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Abstract. We show that a notable fraction of nurnerical and experirnental works ciairning the

observation of self-orgamzed criticality (SOC) reiy in fact on a different physicai mechanisrn,

which involves the slow sweeping of a control pararneter towards a global instability. This slow

sweeping (which does not apparently invoive a pararneter tuningj has been the cause for the

confusion with the characteristic SOC situation presenting truly no pararneter tuning and

functioning persistently in a marginal stability condition due to the operation of a feedback

rnechanisrn that ensures a steady state in which the systern is rnargmally stable against a

disturbance. The observation of power law distributions of events, often believed to be the

hallrnark of SOC, can be traced back to the cumulative rneasurements of fluctuations divergmg on

the approach of the cntical instability. For non-clitical instabilities such as filst-order transitions,

the power law distribution exists on a limitmg size range up to a maximum value which is an

increasing function of the Iange of intelaction. We discuss the Ielevance of these ideas on the onset

of spmodal decomposition, off-threshold multifractality, an exactly soluble model of rupture, the

Burridge-Knopoff model of earthquakes, foreshocks and acousnc ernissions, impact ionizanon

breakdown in semiconductors, the Barkhausen effect, charge density waves, pinned flux lattices,

elastic string in random potentials and real sandpiles.

1. Introduction.

It is often asserted that the haiimark of soif-organized cnticaiity is the simuita?ieous existence

of two properties, observed without having to tune a central parameter : (1) power law

distribution of events, and (2) spatial and temporal correlation functions decaying algebrai-
caliy. Self.organized cnticaiity (SOC) is a concept proposed ii to describe the dynamics of a

cross of open non-iinear spatio-temporal systems, which evoive spontaneousiy towards a

cntical state. TO trie best of ouf knowiedge, most numencai simulations and experiments,
which have aimed at identifying SOC in various physical systems, have reported resuits either

on the first i ) or the second type (2) of property but not on both of them simultaneousiy. From

our point of view, property i is more characteristic of trie new class of phenomena descnbed

(*) CNRS URA190.
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by the SOC concept, since it relies on the condition of a very slow driving of the system and the

existence of fast burst-like responses of the system (see [2] for instance for a discussion of the

different classes of SOC). This behavior is at the opposite to the standard slow response of a

critical system at equiiibrium characterized by «critical dowing down» under the fast

sollicitation created by thermal noise. In the following, we will therefore net discuss the class

of phenomena dubbed
«

generic scaie invariance
»

[3] or criticai phase transitions made ;eif-

organized [4J which present a SOC behavior in the sense of property (2). Apart from the

absence of tuning and the property of self-organization, they are similar to standard

equilibrium criticai systems [5].

Is the observation of a power iaw distribution of events ii ) sufficient to qualify a system a~

SOC ? If one regards power laws as a possible definition of SOC, the question makes no sense.

Here however, we view SOC in a more restricted sense, i-e- SOC requires that, as a function of

a tunable contrai parameter. one has a phase transition at some critical point, and that the

dynamics of the system brings this parameter automaticaiiy to its cntical point without externat

fine-tuning. Then, trie purpose of ibis paper is to show that the answer is negative and that a

notable fraction of numencal and experimental works claiming the observation of SOC in fact

rely on a different physicai mechanism. This mechanism, that we term «
sweeping of an

instability », involves the slow sweeping of a contrai parameter p on the approach to and

possibly beyond a global instabiiity at p~. In other words, we ciaim that the existenc~ of a

power law does net necessariiy mean SOC since a power law may aise anse if a tunable

parameter crosses aven from one side of the criticai point to the other side. In the next section

(Sect. 2), we present ouf main idea and ils mathematical formulation using as an e~ample the

Ising and percoiation modeis and then discuss in section 3 its reievance to a vanety of

expenmental systems.

2. The mechanism of
« sweeping of an instability

».

Ouf basic idea can be understood by considenng the Ising model and similarly an annealed

version of the percoiation model (1.e. aliowing sites or bonds to appear and die randomly ai

constant average occupation probability p). These modeis are among the simple~t archetypes
of cntical transitions reached by finely tuning the temperature (Ising) or the concentration

(percoiation) to their critical values. Presentmg criticality for some value of the central

parameter, they are net self-organized. The thermal Ising problem and the geometncal bond

percolation are closely related since they can be put in one-to-one correspondence, u~ing

Conigiio and Klein's recipe [6] connectivity in the Ising mortel is defined in the ~ense of a

physicai
«

drapier », according to which two nearest neighbor spins are connected if they are

bath up and furthermore if the bond between them is active, a bond being active with a

probability p =

i e~~"~~, where J is the exchange couphng constant between spin~.

