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Abstract. — We show that a notable fraction of numerical and experimental works claiming the
observation of self-organized criticality (SOC) rely in fact on a different physical mechanism,
which involves the slow sweeping of a control parameter towards a global instability. This slow
sweeping (which does not apparently involve a parameter tuning) has been the cause for the
confusion with the characteristic SOC situation presenting truly no parameter tuning and
functioning persistently in a marginal stability condition due to the operation of a feedback
mechanism that ensures a steady state in which the system 1s marginally stable against a
disturbance. The observation of power law distributions of events, often believed to be the
hallmark of SOC, can be traced back to the cumulative measurements of fluctuations diverging on
the approach of the critical instability. For non-critical instabilities such as first-order transitions,
the power law distribution exists on a limiting size range up to a maximum value which is an
mncreasing function of the range of interaction. We discuss the relevance of these ideas on the onset
of spmodal decomposition, off-threshold multifractality, an exactly soluble model of rupture, the
Burridge-Knopoff model of earthquakes, foreshocks and acoustic emissions, impact ionization
breakdown in semiconductors, the Barkhausen effect, charge density waves, pinned flux lattices,
elastic string in random potentials and real sandpiles.

1. Introduction.

It is often asserted that the halimark of self-orgamized cnticality 1s the simultaneous existence
of two properties, observed without having to tune a control parameter : (1) power law
distribution of events, and (2) spatial and temporal correlation functions decaying algebrai-
cally. Self-organized criticality (SOC) is a concept proposed [1] to describe the dynamics of a
class of open non-linear spatio-temporal systems, which evolve spontaneously towards a
critical state. To the best of our knowledge, most numerical simulations and experiments,
which have aimed at 1dentifying SOC in various physical systems, have reported results either
on the first (1) or the second type (2) of property but not on both of them simultaneously. From
our pont of view, property (1) is more characteristic of the new class of phenomena described
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by the SOC concept, since it relies on the condition of a very slow driving of the system and the
existence of fast burst-like responses of the system (see [2] for instance for a discussion of the
different classes of SOC). This behavior 1s at the opposite to the standard slow response of a
critical system at equilibrium characterized by « critical slowing down » under the fast
sollicitation created by thermal noise. In the following, we will therefore not discuss the class
of phenomena dubbed « generic scale invariance » [3] or critical phase transitions made self-
organized [4] which present a SOC behavior in the sense of property (2). Apart from the
absence of tuning and the property of self-organization, they are similar to standard
equilibrium critical systems {5].

Is the observation of a power law distribution of events (1) sufficient to qualify a system as
SOC ? If one regards power laws as a possible definition of SOC, the question makes no sense.
Here however, we view SOC in a more restricted sense, 1.e. SOC requires that, as a function of
a tunable control parameter. one has a phase transition at some critical point. and that the
dynamics of the system brings this parameter automatically to 1ts critical point without external
fine-tuning. Then, the purpose of this paper 1s to show that the answer is negative and that a
notable fraction of numerical and experimental works claiming the observation of SOC in fact
rely on a different physical mechanism. This mechanism, that we term « sweeping of an
instability », involves the slow sweeping of a control parameter w on the approach to and
possibly beyond a global instability at u.. In other words, we claim that the existence of a
power law does not necessarily mean SOC since a power law may also arise 1f a tunable
parameter crosses over from one side of the critical point to the other side. In the next section
(Sect. 2), we present our main 1dea and its mathematical formulation using as an example the
Ising and percolation models and then discuss in section 3 its relevance to a variety of
experimental systems.

2. The mechanism of « sweeping of an instability ».

Our basic 1dea can be understood by considering the Ising model and similarly an anncaled
version of the percolation model (i.e. allowing sites or bonds to appear and die randomly at
constant average occupation probability ). These models are among the simplest archetypes
of critical transitions reached by finely tuning the temperature (Ising) or the concentration
(percolation) to their critical values. Presenting criticality for some value of the control
parameter, they are not self-organized. The thermal Ising problem and the geometrical bond
percolation are closely related since they can be put in one-to-one correspondence, using
Coniglio and Klein’s recipe [6] . connectivity in the Ising model 1s defined in the sense of a
physical « droplet », according to which two nearest neighbor spins are connected if they are
both up and furthermore if the bond between them 1s active, a bond being active with a
probability p = 1 — e 2o T, where J is the exchange coupling constant between spins.
For a given value of the control parameter w«, spontancous fluctuations occur. These
fluctuations 1n both models correspond to the clusters defined by the connectivity condition.
These fluctuations can be visualized as cooperative spatial domains of all sizes between the
microscopic scale up to the correlation length £ in which the order parameter takes a non-zero
value over a finite duration depending on the domain size. Their size distribution 1s given by

