy as a functional of trie order parameter admits

a Landau expansion in which trie original lattice is coarse grained, and one considers trie order

parameter averaged in small regions of trie space V~ centered in x, Qab(x)
=

~ QÎ~
ÎV~

~~v~

The free energy functional in terms of Qab(x) is then written as:

-2RF
=

/ d~x[ Tr Q(x)~Q(x) + TTr Q~(x) + (1/3)Tr Q~(x)
2

~(Ù/~) ~jab QÎb(X) ~ ~~ ~jab Qab(X)Î (~)

where ~ is trie Laplacian operator, T = T~ T
=

1- T, y =
2/3. Trie integration extends to

trie square box of size L, and 'Tr' denotes trie trace in replica space. As usual, among all trie

quartic terms in Q which should be wntten in trie expansion, we bave only induded trie one

responsible for trie de Almeida-Thouless instability [7]. This leads to trie phase transition into

a replica symmetry breaking phase.
Trie main davantage of this reduced mortel is that it allows for a complete analysis of trie

r-s-b- trie saddle point equations con be solved exactly above and below trie transition tem-

perature. In trie low temperature phase, trie solution to trie saddle point equations is found

m the framework of Parisi Ansatz [8], which in the present context consists in parametrizing
the space dependent matrices Qab(x) as a space dipendent functions q(x,~) with 0 < ~ < l.

For free boundary conditions, the relevant saddle point is found to be constant in space, and

the analysis become identical to that of the long range SK model [7]. At the saddle point one

finds:

Qm<n iL < iLo

q(x,
~1) = q(~1) =

~

~~ < ~ < ~~
(8)

3y

Qmax iL > iLi

with ~o =
3yqm;n, ~i =

3yqm~x. qm,n and qm~x are specified by the relations

2§Qà;n "
h~

T "
Qmax(1 ~qm~x) (9)

As m long range models, trie appearence of r-s-b- imply the existence of many pure states with

a non-trivial distribution of trie mutual overlaps [9]. Trie theory predicts that these overlaps

are constant in space.

Let us now enter mto trie core of our discussion. We want to mtroduce boundary conditions

m
trie model to force spatial dishomogeneity of trie order parameter. In analogy with what is

clone m
ordered systems we would hke to put trie system in two diiferent equilibrium states at

trie two boundanes along a given direction. We observe that this can not be clone by imposing
boundary values to trie function q(x,~). Any variation with respect to trie form (8) would
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take us outside of trie saddle point, where trie free energy functional bas no physical meaning.
We shall follow mstead a procedure introduced in a previous paper [10](referred as I in trie

following), to study long range spin glasses off-equilibrium.
Consider two identical (same J,j) replicas of trie system, which undergo diiferent thermal

histones (for equal temperature and magnetic field). We constrain trie overlaps between these

two real rephcas (RR in the following) on the two boundaries along one direction and leave free

boundary conditions on all others. In this case the Saddle Point overlap will be constant in all

but the privileged direction, and we will have to solve an
effective one dimensional problem.

Denoting ôi and 62 the boundaries on which we impose trie non trivial constraint, we can write

the partition function for the doubled system as

~~
"

~j ~~P(~fI~Î~Î fl~l'l) fl à1) ~j
Si?1~ Pi

ls,>a,j ~Eôi ~ ~EV~

X
fl à l~ ~

S,OE, p2 (10)