For a given value of the central parameter p, spontaneous fluctuations occur. These

fluctuations m bath models correspond to the clusters defined by the connectivity condition.

These fluctuations can be visualized as cooperative spatial domains of ail sizes between the

microscopic scaie up to the correiation iength fin which the order parameter takes a non-zero

value over a fimte duration depending on the demain size. Their size distribution is gi~en by

[7]

P ~(S) dS 3'~~ f(S/So(~L )) dS Il

with a =

? + i/à (= 2.05 with à
=

91/5 in 2D percolation [7]). Recall that the size à i~ the

number of spins or sites belonging to a given cluster. ço(p is a typical cluster ~ize given by

so~ )Pc
H

~~'~ 12)
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with Fisher's notation i/«
= y + p, so(p must be distinguished from the mean cluster size

(s) (p ), which scales as (s) iv
~- p~ p ~. y is the susceptibility exponent defined by

the number of spins which are affected by the flip of single spin, which corresponds in the

language of percoiation to the mean cluster size. p is the exponent characterizing the way the

order parameter goes to zero as
)p~ p )~ as p ~ p~.

The scaling function f(s/so) decays rapidly (exponentially or as an exponential of a power

law) for s ~ so 17]. Thus, for our purpose, equation (1) teaches us that the cluster or fluctuation

size distribution is a power law P~ (s) s~ ~ for s ~ so iv ) and P~ (s) is negligibly small for

S ~ SQ (jL ).

New, suppose that one monitors the fluctuation amplitudes (1.e. cluster sizes) as the control

parameter p is swept across its critical value p~, say tram the value p =

0 to some value

p~ + c (with c ~
0) above p~. The total number of ciusters of size s which are measured is then

proportional to

~c+c
N(s)

=

P~(s)du (3)

which can be written as

~c ~c+c
N (s)

t

P ~(s) du + P~(s) du (4)

o ~c

In writting expression (3), we have used the fact that the fuir distribution (1) of fluctuations

exists for each value p of the contrai parameter. The change of variable p ~
so(p ) in the

integrai (3) grues

+ CC
« + i ~

N (S)
=

s~~ S " f dso (5a)
s0(H

+cc

N(s)m~ s~~ s~~"+~~dso (5b)
s

using the fact that f(s/so(p )) is negligible for so(p
~ s. Here, the symboi

« »
is taken as

meaning the leading behavior in decreasing powers of s. Equation (5b) finally yields the power

law

N(s)~s- ia+«), (6j

as its ieading behavior. Note that we have net restricted p to stop at its critical value

p~ but have allowed for a spanning of an arbitrary interval contaming p~. The contribution to

the cumulative fluctuation size distribution N(s) for % close to p~ tram above is in general
similar to that for p dose to p~ from below, and thus contributes to the numericai factor in

front of the power iaw (6). In some cases, depending upon the physical variable which is

measured, the fluctuations for p ~ p
~

may on the contrary be smaii and thus do flot contribute

to the leading power iaw behavior (6).
Expression (6) thus demonstrates our basis claim, i e. that a continuous monitonng of events

or fluctuations up to and above a critical point yields a power law even if a similar

measurement for a fixed value of p would only grue a truncated power law (with a smaller

exponent). Thus, by varying the temperature (Ising) or concentration (percolation), say,
iineariy in lime from a value beiow the critical point to a value above the critical point and by

integrating over ail fluctuations observed dunng this whole time interval, one gets a power law
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m the distribution of fluctuations. Since only right at the critical point, large clu~ters exi~t, one

gels a power law without cut-off for the lime-integrated cluster number even if we do flot stop

ai the cntical point. Note the renormalized exportent a + Il j7 + fl ), stemming from the

relatively smaller weight of large clu~ters which are found only in a narrow interval of the

control parameter.