(7]

P, (syds ~s™“ f(s/so(p))ds H
with @ =2 + 1/6 (= 2.05 with 6 = 91/5 in 2D percolation [7]). Recall that the size s 15 the
number of spins or sites belonging to a given cluster. sy(u ) 1s a typical cluster size given by

1/

SON‘IU’("—:“I (2)
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with Fisher’s notation 1/o0 = ¥ + B. s5(x ) must be distinguished from the mean cluster size
{s) (m), which scales as {s) (u)~ |p,— u | 7. vis the susceptibility exponent defined by
the number of spins which are affected by the flip of single spin, which corresponds in the
language of percolation to the mean cluster size. B is the exponent characterizing the way the
order parameter goes to zero as |u, — u|? as u - p.

The scaling function f (s/so) decays rapidly (exponentially or as an exponential of a power
law) for s > s [7]. Thus, for our purpose, equation (1) teaches us that the cluster or fluctuation
size distribution is a power law P, (s) ~ s~ ¢ for s <sy(u ) and P, (s) is negligibly small for
§ = 5o(p )

Now, suppose that one monitors the fluctuation amplitudes (i.e. cluster sizes) as the control
parameter w is swept across 1ts critical value u, say from the value x = 0 to some value
te + ¢ (with ¢ > 0) above u .. The total number of clusters of size s which are measured is then
proportional to

ot e
N(s) = J P (s)du 3)
0
which can be written as
M [T
N(s) = J P, (s)du +J P,(s)du . 4)
0 M

In writting expression (3), we have used the fact that the full distribution (1) of fluctuations
exists for each value w of the control parameter. The change of variable u — sy(u ) in the
mtegral (3) gives

N(s)=s‘”J‘+wsA0(£+l>f(—£—)dso (5a)
1 so(m)

+

[eo]
N(s)~s“‘J~ s~ @+ Dds, (5b)

s

using the fact that f (s/sq(x)) is negligible for s,(¢ ) < 5. Here, the symbol « ~ » is taken as
meaning the leading behavior in decreasing powers of s. Equation (5b) finally yields the power
law

N()~s-@+ro) 6)

as its leading behavior. Note that we have not restricted w to stop at its critical value
# . but have allowed for a spanning of an arbitrary interval contamning .. The contribution to
the cumulative fluctuation size distribution N (s) for w close to u . from above is in general
similar to that for u close to u. from below, and thus contributes to the numerical factor in
front of the power law (6). In some cases, depending upon the physical variable which is
measured, the fluctuations for x4 > u« . may on the contrary be small and thus do not contribute
to the leading power law behavior (6).

Expression (6) thus demonstrates our basis claim, 1 e. that a continuous monitoring of events
or fluctuations up to and above a critical point yields a power law even if a smmular
measurement for a fixed value of u would only give a truncated power law (with a smaller
exponent). Thus, by varying the temperature (Ising) or concentration (percolation), say,
Iinearly in time from a value below the critical point to a value above the critical point and by
integrating over all fluctuations observed during this whole time 1nterval, one gets a power law
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1n the distribution of fluctuations. Since only right at the critical point, large clusters exist, one
gets a power law without cut-off for the time-integrated cluster number even if we do not stop
at the critical point. Note the renormalized exponent a + 1/(y + 8), stemming from the
relatively smaller weight of large clusters which are found only in a narrow interval of the
control parameter.

A similar result holds for supercritical instabilities such as for instance the Rayleigh-Bénard
mnstability, which corresponds to an out-of-equilibrium critical poimnt [8]. In the Rayleigh-
Bénard case. the order parameter is the average convection velocity and the fluctuations are
associated to streaks or patches of non-zero velocity v occurring below the critical Rayleigh
number at which global convection starts off. Note that the divergence of the spatial diffusion
coefficient D(€) of the fluctuations which have been found in this problem [9] can be
understood as a consequence of the existence of a power law similar to (1) describing the
distribution of velocity fluctuations prior to the instability. We can write the diffusion
coefficient as the product of an average square velocity times a characteristic time scale :

