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Abstract. We introduce
a

percolation model with long-range correlations, and investigate
ils scaling properties. Using this model, we provide a theoretical explanation for experimen-

tal data for hydrodynamic dispersion in heterogeneous rock formations and aquifers that had

remained unexplained for a long lime.

Transport processes in disordered media are relevant to modelling a wide variety of phe-

nomena, such as flow in parons media [ii. Mary of such processes involve a cHtical point
phenomenon, and to mortel them the disordered medium is usually represented by a perco-

lation network [2, 3] in which a randomly-selected fraction p of the bonds allow transport

processes to occur, while the rest of the bonds do net allow them, However, although random

percolation has provided much insight into transport in disordered media, natural systems are

net usually ramdam and contain some correlations. In some cases, e-g-, packing of particles,
there are only short-range correlations, while in other cases, e-g-, heterogeneous rocks and

aquifers (see below), there are long-range correlations that make them very dioEerent from ran-

dom media. The goal of this paper is to introduce a physically-motivated mortel of percolation
with long-range correlations, and to demonstrate its relevance to some problems of practical
importance.

An important property of percolation systems is their correlation length (p which diverges

as the percolation threshold pc is approached as (p
r~

(p pc)~v. For any length scale L » (p
the system is macroscopically homogeneous, and thus the classical equations of transport with

constant transport coefficients are applicable, while for L < (p the system is net homogeneous,
such equations are net applicable, and the sample-spanning cluster is a self-similar and fractal

abject with a fractal dimension dp. The sample-spanning cluster can be divided into two

parts: the dead-end part that carries no flow or current, and the backbone through which

flow and transport take place. Neon pc the backbone fraction XB vanishes as
XB

r~

(p

pc)PB
r~

(p~~/~, while for L < (p the backbone is a fractal abject with a fractal dimension

dB
=

d flB Iv, where d is the dimensionality of the system. For ramdam percolation, these

criticalexponents are universal, and in particular, v =
4/3, dp

=
91/48, and dB ~ l.64 for

d
=

2. If the conductance or permeability of the bonds is selected randomly from a distribution

function f(x), then the conductivity g of the system vanishes as g r~

(p pc)"
r~

(p"/~, and
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the hydrodynamic permeability k vanishes as k
r~

(p pc)~
r~

(p~/~. If f(0) is nonsmgular,
then e = p. However, if f(x) is very broad,

e and p are net necessarily equal [4]. For L < (p
one should replace (p with L to obtain scale-dependent properties.

New consider a stationary stochastic process BH (r), called fractional Brownian motion (mm)
[Si, with the following properties

IBH(r) BH(ro))
=

°
,

(i)

iiBH (r) BH(ro)i~i
'~

ir ro i~~
,

(21

where r =
(x,y, z) and ro =

(xo, go, zo) are two arbitrary points, and H is called the Hurst

exponent. A remarkable property of fBm is that it generates correlations whose extent is

injinite. For example, if we define a correlation function C(r) by

~~~~
~

l-BH(-r)BH(r))
~~~(BH(r)~i '

then one finds that C(r)
=

2~~~~ -1, independent of r. Moreover, the type of correlations con

be tuned by varying H. If H > 1/2, then C(r) > 0 and mm displays persistence, 1-e-, a trend

(for example, a high or low value) at r is likely to be followed by a similar trend at r + AT. If

H < 1/2, then C(r) < 0 and fBm generates antipersistence, 1-e-, a trend at r is net likely to

be followed by a similar trend at r + AT. For H
=

1/2 the trace of BH (ri is similar to that

of a random walk. Fractiona1Brownian motion has found many applications. For example, it

has been shown [6] that successive increments in the cardiac beat-tc-beat intervals of healthy
subjects follow fBm with H < 1/2.

We now use fBm to propose a percolation model with long-range correlations. Although a

few percolation models with long-range correlations have already been proposed [7, 8], these

models are dilferent frein ours, which has clear physical motivation and applications. Hewett

[9] analyzed the permeability of heterogeneous rock formations at large length scales (of order

of several kilometers), and showed that it follows a fBm with H > 1/2. An fBm may aise be

relevant to modelling fracture network of rock [loi. Thus, we propose the following percolation
mortel with long-range correlations. TO each bond of a network we assign a number selected

frein an fBm, and interpret it as its permeability. TO construct a percolation network and to

preserve the correlations between the bonds, we remove those bonds that have been assigned
the smallest numbers. The idea is that in rock with a broad distribution (such as the fBm)
of the permeabilities a finite fraction of the rock should have very small permeability, and

therefore their contribution to the macroscopic properties of the system would be negligible.
Figure 1 shows a square network in which the permeabilities have been selected according to

an fBm with H
=

o.8, and a fraction of the bonds with the smallest permeabilities have been

removed. For comparison, we aise show the same network in which the same fraction of the

bonds have been removed at tandem. The striking dioEerence between the two systems is due

to the positive correlations, as a result of which most bonds with large or small permeabilities

are clustered together. Moreover, as we con see in figure 1, the percolation cluster generated
by this mortel ares net have many dead-end bonds and is close to its backbone. This assertion

is confirmed by Dur numerical results discussed below. On the other hard, if we consider the

percolation cluster for, e-g-, H
=

0.2, shown in figure 2 (the anticorrelated case), it contains

more randomness.