~Eô2
~~~

~EV~

The object of interest will be the free energy diiference ôF between this situation and the

unconstrained case where the delta functions are not present in the partition sum. We will

get an estimate of ôF in mean field theory. This will enable us to estimate the probability of

fluctuations of the overlap of amplitude ]Pi P21 over a scale L through Prob(]pi P21, L)
r-

exp(-flôf). If this probability remains finite for large L, this kind of fluctuations destroy
replica symmetry breaking. In high enough dimension we will find a free energy diiference

divergent with L. Trie critical dimension D~ will be then identified as trie dimension at which

this free energy dilference become finite.

In trie rephca treatement of trie problem, one bas to replicate both trie s and trie a spins

[10, 11]. Thus three space dependent n x n matrices will appear: Q[((x) descnbing the overlaps

among s spins, QÎÎ (x) descnbing trie overlaps among a
spins and QÎÎ (x) describing trie overlaps

between s and a spins. For symmetry reasons
QÎÎ(x)

=
QÎÎ(x); trie diagonal elements Q[[

and Q((
are as usual taken to be zero by convention. We will choose in trie following saddle

points for which Q[((x)
=

QÎÎ(x)
+ Qab(x) and QÎÎ(x)

=
QÎÎ(x)

+ Pab(x). Trie constraint

mtroduced in trie partition function reflects itself in trie order parameter through trie fixing of

trie values of trie diagonal elements of QÎÎ
on trie border:

QÎÎ(X)Î~Eôi
"

PIiQÎÎ(X)Î~Eô2 "P2. (Il)

All other elements of trie matrices are to be determined from trie vanational equations for trie

free energy. In deahng with trie matrices Q[( r, s =
1, 2 a, b

=
1,.. ,n it is useful to introduce

new indices o + (r, a), fl e (s, b) and a 2n x 2n matrix Qap
"

Q[( that contains all the three

matrices. In term of this new matrix, the free energy functional is formally identical to that for

a smgle real rephca m term of the usual Qab. The diiference lies m the variational procedure,
where one has to keep mto account trie constraint (11).

Near trie cntical temperature, trie free energy admits a Landau like expansion (see (7)),with
trie surgie rephca matrix Q substituted by Q. Trie saddle points equations m terms of trie

matrices Q and P are:

l1Qab
"

2TQab + (Q~)ab + (P~)ab + vQÎb + /l~

~P~b
=

2TP~b + 2(QP)~b + yPj~ + h~ (12)

As usual, to solve these equations we need an ansatz that will eventually allow us to do

the analytical continuation to n -
0. As

m I we assume both matrices Q and P to be
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hierarchical matrices. Namely, we parametrize Q~b(x) by a function of ~ E [0,1] q(x,~) and

the matrix P~b(x) by a diagonal element P~a(x)
=

jl(x) and a function p(x, ~). Physically
jl(x) represents the space dependent overlap between two RR constrained on the boundary. A

tentative discussion of the physical meaning of the functions q(x, .u) and p(x, ~) can be found

in I.

Clearly, for the chosen boundary conditions, trie various parameters will be constant in ail

but one direction. Labelling trie coordinate along this direction by t we find that q p and fi will

depend on space only through t. In this way, denoting trie integrals of trie kind f/ d~ g(t, ~)

as (g), trie saddle point equations become:

62
@Q(~'~) ~(~ ~Q))Q(~'~) ~ ~(É (P))P(~'~)

+ /~ d~ [q(t, ~) q(t, ~)]~ + /~ d~ ~p(t, ~) p(t, ~)]~ + yq~(t, ~) + h~

o o

62pP(t, iL) "
2(T (Q))P(t, iL) + 2(P (P))Q(t, iL) (13)

+ 2 /~ d~ [q(t, ~) q(t, ~)]~p(t, ~) p(t, ~)] + yp~(t, ~) + h~

o

$à~~~ ~~~~~~ ~~~~~ ~ Ù~~~~~ ~ ~~

If pi = P2 and qm;n < pi < q~~x one can find a solution without spatial dependence at all, with

ji
= pi. Then trie problem reduces to trie one discussed in I, There we showed, on very general

grounds, that for any pi in this interval, there exist a solution to trie saddle point equation
which bas trie same free-energy density of trie unconstrained system (ôF

=
0). Trie results of

I in the present context are:

m;n iL<iLo/2
2~/(3y) ~o/2 < ~ < ~p/2

q(x, ~)
=

q(~)
=

ji ~p/2 < ~ < ~p (14)
~/(3y) ~p < ~ < ~i

Qmax iLi < iL < 1.

om<n
~<~0/2

p(x, u)
=

p(u)
=

2~/(3y) ~o/2 < ~ < ~p/2 (là)
ji up/2 < u < 1

fi(x)
=

#
= Pi (16)

The parameters qm,n, qm~x, vo and vi are those of trie unconstrained solution (8) and up =
3ypi

is trie point where trie function (8) is equal to pi This solution reflects trie fact that trie

multiplicity of states does not give an extensive contribution to trie free energy. Trie space

of equihbrium states of the two copies constrained at an overlap pi is simply a restriction of

the cartesian product of the equilibrium states of two free system. The freedom
m the choice

of pi, which is a zero mode of the free energy, is the spin glass analog to the Goldstone zero

mode found in ordered mortels with a spontaneously broken continuous symmetry. It is now

clear that if we impose pi # p2, but both in the mterval [qm;n, qm~x], we are choosmg at the

boundanes two of the possible overlaps admitted by the free problem. The additional free

energy will have to go to zero m the hmit when the boundanes become very far from each

other. Our atm is to know with what power it goes to zero.
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2. A dimensional argument.

To study the situation pi # P2 we could perturb around the solution with pi " P2. Above

the critical dimension the laplacian term m
(7) can be treated as a small perturbation. Trie

relevant parameter of trie expansion tutus out to be ]p2 Fil IL which is always arbitrary small.

It is reasonable to think that tue solution to tue saddle point equations would be m
this

case simiiar m form to equation là), but with ji
=

ji(t)
a function interpolating between pi at

t
=

0 and p2 at t
=

L. On physical grounds we expect that after averagmg over trie quenched
disorder, ji(t) interpolates hnearly between trie boundary values, namely

fi(t)
" Pi (1 t/L) + P2t/L. (17)

This assumption will enable us to determine the lower critical dimension by mere dimensional

analysis. Our hypothesis will be validated a posteriori in the next section, where we will denve

the hnearity m the context of an approximate maximization of the free energy.
To first order

m the perturbative expansion m pi P2, the variation of the free-energy is

nôf
=

f dt Tr Q~Q computed at the unperturbed saddle point. It is easy to see that this

variation is zero for the saddle point là)

/
dt ~j Q~p~oap

"
(18)

n

=

/
dt

~(~~~ ~

il
/

duo(u vo /2)9(uo u)
/

du9(u vo /2)]
=

0.
x

A non zero ôF at this level would have implied, by simple dimensional analysis, ôF
r-

L~~~,

i-e- the same result found for ordered systems with a continuous symmetry. The vanishing of

this term means that D~ is higher thon 2. One coula say that fluctuations due to the zero

mode m spm glasses cost less and become therefore important earlier than the usual Goldstone

modes in
ordered systems.

Substituting the expresion (là) into the saddle points equations (13) and denoting up =
3yji,

x =

3y(djildt)~
we obtain

'