D(&) = a(&)r?)y 7(&). (7

T(£) ~ €715 the typical duration of a fluctuation of spatial extension ¢ (here - is the dynamical
critical exponent). Using (v?) ~ |u,— |~ 7, we thus get D(u)~ a (EMp, —p) 2
Within mean field which applies for the Rayleigh-Bénard supercritical instability, y =1,
v =1/2 and - = 2 which gives ¥ + 1z = 2. For an hydrodynamic instability. one must in
addition take into account the hydrodynamic drag which results in the correction a (§) ~ ¢ I
yielding D(p )~ (., — ) 32 which recovers previous results [9]. This shows that the
enhancement of the spontaneous fluctuations near the instability produces a measurable
singular diffusion coefficient. The occurrence of a singular diffusion coefficient has been
suggested as the origin of SOC [10], here, it is clear that such a singularity only reflects the
existence of very large fluctuations. It 1s probably more correct to interpret the singular
behavior of the diffusion coefficient as the consequence and not the cause of the critical
behavior.

The mechanism of « sweeping of an instability » for generating power law distributions of
events should be contrasted with the SOC phenomenon, best exemplified by the « sandpile »
cellular automaton introduced initially by Bak, Tang and Wiesenfield [1]. The main difference
1s that the sandpile automaton is functioning persistently in a marginal stability condition due
to the operation of a feedback mechanism (decrease of the local slope upon reaching a
threshold and loading of neighbors) that ensures a global steady state in which the system is
marginally stable against a disturbance. The fundamental origin of the power law distribution
of avalanches is basically not understood since one is unable to state a priors if a given model
or modified version will exhibit power law behavior. The absence of a deep undertanding of
SOC is probably also at the origin of the confusion 1n the interpretation of experiments and
numerical stmulations which have often misattributed the observation of power laws to SOC,
as we discuss below 1n specific examples.

3. Physical 1lustrations of the mechamsm of sweeping of an instability.

3.1 FLUCTUATIONS BEFORE THE ONSET OF SPINODAL DECOMPOSITION WITHIN MEAN FIELD
THEORY. — We would like first to point out that the above scenario 1s present in the standard
thermal equilibrium problem of spmodal decomposition [11] Spinodal decomposttion is
indeed a critical nstability within mean field theory occurring on the so-called spinodal line
(defined by 8°F/3A% = 0, where F is the free energy and A the order parameter) inside the
domain of coexistence 1n a hquid-gas or binary mixture demixing first-order transition. Qutside
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the spinodal domain, spontaneous density or concentration fluctuations occur which are
distributed in size according to the law (1) with the exponent a = 2.5 within meanfield
percolation and spinodals [12]. Linked with this distribution, the fluctuations in space present a
fractal and even multifractal structure [13]. Note that a similar multifractal structure appears in
standard second-order phase transition and has been used to rationalize the distribution of
particles numbers in high-energy nuclear collisions [14] interpreted using phase transition
concepts. The physical interpretation of the distribution (1) is particularly clear in the spinodal
case, due to the mapping between spinodal decomposition onto a percolation problem, or,
more precisely a cluster growth problem [13]. In this case, the distribution of fluctuation sizes
(1) takes a genuine geometrical sense. This is a general fact that the fluctuations and droplets
appearing as precursors of a spinodal decomposition are distributed in size according to a
power law. A similar results holds for a first-order phase transition but then the power law
holds up to a maximum size which is an increasing function of the range of the interaction [11-
13]. Then, measuring the total number of clusters when spanning the control parameter (for
mstance the temperature) up to the spinodal instability will yield the power law distribution (6).

3.2 OFF-THRESHOLD MULTIFRACTALITY. — Roux and Hansen [15] have shown that, if a
physical quantity @ exhibits a multifractal behavior at the percolation threshold and more
generally at a critical point u, the histogram of the quantity O recorded during an evolution of
the control parameter w (fraction of bonds 1n the percolation problem, temperature, . .), away
from g, up to ¢, will show a power law behavior. This result is very similar to our previous
reasoning going from equation (1) to equation (6), and in fact constitutes a generalization of it.
These authors have illustrated their result for the current distribution 1n diluted lattices but have
failed to discuss its broader application to other phenomena discussed here.