A simiiar resuit holds for supercritical instabilities such as for instance the Rayleigh-Bénard
mstabiiity, which corresponds to an out-of-equilibrium critical point [8]. In the Rayleigh-
Bénard case, the order parameter is the average convection velocity and the fluctuations are

associated to streaks or patches of non-zero veiocity v occurring below the critical Rayleigh
number ai which global convection staffs off. Note that the divergence of the spatial diffu~ion

coefficient D(f) of the fluctuations which have been found in this problem [9j cari be

understood as a consequence of the existence of a power law similar to (i) describing the

distribution of velocity fluctuations prior to the instabihty. We can write the diffusion

coefficient as the product of an average square velocity time~ a charactenstic lime ,cale :

D(<)
=

a(f)it'~) zif)- 17)

Tif f~ is the typical duration of a fluctuation of spatial extension f (here = is the dynamical
critical exportent). Using (v~) p~ p ~, we thus gel D(p )

cg
(f)(p~ p j ~~ ~°~

Within mean field which applies for the Rayleigh-Bénard supercntical instability, y =

1,

~=
l/2 and = =

2 which gives y+ ii =

?, For an hydrodynamic instability, one mu~t in

addition take into accourt the hydrodynamic drag which results in the correction cg if f ',

yielding D(p)~ jp~ p) ~'~, which recovers previous results [9]. This show~ thon the

enhancement of the spontaneous tluctuations near the instabihty produces a mea~urable

singular diffusion coefficient. The occurrence of a singular diffusion coefficient ha~ been

suggested as the origin of SOC loi
,

here, it is clear that such a singularity only reflect~ the

existence of very large fluctuations. Ii is probably more correct to interpret the singular
behavior of the diffusion coefficient as the consequen(.e and flot the cause of the critical

behavior.

The mechanism of
«

sweeping of an instability
»

for generating power law distributions of

events should be contrasted with the SOC phenomenon, best exemplified by the
«

sandpile
»

ceiiular automaton introduced initiaily by Bak, Tang and Wiesenfield Il ]. The main difference

is that the sandpile automaton is functioning persistently in a marginal stabihty condition due

to the operation of a feedback mechanism (decrea~e of the local slope upon reaching a

threshold and loading of neighbors) that ensures a global ~teady state in which the ~ystem i~

marginally stable against a disturbance. The fundamental origin of the power law distribution

of avalanches is basically non understood since one is unable to ùate a priai-( if a given mortel

or modified version will exhibit power law behavior. The absence of a deep undenanding of

SOC is probably also ai the ongin of the confusion in the interpretation of expenments and

numencal simulations which have often mi~attnbuted the ob~ervation of power law~ to SOC,

as we discuss below m specific examples.

3. Physical illustrations of the mechanism of sweeping of an instability.

3,1 FLUCTUATIONS BEFORE THE ONSET OF SPINODAL DECOMPOSITION WllHlN MEAN FIELD

THEORY. We would like first to point oui that the above scenano is present in the standard

thermal equilibrium problem of spinodal decomposition Il Ii Spinodai decomposition is

indeed a critical instability within mean field theory occurnng on the ~o-called spinodal fine

(defined by é~F/éA~
=

0, where F is the free energy and A the order parameterj inside the

domain of coexistence m a liquid-gas or binary mixture demi~ing first-order transition. Out~ide
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the spinodai demain, spontaneous density or concentration fluctuations occur which are

distributed in size according to the law (i) with the exponent a
=

2.5 within meanfieid

percolation and spinodais [12]. Linked with this distribution, the fluctuations in space present a

fractai and even multifractal structure [13]. Note that a similar multifractai structure appears in

standard second-order phase transition and has been used to rationaiize the distribution of

particies numbers in high-energy nuclear collisions [14] interpreted using phase transition

concepts. The physical interpretation of the distribution (i) is particularly clear in the spinodal

case, due to the mapping between spinodal decomposition enta a percolation problem, or,

more precisely a cluster growth problem [131. In this case, the distribution of fluctuation sizes

(1) takes a genuine geometrical sense. This is a general fact that the fluctuations and droplets
appearing as precursors of a spinodal decomposition are distributed in size according to a

power law. A similar results halas for a first-order phase transition but then the power law

holds up to a maximum size which is an mcreasmg function of the range of the interaction [11-

i3l. Then, measuring the total number of clusters when spanning the central parameter (for

instance the temperature) up to the spinodai instabiiity will yieid the power iaw distribution (6).