~~~~ ~~ XÎô(u u~) 1§~

ô~P(t, u)
2

~
~p/2)j

ôt2
-Xô(u-u~/~)

We find in this way that the expresion là) satisfies the saddle point conditions for all u except

up /2 and up. It is reasonable to suppose that the eifect of the Laplacian term m
the free-energy

will result in a (small) smoothing of the functions q and p around up/2 and up. Thus we suppose

that trie functions will have variations of a given order
f m regions of order f' around up/2

and up. f
and f', as well as up will be m

general function of t. Using trie monotonicity of trie

functional relation between ji and t, we will consider all parameters as functions of j§.

We now show that under this hypothesis trie following remarkable facts happen:

.
ôF, defined as

F(p2,Pi) F(pi, pi) does not depend neither on trie temperature T nor

on trie magnetic field h.

,
ôF trust behave as

L~x(5/4),
m

order that trie hnear interpolation (17) maximizes trie

free energy.
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Let us wnte trie variational matrix Q as Q
=

Q(°~ + ôQ where Q(°~ solves trie variational

problem in trie absence of trie perturbation. ôF can be written as

-2nôF
=

/
dz

~
Tr(26Q~Q~°~ + ôQ~ôQ) (20)

2

+ TTr ôQ~ + Tr Q(°~ôQ~ +
~Tr ôQ3 (21)

+
~ ~j(3QÎÎ~ôQÎp + 4QÎÎôQÎp + ôQ$p)1(22)
~

OP

Because of trie unperturbed SPE trie only terms hnear in ôQ that can appear anse from trie

Laplacian term. For a given t (or equivalently ji), one can evaluate trie variation of trie free

energy density à f just droppmg trie integration over x in (22).
In this free-energy we want to study trie dependence on T

and h belote optimizing with

respect to ôQ. As one can see from (là), the function p does not depend on T
and trie function

q depends on T
only in the region u > um~x where q(u)

= qm~x. In trie same way one observes

that both functions depend on h only in the region u < um,n where they take the value qm;n.