3.3 AN EXACTLY SOLUBLE MODEL OF RUPTURE. — Let us consider the « democratic fiber
bundle model » (DFBM) [16-23] of rupture phenomena, which has been introduced initially to
describe long flexible cables or low-twist yarns. It 1s one of the few exactly soluble models of
rupture which will allow us to test our ideas in this context. Indeed, rupture phenomena seem
interesting candidates for applying the idea of « sweeping of an instability ». Indeed, one often
measures bursts of acoustic emission or jumps of elastic constants associated to sudden internal
damage or cracking as the stress is increased up to total rupture. The point of global breakdown
1s similar to an instability ; in fact the analogy with nucleation 1s particularly clear with the
Griffith criterion for the unstable growth of a single crack. The analogy has been studied
recently [24].

The DFBM is made of N independent parallel vertical fibers with identical spring constant
k, and identically distributed independent random failure thresholds X,, n=1,.., N,
distributed according to some cumulative probability distribution P (X, <x) = P (x). A total
force F is applied to the system and is shared democratically among the N fibers. As F
mcreases, more and more fibers break down until the final complete rupture. F is thus the
analog of the control parameter u and the force threshold F_ corresponding to complete
collapse 1s the analog of u_.

An exact derivation of the distribution of rupture sizes (i.e. number of fibers A which break
simultaneously 1n a single « avalanche » process) has been given 1n references [23, 25]. Here,
4 is the analog of 5. In particular, reference [25] has shown the coexistence of 1) a differential
distribution of burst of si1ze A given by equation (1) with a = 3/2, with a cut-off exponent
o =1, and 2) a total number of bursts of size A up to the run away scaling according to
equation (6) with an exponent g + o = 5/2, 1in agreement with the above derivation. The
exponent 5/2 reflects the occurrence of larger and larger events when approaching the total
breakdown 1nstability. Note again that this global power law distribution 1s not associated with
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criticality but to fluctuations accompanying the onset of global rupture. This onset of global
rupture is in fact a first-order transition since a finite fraction of fibers break simultaneously at
threshold F .. The existence of « critical » fluctuations of arbitrary sizes up to the threshold
results from the infinite range of the interaction between the fibers, due to the democratc
reloading on all surviving fibers.

3.4 THE BURRIDGE-KNOPOFF MODEL OF EARTHQUAKES. — Soon after the mtroduction of the
SOC concept, it has been suggested [26-30] that earthquake dynamics and notably their power
law distribution 1n sizes constitute a vivid example of SOC. We are still of this opinion for
genuine earthquakes. However, we would like here to underline that some of the mathematical
models that have been introduced exhibit power laws in earthquake size distribution, not
because the models are SOC but because they somehow produce the mechanism of « sweeping
of an instability ». Furthermore, foreshocks (i.e. small earthquakes which are precursors of
large earthquakes) are also an example of this phenomenon.

This 1dea 1s most simply illustrated using the correspondence between a mean field version
of the Burridge-Knopoff block-spring stick-slip model of earthquake faults and a cycled
generalization of the democratic fiber bundle model (see previous Sect. 3.3) [25]. The exactly
soluble democratic fiber bundle model suggests that the Gutenberg-Richter power law of
earthquake size distribution is not associated, in the Burridge-Knopoff model. to stationary
criticality but to fluctuations accompanying the nucleation of a large earthquake run away. This
view point is also defended in reference [31] where an analogy between failure dynamics 1n a
class of Burridge-Knopoff models and a mean field spinodal line has been proposed.

This 1dea is further confirmed by a recent work [32] on a 1D dynamical version of the
Burridge-Knopoff model for earthquakes with a velocity weakening friction law, in fact
exactly the version studied in reference [28] constituting a rediscovery of the initial Burridge-
Knopoff model [33]. Depending on the system size, two types of solution have been found
which are in general present stmultaneously : chaotic motion and solitary wave propagation.
The solitary wave propagation, which can be seen as the existence of propagative localized
macro-dislocations, 1s always present. For certain values of the system size, there is a kind of
resonance such that the chaotic motion disappears and only the completely coherent solitary
propagation is observed. This corresponds to a macroscopic run away which covers the system
endlessly as a domino line falling over and over along the system 1n order to accommodate the
slow imposed tectonic plate velocity. For other system sizes which are out of resonance. the
velocity of the solitary macro-dislocation 1s not matched to the size of the system and the slow
imposed tectonic velocity, involving a kind of frustration. A macro-dislocation therefore
possesses a finite hfetime. Its appearance 1s in general preceeded by the chaotfic phase,
characterized by a power law distribution of small slidings up to a maximum size. It is thus
tempting to view this chaotic phase producing the power law distribution as the phase
preceeding the nucleation of the macro-dislocation. Due to frustration, the macro-dislocation is
not stable and eventually decays away. One thus observes recurrent random nucleation of
macro-dislocations 1n between chaotic phases. This 1s 1n close analogy to the behavior
described above as well as the behavior observed in real sandpile avalanches (see below
Sect. 3.8).