3.2 OFF-THRESHOLD MULTIFRACTALITY. Roux and Hansen [15] have shown that, if a

physicai quantity Q exhibits a multifractal behavior at the percolation threshold and more

generally at a critical point p~, the histogram of the quantity Q recorded during an evolution of

the central parameter p (fraction of bonds in the percolation problem, temperature, .), away
from p~ up to p~, will show a power law behavior, This result is very similar to our previous

reasomng going from equation (i to equation (6), and in fact constitutes a generalization of it.

These authors have iiiustrated their result for the current distribution in diiuted iattices but have

faiied to discuss its broader application to other phenomena discussed here.

3,3 AN EXACTLY SOLUBLE MODEL OF RUPTURE. Let us consider the
«

democratic fiber

bundle model
»

(DFBM) [16-23] of rupture phenomena, which has been introduced initially to

describe long flexible cabres or low-twist yarns. It is one of the few exactiy soluble mortels of

rupture which wiii ailow us to test our ideas in this context. Indeed, rupture phenomena seem

interesting candidates for appiying the idea of
«

sweeping of an instability ». Indeed, one often

measures bursts of acoustic emission or jumps of elastic constants associated to sudden intemai

damage or cracking as the stress is increased up to total rupture. The point of global breakdown

is similar to an instability ; in fact the analogy with nucleation is particularly clear with the

Griffith critenon for the unstable growth of a single crack. The analogy has been studied

recently [24].

The DFBM is made of N independent parallel vertical fibers with identical spring constant

k~ and identicaily distnbuted independent random faiiure threshoids X,~, n= i,..,N,

distributed according to some cumulative probabihty distribution P
(X~~ ~

x)
=

P (x). A total

force F is applied to the system and is shared democratically among the N fibers. As F

increases, more and more fibers break clown untii the final complete rupture. F is thus the

analog of the control parameter p and the force threshold F~ corresponding to complete
coliapse is the analog of p~.

An exact derivation of the distribution of rupture sizes (1.e. number of fibers A which break

simultaneously in a single
«

avalanche
»

process) has been given in references [23, 251. Here,

A is the analog of s. In particular, reference [25] has shown the coexistence of i a differential

distribution of burst of size A given by equation (i) with a =

3/2, with a cut-off exponent

« =

i, and 2) a total number of bursts of size A up to the rua away scaling according to

equation (6) with an exportent a + «=
5/2, in agreement with the above denvation. The

exportent 5/2 reflects the occurrence of larger and iarger events when approaching the total

breakdown instability. Note agam that this global power law distribution is net associated with



214 JOURNAL DE PHYSIQUE I N° 2

criticaiity but to fluctuations accompanying the onset of global rupture. This onset of global

rupture is in fact a first-order transition since a finite fraction of fibers break simultaneously ai

threshoid F~. The existence of
«

criticai
»

fluctuations of arbitrary sizes up to the threshoid

resuits from the infinite range of the interaction between the fibers, due to the democratic

reloading on ail surviving fibers.

3.4 THE BURRIDGE-KNOPOFF MODEL OF EARTHQUAKES. Sean after the introduction of the

SOC concept, it has been suggested [26-31~l that earthquake dynamics and notably their power

iaw distribution in sizes constitute a vivid example of SOC. We are stiii of this opinion for

genuine earthquakes. However, we would iike here to underline that some of the mathematical

mortels that have been introduced exhibit power laws in earthquake size distribution, trot

because the mortels are SOC but because they somehow produce the mechanism of
«

sweeping
of an instability

».
Furthermore, foreshocks (1.e. small earthquakes which are precursors of

large earthquakes) are aiso an exampie of this phenomenon.
This idea is most simpiy iliustrated using the correspondence between a mean field version

of the Burridge-Knopoff block-spnng stick-slip modei of earthquake fauits and a cycled
generahzation of the democratic fiber bundle mortel (see previous Sect. 3.3) [25]. The exactly
soluble democratic fiber bundle model suggests that the Gutenberg-Richter power law of

earthquake size distribution is trot associated, in the Burridge-Knopoff modei, to stationary
criticaiity but to fluctuations accompanying the nucleation of a large eanhquake rua away. Thi~

view point is aiso defended in reference [3 il where an anaiogy between failure dynamics in a

class of Burridge-Knopoff models and a mean fiera spinodal hue has been proposed.
This idea is further confirmed by a recent work [32] on a ID dynamical version of the