To study the dependence of ôF on the temperature and the magnetic field we can use qm~x

and qm;n as mdependent variables mstead of using T
and h which give use to simpler algebra.

The structure of ôQ we choose implies that the only terms which can depend on qm~x are:

.
TTr ôQ~, trough its T

dependence (T
=

qm~x(1 3yqm~x/2)), and

.
Tr Q(°~ôQ~

The other terms do not depend on qma~ because for the a and fl such that QÎÎ
" Qmax one

has ôoap
"

0. So we find that

~~/Îx
" ~~ 3Yqmax)Tr ôQ~ ~

~ §Q2

~~ÎQfj=q~ax
~~ ~~~~

It is easy to show, usmg the algebra of ultrametric matrices, that the second addendum on the

r-h-s- of (23) is exactly equal to -(1- 3yqm~x)Tr ôQ~ and consequently à f is independent of

T.
Along the same lines one shows that the only possible dependence on qm;n is m trie term

Tr Q~°~ôQ~, but its denvative w-r-t- qm;n is equal to zero. Therefore the free-energy density
variation con only depend on ji. Let us analize the dimensions of each term in à f in terms of

ji, f,
f' and x. We remmd that while ji and x are fixed parameter in the problem f and f'

are

to be determmed by sadlle point equations. In the considerations which follow we can safely

assume, that dimensionally f'
r- f.

Keeping the two quantities diiferent would only complicate
the formulae, but not the scahng of the free energy.

We find for the dimensions of the diiferent terms m
(22):

Tr 26Q~Q~°~
'~ fx

Tr ôQ~ôQ
~- fx

Ill
TTr ôQ~ + Tr Q~°~ôQ~

'-
jif~

Trôo~
'~

f~ (24)

~jQfÎ~ôQÎp
r~

fi~f~

ap
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~ QÎjôQ~@
'~

Pf~

a@

~j§Q4 5
off '~ f

a@

If we now rescale:

f - flQ (25)

x -
fi~4 (26)

ôf becomes an homogeneous function of order 5 in ji. If the linear form ji(t) has to be a

maximum of the free-energy, the free energy density must be independent of ji. This can be

seen from the fact if one optimizes for fixed ji(t) one finds in general ôf
=

ôf(ji, (djildt)).
The further minimization with respect to ji(t) leads to Euler-Lagrange equations that give

zero 'acceleration' d~jildt~ only if ôf is mdependent of ji. So the ji5 dependence must be

compensated at the saddle point by the dependence on çi e X/fi~. In this way, writing m
ail

generality for the saddle point ôf
=

jisg(çi) one must bave g(çi)
r-

çi(5~~ e x(~/~~ /ji~. Using

x =
3y(p2 Pi IL for the form (17), we find that the total free-energy variation scales as:

à F
~

LD ~(5/4)
~_ ~ ~~ j(5/2) ~D-5/2 (~~)

Equation (27) is the main result of this paper. It tells that in trie context of mean field

theory, the lower critical dimension at which ôF become finite for finite ]p2 pi is D~
=

2.5.

Moreover for D > 2.5 one can expect fluctuations in space of the order parameter to scale

with the distance as ]q(x) q(y)]
r-

ix vi ~~~~/5. It is worth noticing that the value for the

critical dimension we get is fully compatible with the one found by many authors for the glassy
transition in absence of field [12-15] with totally diiferent methods. In references [16, 17] it

was daimed that in any finite dimension the spm glass transition is destroyed by the presence

of a magnetic field. Our findings disagree with this daim, as we find à f to be independent on

the magnetic field.

3. A variational approximation.

Let us now tutu to an explicit computation of the free-energy density increment through a

vanational approach. Instead of solving trie full SPE (13) we will here propose an explicit
parametrization of the small variation to the form (là) in the neighbourhood of the points

up/2 and up, and we will mazimize the free energy with respect to the parameters of this

variation. We expect that the numencal value so obtained for ôF is a lower bound to trie real

value. Furthermore we will show that it scales as discussed in trie previous section. Thus this

section proves that the leading behaviour previously obtained does not accidentally cancel.

Moreover here we will not need to assume the linear form (17) for ji(t): this will be found as

the optimum of the free energy.