TO see the dioEerence between Dur correlated percolation model and that of [8], we should

look at the correlation functions of the two models. Prakash et ai. [8] considered a percolation
model in which the correlation function C(r), defined by C(r)

=
(u(r')u(r + r')), where u(r)
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Fig. 1. a) The structure of the correlated and b) random percolation clusters for H
=

0.8. In the

correlated network 40% of trie bonds with the lowest permeabilities bave been removed, whereas m trie

ramdam network the same
fraction of the bonds has been removed randomly. Lightest

area
denotes

the bonds with the highest permeabilities, whereas black area denotes those with zero permeability
(removed bonds).

Fig. 2. The structure of the percolation network with anticorrelations for H
=

0.2.

~~ a ramdam variable obeying the distribution with long-range correlations, and I.i denotes an

average over ail values of r', in a d-dimensional system is given by

C(r)
r~

r~(~~~)
,

(4)

where -2 < < 2 is a parameter of their mortel, such that 0 < < 2 represents positive
correlations, while -2 < < 0 corresponds to negative correlations. Note that, according to

equation (4) C(r) always decays if < d. In contrast, if in Dur mortel we
define the correlation

function C(r) by the saine equation, then

àc(r)
=

c(o) c(r)
~

r2H
,

(s)

which indicate that C(r) ares net decay, unless H is negative. Moreover, m Dur model, C(r)

as defined by equation (3) is independent of r.

We investigated various properties of this percolation mortel and calculated pc, v, ê
= e

Iv,
ji

=
plu, dp and dB1 sec table I. We found that for 1/2 < H < 1 pc decreases with increasing
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Table1. Vall~es of tue criticalexpo~le~lts for tue twc-dime~lsional percolatio~l witu lo~lg-range
correlatio~l, as a f1~~lctio~l of tue Hl~rst expo~le~lt H.

H ê fi dB

0.50 0.98 0.98 1.64

0.60 0.91 0.95 1.82

0.75 0.86 0.80 1.85

0.90 0.82 0.50 1.89

0.98 0.76 0.32 1.96

H, while the reverse is true for 0 < H < 1/2. Moreover, v and dp essent1ally retain their value

for random percolation, except when H ce 1, where dp -
2. We aise found that for H > 1/2

dB increases with H, that dB
~

2 as H -1, and that dp ce dB, confirming our assertion that

for H > 1/2 the cluster and its backbone are similar. More details about various properties of

our correlated percolation mortel for the entire range 0 < H < 1 for bath d
=

2 and 3 will be

given elsewhere iii].
We now show how our correlated percolation mortel can explain experimental data on hy-

drodynamic dispersion in heterogeneous porous media. A complete discussion of our results

will be given elsewhere [12]. Dispersion, the unsteady mixing of two miscible fluids in a porous
medium, is caused by a chactic velocity field in the pore space. It con be modified by molecular

dioEusion which transfers the solute eut of the stagnant regions of the pore space and the slow

boundary layer zones neon the pore watts. Dispersion is important to enhanced recovery of ail,
Salt-water intrusion m

coastal aquifers, pollution of groundwater flow, and several other phe-

nomena iii. Dispersion in homogeneous porous media is modeled by the convective-diffusion

equation (CDE), ôC/ôt + v VC
=

DLô~C/ôx~ + DTV(C, where C is the solute concentra-

tion, v the average flow velocity, DL the longitudinal dispersion coefficient (in the direction

of macroscopic flow x), and DT and VI
are the dispersion coefficient and the Laplacian in

the transverse (perpendicular to the macroscopic flow) directions, respectively. An important
characteristic of dispersion is the dispersivity oL =