Burridge-Knopoff modei for earthquakes with a velocity weakening friction law, in fact

exactiy the version studied in reference [28J constituting a rediscovery of the initial Burridge-
Knopoff mortel [33]. Depending on the system size, two types of solution have been fourra

which are in generai present simultaneousiy chaotic motion and soiitary wave propagation.
The sohtary wave propagation, which cari be seen as the exi~tence of propagative localized

macro-dislocations, is always present. For cenain values of the system size, there is a kind of

resonance such that the chaotic motion disappears and only the completely coherent solitary

propagation is observed. This corresponds to a macroscopic rua away which covers the system
endlessly as a domino litre falling over and over along the system in order to accommodate the

slow imposed tectonic plate velocity. For other system sizes which are out of resonance, the

velocity of the solitary macro-dislocation is not matched to the size of the system and the slow

imposed tectonic velocity, involving a kind of frustration. A macro-dislocation therefore

possesses a finite lifetime. Its appearance is in general preceeded by the chaotic phase,
charactenzed by a power iaw distribution of small slidings up to a maximum size. It is thus

tempting to view this chaotic phase producing the power law distribution as the phase
preceeding the nucieation of the macro-dislocation- Due to frustration, the macro-dislocation is

not stable and eventuaiiy decays away. One thus observes recurrent random nucieation of

macro-dislocations in between chaotic phases. This is in close anaiogy to the behavior

descnbed above as weli as the behavior observed in real sandpile avalanches (see below

Sect. 3.8).

3.5 FoREsHocKs AND AcousTic EmissioNs. Foreshocks are precursors of large earthquakes
which have often been observed to cluster in time and increase in size on the approach of the

onset of the large rupture (see Ref. [34] and references therein). In other words, seismicity

prior to a great earthquake often shows a marked increase of activity in a way similar to the

increase of fluctuations pnor to the onset of a criticai instability. A typical observation, well

descnbed by Omori's hyperbolic law [35], i~ that the rate of energy release dE/dt by small
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earthquakes is found to increase on average as a powerlaw (t~ t )~ " as the time t approaches

t~ with an exponent cx close to one. In addition to this average behavior, the existence of langer
fluctuations in the rate of energy release dE/dt from systems to systems and its sensitivity to the

initial inhomogeneity configuration has been demonstrated in mortel earthquakes [34b]. It is

also characteristic of field observations. Furthermore, the distribution of the foreshock sizes is

also governed by the Gutenberg-Richter power law.

Very similar observations are ubiquitous in the acoustic emission literature [36], Acoustic

emission is now a standard technique to monitor and measure the progressive deformation,

damage and cracking within materials submitted to increasing stresses. An acoustic wave burst

is generated each time an acceleration appears within the material as a result of the creation or

motion of a dislocation, the growth of a crack, etc. Standard measurements quantify the total

energy of each acoustic burst, their duration, etc. Omori's iaw for the increase of activity prior

to global rupture and the Gutenberg-Richter size distribution law are also very often observed.

This even provides practical tools to predict the incipient global rupture [37].
Our purpose here is to argue that this power law distribution is not due in general to some

SOC phenomenon but again results from the characteristic nature of the fluctuations on the

approach towards a global instability with long-range elastic interactions, here the onset of

global rupture, This is contrast to a recent claim [381 that SOC is the origin of the power law

properties of acoustic emission. We also argue that dislocation glides and abrupt deformation

associated with twinning processes [39] in metals are also the result of the approach of a global
mstabiiity.