3.5 FORESHOCKS AND ACOUSTIC EMISSIONS. — Foreshocks are precursors of large earthquakes
which have often been observed to cluster in time and increase 1n size on the approach of the
onset of the large rupture (see Ref. [34] and references therein). In other words, seismicity
prior to a great earthquake often shows a marked increase of activity 1n a way similar to the
increase of fluctuations prior to the onset of a critical instability. A typical observation, well
described by Omort’s hyperbolic law [35], 15 that the rate of energy release dE/dr by small
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earthquakes is found to increase on average as a powerlaw (¢, — ¢)~ “ as the time ¢ approaches
t. with an exponent a close to one. In addition to this average behavior, the existence of larger
fluctuations in the rate of energy release d£/dt from systems to systems and its sensitivity to the
initial inhomogeneity configuration has been demonstrated in model earthquakes [34b]. It is
also characteristic of field observations. Furthermore, the distribution of the foreshock sizes is
also governed by the Gutenberg-Richter power law.

Very similar observations are ubiquitous 1 the acoustic emission literature [36]. Acoustic
emission is now a standard technique to monitor and measure the progressive deformation,
damage and cracking within materials submitted to increasing stresses. An acoustic wave burst
is generated each time an acceleration appears within the material as a result of the creation or
motion of a dislocation, the growth of a crack, etc. Standard measurements quantify the total
energy of each acoustic burst, their duration, etc. Omori’s law for the increase of activity prior
to global rupture and the Gutenberg-Richter size distrtbution law are also very often observed.
This even provides practical tools to predict the incipient global rupture [37].

Our purpose here 1s to argue that this power law distribution is not due in general to some
SOC phenomenon but again results from the characteristic nature of the fluctuations on the
approach towards a global instability with long-range elastic interactions, here the onset of
global rupture. This is contrast to a recent claim [38] that SOC is the origin of the power law
properties of acoustic emission. We also argue that dislocation glides and abrupt deformation
associated with twinning processes [39] in metals are also the result of the approach of a global
mstability.

The existence of the Omori’s law and of the Gutenberg-Richter power law for foreshocks
can be rationalized using the tools presented in references [40]. Essentially, the 1dea is to
assume an arbitrary distnbution of imitial flaws reflecting a microscopic disorder always
present in an experiment or in nature. Then, 1n the presence of a growth law expressing the
subcritical crack growth velocity as a power of the crack length [40], the Omort’s law and the
Gutenberg-Richter power law are easily derived. The exact solution of the DFBM of rupture
discussed above also provides an alternative way to view these phenomena.

Concerning the claim of reference [38], we would like to stress that it is subtantiated solely
on the basis of the observation of a power law distribution. However, we note that the acoustic
emissions occur during the «-8 phase transformation during the hydrogen doping of Nb
samples upon a constant cooling rate. This hydrogen doping and the associated acoustic
emissions cannot be sustained for ever since the sollicitation stops when the temperature is too
low. This problem can not be a SOC phenomenon, since 1t cannot operate persistently. It 1s
much better described by the sweeping of a control parameter, here the amount of hydrogen
content within the metal, which makes the system span its phase diagram from the single «
phase to the mixed B phase, in a way very similar to the spanning of a coexistence diagram in a
first order phase transition. We note that the authors themselves stress that the hybride
precipitation 1s a first order transformation. We thus interpret the power law distribution as
stemming from the fluctuations associated to the contral parameter spanning the phase
diagram.