We choose to smooth the smgulanties around up/2 and up (cf. (19)) by mterpolating with

an arc of parabola the step-wise hnear behaviour of the functions q and p m the surroundings
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of these points. Our variational functions will then be:

Qmin U < Vo
2u/(3y) vo < u < vi

ji a(u u2)~ vi < u < u2

q(u)
=

ji u2 < u < u3 (28)
ji + a~(u u3)~ u3 < u < u4

u/(3y) u4 < u < u5

qm~x u > u5

min
U < Vo

~~"~ Î~~~ÎÎ u2)~
~Î ~ ~~

~~~~

ji U > U2

with

vo =
3yqm;n /2 vi =

3yji12 à/2 u2 =
3yji12 + à/2

u3 =
3yji à' /2 u4 =

3yji + à' /2 u5 =
3yqm~x (30)

a
=1/(3yô) a'

=
1/(6yô').

Trie reader should not be confused by trie notation at this point, although qm;n and qm~x are

trie same as in trie presious sections and of (là), we changed here trie notation for trie points vi

(1 =
0,.

.,

5). Trie only variational parameters that appear jn
trie trie free energy functional are

à and R. Denoting as in trie previous section x =
3y

~~
,

trie free energy density increment
dt

as a function of à and à' takes trie form:

~~
0111~y3

3~Î2 ~ ÎÎ ~ ÎÎy ~y3 ~ ~Î2 114y2 211120y3
~~~~

which bas to be maximized with respect to à and à'. Equation (31) is consistent with trie

scaling established in trie previous section. Trie change of variables:

a+b
à

=
§flf

à'
=

yfl~
~

~ (32)

x "
§~fi~4

gives us

à f
=

y~ji~ ~~~(~~
~

(29 a~ 10080 a~ b 252 a~

+ 142 a~ b~ 84 ab~ 11 b~ + 2903040 çi) (33)

It is apparent form trie variational equations for a and b that a should be of order çil/2 while

b ct
#1/~. To lowest order in # trie solution is a =

-b2 /240, b
=

12/à(7/11)(lH)çil/4 which

gives for trie free-energy density

à f
=

0.673659 y~x~~~ (34)

This result confirms in a specific example trie behaviour in x~~~ of ôf which is trie only one

compatible with ji(t) linear m t. Trie total free-energy of trie interface, ôF
=

à fL~ is propor-

tional to L~~~/~ ]Pi P21~~~, confirmmg the analysis of the previous section. Let us observe

here the proportionality of ôF to y~, the coefficient of the quatic term in (7).
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4. Conclusions.

In this paper we bave shown that it is possible to estimate trie cost in free energy of a domain

wall between two diiferent phases in spm glasses. This information was used to indicate a

possible value for the lower critical dimension D~
=

2.5 for replica symmetry breaking.
We are aware of the several criticisms that coula be raised against this indication. In ordered

system MFT gives a reliable estimate of D~ because trie fluctuation of trie order parameter are

negligible at very low temperature. In trie spin glass case there is not such evidence. Moreover,

m
ordinary systems, this kind of analysis is confirmed by trie behaviour of trie perturbation

expansion. In O(N) mortels, for exarnple, trie free propagator G(k)
r-

k~~ in trie ordered phase
and therefore trie fluctuations of trie order parameter diverge in D

=
2. In trie spin glass case,

there is a whole family of propagators, trie most divergent of which, in presence of magnetic
field, has trie behaviour G(k)

r-

k~3 [18]. If this behaviour is not modified by renormalization

it would imply a lower critical dimension D~
=

3.

At present we do not know if any of this cnticisms will be substantiated and trie actual

critical dimension in spin glasses is larger then 2.5. But if this happens, trie replica symme-

try restoration mechanism must be diiferent from trie simple 'instantonic' one that we bave

proposed in this paper.
Trie present state of trie art in numerical simulations of spm glasses indicates that in di-

mension two there is no transition [19] while in dimension four there is full rephca symmetry
breaking [20]. Unfortunatly trie situation is far from clear m dimension three. Recent simula-

tions by one of us [21] obtained from large lattices were compatible with a finite temperature
phase transition but also with an essential singulanty at T

=
0, which would indicate D~

=
3.

All this calls for further research. One con expect that simulations on larger lattices will

eventually resolve the problem of the existence of the transition m three dimensions. On the

more analytical strie a crucial problem to attack is the renormalization of the k~3 behaviour

of the most singular propagator in perturbation theory.
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