The existence of the Omori's iaw and of the Gutenberg-Richter power law for foreshocks

cari be rationaiized using the tools presented in references [40]. Essentiaiiy, the idea is to

assume an arbitrary distribution of initiai flaws reflecting a microscopic disorder always

present in an experiment or in nature. Then, in the presence of a growth law expressing the

subcritical crack growth velocity as a power of the crack length [40], the Omon's law and the

Gutenberg-Richter power law are easily derived. The exact solution of the DFBM of rupture

discussed above aiso provides an alternative way to view these phenomena.
Conceming the claim of reference [38], we would like to stress that it is subtantiated solely

on the basis of the observation of a power iaw distribution. However, we note that the acoustic

emissions occur dunng the a-fi phase transformation during the hydrogen doping of Nb

sampies upon a constant cooling rate. This hydrogen doping and the associated acoustic

emissions cannot be sustained for ever since the sollicitation stops when the temperature is too

iow. This probiem can not be a SOC phenomenon, since it cannot operate persistentiy. It is

much berner described by the sweeping of a controi parameter, here the amount of hydrogen
content within the menai, which makes the system span ils phase diagram from the singie cx

phase to the mixed p phase, in a way very similar to the spanning of a coexistence diagram in a

first order phase transition. We note that the authors themselves stress that the hybride
precipitation is a first order transformation. We thus interpret the power law distribution as

stemming from the fluctuations associated to the contrai parameter spanning the phase
diagram.

3.6 CHARGE DENSITY WAVES, PINNED FLUX LATTICES, ELASTIC STRING IN RANDOM POTEN-

TiALs. Models of charge-density waves (CDW'S) usually consist in an elastic array of

particies submitted to a driving field E and interacting with impurities at random positions [4 ii.

For fields E below a threshold E~, the CDW is pinned whereas for E
~

E~ the systems has a

nonzero average veiocity. Recently, Middieton and Fisher [42] have found in 2D simulations

that the polanzation diverges as P (E) (E~ E )~ Y + ~, with 7 =

58 ± 0.12, as E
~

E~ (from

beiow). From the size dependence of threshoid fieids and poianzations, they also find that the
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largest correlation length f diverges as f (E~ E) ", with
~ =

l.05 ± 0.04. In a related

work using a similar model inspired from the physics of pinned flux lattices, Pla and Nori [43

have found that the distribution D (d of sliding bursts of size d, measured in narrow interval~

of driving fields E at a finite distance below threshold E~, scaies as D (d) d~ ~, with fl
=

1.3.

They infer that this reflects a SOC state. Very interesting experimental resuits have aiso been

reported on the electric behavior of the quasi-one-dimensional CDW compound Ko iMoO~ at

liquid-heiium temperatures [44]. In this system, there exists a threshoid voltage at which an

abrupt increase in the conductivity takes place. The authors [44] report that the onset of thi~

transition in conductivity is marked by a hysteresis, pointing to a first-order type instability.
Note that this is of no consequence for ouf proposed scenario in which the fluctuations can

appear in both cases to produce a power law distribution of burst sizes as long as the interaction

is long range. Indeed, they report, in the low-conducting branch of this hysteresis Ii.e. prior to

the global threshoid), an intermittentiy spiking current in the time domain characterized in

particular by a power law scaling of the finng and of the waiting times. The authors conclude

that these features are characteristic of a SOC phenomenon.
It is now becoming ciear from the above discussion that the onset of global diding of a

CDW or of a pinned flux lattice is similar to a spinodal point or a critical point. Again, any of

these systems cannot function persistentiy in a SOC. It is only due to the spanning of the

electric fieid up to the criticai value E~ that the distribution of bursts is found a power law, in

agreement with the mechanism proposed in this paper. In reference [45], we have given a

mean field theory based on an extension of the DFBM made critical which allows to rationahze

the numericai results quoted above. Simiiar behavior is observed for an elastic string in a

random potential [46].

3.7 IMPACT IONIZATION BRAKDOWN IN SEMICONDUCTORS AND BARKHAUSEN EFFECT, Very
exciting expenmental results have been reported a few years ago [47] on the low-temperature

impact ionization breakdown of p-Ge. The authors claimed that this was the first experimental
venfication of the SOC idea. Let us briefly recall the nature of the probiem and the main

resuits. The system consists in a slightly doped semiconductor cooled down to a low

temperature such that it constitutes an almost ideal insulator, because most of the e~trinsic

carriers are frozen ouf at the impurity atoms. If an applied electnc fieid exceeds a cntical value,

the few remaining carriers can gain enough energy to release the bound carriers by impact
ionization. This autocataiytic process ends up in an avalanche breakdown of the resisti~ity of

the sampie. There are three main regimes exhibited by the systems a) at low and intermediate

bias voltage, short current puises occur with a statisticai temporal and size distribution b) for

a larger bias voltage such that the system functions in the non-hnear S-pan of the macroscopic