3.6 CHARGE DENSITY WAVES, PINNED FLUX LATTICES, ELASTIC STRING IN RANDOM POTEN-
TIALS. — Models of charge-density waves (CDW’s) usually consist n an elastic array of
particles submitted to a driving field £ and interacting with impurities at random positions [41].
For fields E below a threshold E_, the CDW is pinned whereas for E > E_ the systems has a
nonzero average velocity. Recently, Middleton and Fisher [42] have found in 2D simulations
that the polarization diverges as P (E)~ (E, — E) 7+ U withy=158=+0.12, as £ — E (from
below). From the size dependence of threshold fields and polarizations, they also find that the
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largest correlation length ¢ diverges as &€ ~ (£, — £) 7. with v = 1.05 +=0.04. In a related
work using a similar model inspired from the physics of pinned flux lattices, Pla and Nori [43]
have found that the distribution D(d) of sliding bursts of size 4, measured in narrow intervals
of driving fields E at a finite distance below threshold £, scales as D(d) ~ d~ B, with 8~ 1.3.
They infer that this reflects a SOC state. Very interesting experimental results have also been
reported on the electric behavior of the quasi-one-dimensional CDW compound K, ;Mo0O; at
liquid-helium temperatures [44]. In this system, there exists a threshold voltage at which an
abrupt increase in the conductivity takes place. The authors [44] report that the onset of this
transition 1n conductivity 1s marked by a hysteresis, pointing to a first-order type instability.
Note that this is of no consequence for our proposed scenario in which the fluctuations can
appear in both cases to produce a power law distribution of burst sizes as long as the interaction
15 long range. Indeed, they report, in the low-conducting branch of this hysteresis (i.e. prior to
the global threshold), an intermittently spiking current in the time domain characterized in
particular by a power law scaling of the firing and of the waiting times. The authors conclude
that these features are characteristic of a SOC phenomenon.

It is now becoming clear from the above discussion that the onset of global sliding of a
CDW or of a pinned flux lattice is similar to a spinodal point or a critical point. Again, any of
these systems cannot function persistently in a SOC. It is only due to the spanning of the
electric field up to the critical value E that the distribution of bursts is found a power law, in
agreement with the mechanism proposed in this paper. In reference [45], we have given a
mean field theory based on an extension of the DFBM made critical which allows to rationalize
the numerical results quoted above. Similar behavior is observed for an elastic string in a
random potential [46].

3.7 IMPACT IONIZATION BRAKDOWN IN SEMICONDUCTORS AND BARKHAUSEN EFFECT. — Very
exciting experimental results have been reported a few years ago [47] on the low-temperature
impact ionization breakdown of p-Ge. The authors claimed that this was the first experimental
vertfication of the SOC idea. Let us briefly recall the nature of the problem and the main
results. The system consists in a slightly doped semiconductor cooled down to a low
temperature such that 1t constitutes an almost ideal insulator, because most of the extrinsic
carriers are frozen out at the impurity atoms. If an applied electric field exceeds a critical value,
the few remaining carriers can gain enough energy to release the bound carriers by impact
tonization. This autocatalytic process ends up in an avalanche breakdown of the resistivity of
the sample. There are three main regimes exhibited by the systems : a) at low and intermediate
bias voltage, short current pulses occur with a statistical temporal and size distribution ; b) for
a larger bias voltage such that the system functions in the non-linear S-part of the macroscopic
[-V characteristics of the sample, ordered current spikes occur in a quasi-regular pattern
characteristic of oscillations of relaxation ; ¢) at higher values of the bias voltage, the ordered
oscillation mode becomes qualitatively different both in amplitude and frequency. The
statistical analysis of reference [47] concerns the first regime. In the spint of our previous
discussions, it is tempting to view the voltage limiting the non-linear S-region of the /-V
characteristics as an instability threshold for the onset of current spikes oscillations of
relaxation. The ordered large current spikes observed in regime b) correspond to the
bifurcation to an ordered phase with a non-zero order parameter. We mterpret regime a) as the
fluctuation regime prior to the global instability. Then, 1t is not surprising that the distribution
of time 1ntervals between current spikes, closely related to that of the current spike amplitude
distribution (see Ref. [26] for a discussion of the relation between amplitude distribution and
time interval distribution 1n the case of earthquakes), 1s given by a power law. The exponent is
found equal to - 1.33, close to the simulations of Pla and Nori [43] and to our predictions [45]
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based on a mean field model. This system is similar to those discussed in the previous
section 3.6, notably in the feature that the system is not functioning persistently in a fixed
dynamical state, since a macroscopic control parameter is spanned slowly. We thus conclude
that the claim that the experimental results are the signature of SOC is not substantiated.