DL/v, which is the length scale above

which a description of dispersion by a CDE is valid. Such a description, which assumes that

v, DL, DT and oL are independent of length scale and time, has been reasonably successful

for porous media at small length scales (of order of at most a few meters) iii.
However, there have been several jield studies of dispersion [13-16] indicating that DL and

oL are scale and time dependent, and that DL depends linearly on v.
Arya et ai. [16] analyzed

over 130 greatly-varying field dispersivities, collected on length scales up to 100 km, and showed

that most of the data follow the scaling law

DEL ~

L~, (6)

where L is the length scale of the measurements or the distance from the source (where the

solute is injected into the flowing fluid in the rock), with à t 3/4. However, a reanalysis of

these and other data [17] indicated that, for the data that are collected at large length scales,
à may be close to 1. The analysis of various field data has aise indicated that [16-19]

oL'~
tt, (7)

where a nonuniuersal ( ce o-à 0.6 has been found to provide accurate fit of the data. Up to

now, equations (6) and (7) have net found a satisfactory explanation. We now show that our

correlated percolation model provides a consistent theoretical explanation for these results.
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As discussed above, if rock permeabilities are distributed according to a fBm, then the

pore space in which flow and transport take place is similar to the backbone of a correlated

percolation system. Therefore, since the fraction of the dead-end pores or stagnant regions

m the system is very small, molecular diffusion that transfers the solute into and out of such

regions plays no significant rote. This means that dispersion is dominated by the stochastic

velocity field imposed on the medium by the permeability distribution and, consistent with the

field data, DL depends on the average flow velocity v as

DL'~(v, (8)

where ( is some appropriate length scale. Under such conditions, the rote of diffusion is to

transfer the solute out of the slow boundary layer zones near the pore surfaces, and its elfect

appears only as a logarithmic correction to equation (8). That is, if we include this elfect, we

obtain [20, 21] DL
'~

fvIn(av), where a is a constant, but since we are interested only in the

scaling of DL and oL with t (or L), such logarithmic corrections do not affect trie scaling. Note

that in the presence of the low permeability zones, diffusion into and out of such zones would

be important, and we would have [21] DL
'~

v~, contradicting the field data.

Because flow and dispersion take place only in the backbone of a correlated percolation
system, the average flow velocity v is proportional to k/XB, and near pc we have v r~

(p pc)~~PB
~

(p~, where à
=

(e flB )Iv
=

ê + dB d. Although dispersion in tandem

percolation networks has been analyzed before [22, 23], it has been investigated neither in

percolation structures with long-range correlations, nor in the regime we discuss here. Since

the permeabilities are infinitely correlated, their correlation length is langer thon any other

relevant length scale of the system, and therefore the only dominant length scale of the system
is its hnear size L, implying that the system is a backbone fractal for any L and that v r~

L~~,

so that

j~~
~

jjl-Ù (g)

We now define (Ax~)
=

([x (x)]~)
=

(x2) (x)~, where (.) represents an average over ail

values of x. Then, as ail length scales of the system must be proportional to each other (and
to L), equation (9) con be rewritten as DL

'~

(Ax~)(~~"/2 Since in general DL
'~

d(Ax~) /dt,

we obtain d(Ax~)/dt
r~

(Ax~)(~~~)/~, which means that

jàz2j
~

t2/(1+à) ~~~j

and that DL
'~

t(~~"/(~+" (iii
On the other hand, we can also write v r~

(x)~~, and since v =
dix) /dt,

we obtain (xi
r~

t~/(~+~), implying that

v ~

t-R/U+R) (12)

in Sharp contrast with homogeneous porous media for which v is constant. Finally, since

oL "
DL Iv, we combine equations (ii) and (12) to obtain

a~ ~

ti/(i+b) (13)

which means that (
=

1/(1 + à).
We argue that it is our two-dimensional correlated percolation that is relevant to the field-

sca1e data, since such data are obtained at large distances from the source (up to several tens of

kilometers), whereas the thickness of such porous media is at most a few hundred meters, and

therefore such porous media are long and thin, and thus essent1ally two dimensional. Analysis
of various field-scale permeability data by Hewett [9] and others [16-19] have indicated that
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H > 1/2 (and mostly o.7 < H < o-g), and from table I we obtain a nonuniuersal ( c~ 0.53- 0.62

for this range, consistent with the experimental data discussed above. Note that had we not

removed the low permeability zones, we would have obtained [1Ii (
=

(2+ôd Ii(1+ôa)(26a -bd )],
where ôa

=
ê + dp d and bd

=
+ dp d. Thus, for example, ((H

=
0.6) c~ 2, completely

inconsistent with the field data.

We thus propose that percolation with long-range correlation is relevant to flow phenom-

ena in field-scale porous media and aquifers, as it provides a consistent exploration for the

experimental data on dispersion coefficients and dispersivities collected in field experiments.
Separately, we have investigated the elfect of such long-range correlations on growth phenom-

ena [24], and on miscible displacements [25], and have shown that the results are consistent

with field-scale experimental data.

This paper was prepared while the I was visiting the HLRZ-KFA Supercomputer Center in

Jülich, Germany. I am grateful to the Center, Hans Herrmann and Helga Bongartz for warm

hospitality. I would aise like to thank Sumit Mukhopadhyay for his help m the preparation of

figures land 2.
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