I-V characteristics of the sampie, ordered current spikes occur in a quasi-regular pattem
charactenstic of oscillations of relaxation c) at higher values of the bias voltage, the ordered

oscillation mode becomes quahtatively different both in amplitude and frequency. The

statisticai anaiysis of reference [47] concems the first regime. In the spint of our previous
discussions, it is tempting to view the voltage limiting the non-linear S-region of the /-i~

charactenstics as an mstabiiity threshold for the onset of current spikes oscillations of

relaxation. The ordered large current spikes observed in regime b) corre~pond to the

bifurcation to an ordered phase with a non-zero order parameter. We interpret regime ai as the

fluctuation regime pnor to the global instabiiity. Then, it is non surprising that the distribution

of time intervals between current spikes, closely related to that of the current spike amplitude
distribution (see Ref. [26] for a discussion of the relation between amplitude distribution and

time interval distribution in the case of eanhquakes), is given by a power iaw. The exponent is

found equal to 1. 33, close to the simulations of Pla and Non [43] and to our predictions [45]
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based on a mean field mortel. This system is similar to those discussed in the previous
section 3.6, notably in the feature that the system is non functioning persistently in a fixed

dynamical state, since a macroscopic control parameter is spanned slowly. We thus conclude

that the claim that the expenmental results are the signature of SOC is non substantiated.

We propose similar considerations to another experimental report [48] on the Barkhausen

effect, consisting in the measurements of irreversible domain-wall jumps in a ferromagnetic
metaiiic glass by a pickup coil sensitive to variations of magnetic fields. Here again, there

exists three main regimes : a) for small applied field, one observes small reversible domain-

wall changes and the system remains magnetically elastic ; b) as the applied field increases

and approaches the magnitude of the coercive force, the magnetization increases very rapidly

and the response is characterized by large and irreversible domain-watt jumps along with

rotations within domams ; c) at saturation, the entire specimen is magnetized in the direction

of the applied field and no more rearrangements occur. We note that a typical experiment is

carried on by applying a constant slow magnetic field rate (1 Oe/s) and that the coercive force

of the ferromagnetic samples is smaii (w 0.1 Oe), Since about 3 000 puises separated in time

from 50 ~Ls to 000 ~Ls were detected in a measurement, the total duration of such a recording

is about 0.3 s or more, taking as an order of magnitude an average lime interval between

consecutive pulses of 100 ~Ls. This means that the experiments reported in reference [481

correspond to a sweeping of the control parameter, the applied magnetic field, up to complete
magnetization, since the field spanned during the time of an experiment is of the order of or

larger than the coercive force and hysteresis loops are rectangular [48]. Viewing the state of

saturated magnetization as the ordered state resulting from a nucleation process (here the

nucleation of the favored magnetization at the expanse of other directions), the Barkhausen

noise can thus be interpreted as resulting from the fluctuations announcing the cooperative

ordering of the domains. We believe that the observed power law results from the combination

of the long range magnetic interaction and the nucleation process. We note again that the SOC

interpretation given in [48] cannot hold since the system cannot operate persistentiy in the

same macroscopic state but rather evolves progressively to its completely ordered state. This

remark is common to all systems previously discussed.

3.8 REAL SANDPILES. Since the introduction of the SOC concept [il based on celluiar

automata model sandpiles, it is only natural that experiments has been carried on real sandpiles

in order to test the application of these ideas. The resuits of the first experiments [49] devised to

observe a power law distribution of avalanches have been discouraging : the avalanches occur

in a quasi-regular fashion with a well-defined mean size, lifetime and average period. These

averages are decorated by fluctuations which however are not larger than about 10 fé of the

means. The physics of avalanches seems thus weii-described as oscillations of relaxation. The

slope is steadily and slowly increased by addition of grains or by a slow tilting or rotation of the

sandpile. When the maximum angle of repose R~ is reached, an avalanche occurs which

corresponds to a flow of grains not only at the surface but also within the bulk of the sandpile.
The avalanche stops and defines a new angle which is smaller that H~ by about 2 degrees. This

induces an hysteresis and the sandpile is stable until addition of grains allows the slope to reach

again ils instability threshold R~. We thus again have the existence of an instability, with the

control parameter being the slope R, leading to oscillations of relaxation. These oscillations of

relaxation are due to the fact that the instabihty triggers an avalanche which then takes away

some of the grains and thus relaxes the control parameter below ils threshold value