We propose similar considerations to another experimental report [48] on the Barkhausen
effect, consisting in the measurements of irreversible domain-wall jumps in a ferromagnetic
metallic glass by a pickup coil sensitive to variations of magnetic fields. Here again, there
exists three main regimes : a) for small applied field, one observes small reversible domain-
wall changes and the system remains magnetically elastic ; b) as the applied field increases
and approaches the magnitude of the coercive force, the magnetization increases very rapidly
and the response is characterized by large and irreversible domain-wall jumps along with
rotations within domains ; ¢) at saturation, the entire specimen is magnetized in the direction
of the applied field and no more rearrangements occur. We note that a typical experiment is
carried on by applying a constant slow magnetic field rate (1 Oe/s) and that the coercive force
of the ferromagnetic samples is small (= 0.1 Oe). Since about 3 000 pulses separated in time
from 50 ps to 1 000 ps were detected in a measurement, the total duration of such a recording
1s about 0.3 s or more, taking as an order of magnitude an average time interval between
consecutive pulses of 100 ps. This means that the experiments reported in reference [48]
correspond to a sweeping of the control parameter, the applied magnetic field, up to complete
magnetization, since the field spanned during the time of an experiment is of the order of or
larger than the coercive force and hysteresis loops are rectangular [48]. Viewing the state of
saturated magnetization as the ordered state resulting from a nucleation process (here the
nucleation of the favored magnetization at the expanse of other directions), the Barkhausen
noise can thus be interpreted as resulting from the fluctuations announcing the cooperative
ordering of the domains. We believe that the observed power law results from the combination
of the long range magnetic nteraction and the nucleation process. We note again that the SOC
nterpretation given i [48] cannot hold since the system cannot operate persistently in the
same macroscopic state but rather evolves progressively to i1ts completely ordered state. This
remark is common to all systems previously discussed.

3.8 REAL SANDPILES. — Since the introduction of the SOC concept [1] based on cellular
automata model sandpiles, it is only natural that experiments has been carried on real sandpiles
n order to test the application of these 1deas. The results of the first experiments [49] devised to
observe a power law distribution of avalanches have been discouraging : the avalanches occur
in a quasi-regular fashion with a well-defined mean size, lifetime and average period. These
averages are decorated by fluctuations which however are not larger than about 10 % of the
means. The physics of avalanches seems thus well-described as oscillations of relaxation. The
slope is steadily and slowly increased by addition of grains or by a slow tilting or rotation of the
sandpile. When the maximum angle of repose 8, is reached, an avalanche occurs which
corresponds to a flow of grains not only at the surface but also within the bulk of the sandpile.
The avalanche stops and defines a new angle which is smaller that 6 by about 2 degrees. This
imnduces an hysteresis and the sandpile is stable until addition of grains allows the slope to reach
again 1ts instability threshold 6. We thus again have the existence of an instability, with the
control parameter being the slope 8, leading to oscillations of relaxation. These oscillations of
relaxation are due to the fact that the nstability triggers an avalanche which then takes away
some of the graimns and thus relaxes the control parameter below its threshold value
8. Addition of new sand grains brings back # to 1its threshold ¢,. The observation [49] of
fluctuations decorating this average behavior 1s similar to their ubiquitous observation close to
instabilities.
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According to our scenario, these fluctuations should be characterized by a power law
distribution if the interaction between grains is sufficiently long range. This should be the case
since the interaction between two distant grains is mediated by the transport of one grain close
to the other in successive avalanches. However, the power law distribution of avalanche sizes
seemed absent in the previous works [49]. The first experiment [50] which found these power
faw fluctuations has followed a slightly indirect course. The main difference of the work of
reference [50] with respect to others was the study of smal! sandpiles such that the angle
(180/7) R/L with which one sees a grain of size R at a distance equal to the sandpile size L is
less or equal to about 2 degrees. In these small sandpiles, the quasi-regular oscillations of
relaxation were completely absent and replaced by a power law distribution of small
avalanches, which are completely confined to the surface or first grain layer. The observation
of a power law behavior for small systems but its disappearance for large systems is at odds
with the standard finite size effects expected in critical systems and cast a strong doubt on the
SOC interpretation of the results of reference [50]. Our interpretation is rather that the observed
power law distribution of small avalanches is the signature of the fluctuations which are the
precursors of the instability at 8. For small systems, the global instability is essentially
suppressed due precisely to finite size effects. Furthermore, the grain-grain dilatancy effect
and inertia effects are much less efficient the smaller the system is and essentially disappear for
a system size L such that (180/m) R/L <2 degrees. This then allows the observation of the
fluctuations, which are always present but which were concealed by the large oscillations of
relaxation 1n the larger sandpiles. Our interpretation is confirmed by a recent analysis [51] of
avalanches in the same type of sandpiles but with /arge ones. Use of digital image analysis of
the avalanches occurring at the surface of large sandpiles show clearly the coexistence of 1) the
large oscillations of relaxation avalanches which are quasi-regularly spaced n time in
agreement with [49] and 2) a power law distribution of sizes for smaller avalanches occurring
between the large sliding events. These small avalanches were not visible in the previous
experiments [49] because they do not reach the bottom rim and thus remain within the
sandpile. They also produce very little acoustic emission and are thus difficults to detect by
other means than direct visualization. It is also interesting to note that the number of small
avalanches increases 1n number as (¢, — ) ', in remarkable similarity to Omori s law of
foreshocks preceeding a large earthquake (see Sect. 3.5 above). In fact, the mechanism is
analogous, the large avalanches playing the role of the large earthquakes, and Omori’s law
results from the amplification of a small initial disorder in grain packing on the approach of the
mnstability.

The above picture can be completed in analogy with first order transition lines and their
terminal critical point by mentionning the suggestion [52] based on the physical description of
sand in terms of plasticity theory and the Granta-Gravel model that a sandpile should become
truly critical at all scales for a special value of the packing density. We also would like to point
out the relation with the dynamical system theory [53] of post-bifurcation localization in non-
cohesive brittle media (i.e. sand). It provides a framework for understanding the development
of complex deformation patterns from the mechanics of localization and rupture and for
connecting the simple localizing behavior at small times (the small deformation regime) to the
complex faulting at large times (corresponding to the large deformation regime). Fluctuations
are also often observed [54] in this quasi-static deformation experiments which should be
described in a similar vain.

4. Conclusions.

We have shown that a notable fraction of numerical and experimental works claiming the
observation of self-orgamzed criticality (SOC) rely 1n fact on a different physical mechanism,



N° 2 SWEEPING OF AN INSTABILITY 219

which involves the slow sweeping of a control parameter towards a global instability. The
experimental examples which have been discussed are foreshocks and acoustic emissions,
umpact ionization breakdown in semiconductors, the Barkhausen effect, charge density waves,
pinned flux lattices, elastic string in random potentials and real sandpiles. We have also
proposed analogies between the mechanism of a sweeping of an instability and the fluctuations
accompanying the onset of spinodal decomposition, off-threshold multifractality, rupture
(through an exactly soluble model) and earthquakes (through the Burridge-Knopoff model).

We have noted that the existence of a slow sweeping of the control parameter, which does
not apparently involve a parameter tuning, has been the cause for the confusion with the
characteristic SOC situation presenting truly no parameter tuning and functioning persistently
mn a marginal stability condition. In the physical situations that have been examined, the
systems cannot operate persistently since the control parameter is swept and does not remain
constant as 1n the model sandpile for which the average slope is attracted to its marginal
stability limit. For critical instabilities (CI), the observation of power law distributions of
events is due to the cumulative measurements of fluctuations diverging at the instability. For
non critical instabilities such as first-order transitions (FOT), the power law distribution exists
on a limiting size range up to a maximum value which is an increasing function of the range of
mteraction. Their observations reflect the long range nature of the interaction 1n the various
systems which have been studied : foreshocks and acoustic emissions (FOT with long range
elastic force), impact ionization breakdown in semiconductors (FOT with long range electric
interaction), the Barkhausen effect (FOT with long range magnetic interactions), charge
density waves (CI), pinned flux lattices (CI), elastic string in random potentials (CI) and real
sandpiles (FOT with long range grain-grain interaction by diffusion and convection).

In contrast to standard critical hydrodynamic instabilities [8, 55] where the effect of
diverging fluctuations has been predicted some time ago [56] but detected only recently due to
1ts smallness [57], the fluctuations, precursors of the instabilities discussed in this paper, are
characterized by their large amplitude and relatively easy observation. It is at this quantitative
level that the analogy proposed here breaks down. We attribute this quantitative difference
mainly to the threshold nature of their dynamics which amplifies fluctuations and also maybe
to the general long range nature of the interactions. Indeed, in each system, specific physical
mechanisms operate to enhance the role of fluctuations. Let us cite one example, the case of
sand. It is clear in this case that fluctuations are important due to the conjunction of rotation and
dilatancy effects which create a kind of frustration, similarly to what occurs 1n spin glasses. In
presence of frustration and disorder, fluctuations are known in general to be important, both
from sample to sample and also in the evolution of a given sample.

What 1s finally the difference between the class of systems discussed here and those obeying
SOC ? In the present language, a self-organized critical system is one which functions
persistently at or near a global instability. The only difference therefore is the existence of
some mechanism which attracts the dynamics to the instability. We recover here the ideas
proposed more specifically to make self-orgamized the standard critical phase transitions [4].
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