R~. Addition of new sand grains brings back R to its threshold R~. The observation [49] of

fluctuations decorating this average behavior is similar to their ubiquitous observation close to

instabihties.
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According to our scenario, these fluctuations should be charactenzed by a power law

distribution if the interaction between grains is sufficientiy long range. This should be the case

since the interaction between two distant grains is mediated by the transport of one grain close

to the other in successive avalanches. However, the power law distribution of avalanche sizes

~eemed absent in the previous works [49]. The first experiment [50] which found these power

law fluctuations has foiiowed a slightiy indirect course. The main difference of the work of

reference [50] with respect to others was the study of smull sandpiles such that the angle
(180/w) R/L with which one sees a grain of size R at a distance equal to the sandpile size L is

less or equal to about 2 degrees. In these smaii sandpiles, the quasi-regular oscillations of

relaxation were completely absent and replaced by a power law distribution of small

avalanches, which are completely confined to the surface or first grain layer. The observation

of a power law behavior for small systems but ils disappearance for large systems is at odds

with the standard finite size effects expected in cntical systems and cast a strong doubt on the

SOC interpretation of the results of reference [50]. Dur interpretation is rather that the observed

power law distribution of small avalanches is the signature of the fluctuations which are the

precursors of the instability at R~. For small systems, the global instability is essentially
suppressed due precisely to finite size effects. Furthermore, the grain-grain dilatancj' effect

and inertia effects are much less efficient the smaller the sy~tem is and essentially disappear for

a system size L such that (180/w) R/L
~

2 degrees. This then allows the observation of the

fluctuations, which are always present but which were concealed by the large oscillations of

relaxation in the langer sandpiles. Our interpretation is confirmed by a recent analysis [5 Ii of

avalanches in the same type of sandpiles but with large ones. Use of digital image analysis of

the avalanches occurrmg at the surface of large sandpiles show clearly the coexistence of 1) the

large oscillations of rela~ation avalanches which are quasi-regularly spaced in lime in

agreement with [49] and 2) a power law distribution of sizes for smaller avalanche~ occurring
between the large sliding events. These small avalanches were not visible in the previous

expenments [49] because they do not reach the bottom rim and thus remain within the

sandpile. They also produce very little acoustic emission and are thus difficults to detect by
other means than direct visualization. It is also interesting to note that the number of ~mall

avalanches increases m number as (H~ R)~ ~, in remarkable similanty to Omon s law of

foreshocks preceeding a large earthquake (see Sect. 3.5 above). In fact, the mechanism i~

analogous, the large avalanches playing the rote of the large earthquakes, and Omori's law

results from the amplification of a small initial disorder in grain packing on the approach of the

instability.
The above picture can be completed in analogy with first order transition line~ and their

terminal critical point by mentionmng the suggestion [52] based on the physical description of

sand in terms of plasticity theory and the Granta-Gravel model that a sandpile should become

truly cntical at ail scales for a special value of the packing density. We also would like to point

ouf the relation with the dynamical system theory [53] of post-bifurcation locahzation in non-

cohesive brittle media (1.e. sand). It provides a framework for understanding the development
of complex deformation patterns from the mechanics of localization and rupture and for

connecting the simple localizing behavior at small limes jthe small deformation regime) to the

complex faulting at large limes (corresponding to the large deformation regime), Fluctuation~

are also often observed [54] in this quasi-~tatic deformation expenments which should be

descnbed in a similar vain.

4. Conclusions.

We have shown that a notable fraction of numencal and expenmental works claiming the

observation of self-organized cnticahty (SOC) rely in fact on a different physical mechanism,
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which involves the slow sweepmg of a control parameter towards a global instabihty. The

experimental examples which have been discussed are foreshocks and acoustic emissions,

impact ionization breakdown in semiconductors, the Barkhausen effect, charge density waves,

pinned flux lattices, elastic string in random potentials and real sandpiles. We have also

proposed analogies between the mechamsm of a sweeping of an instability and the fluctuations

accompanying the onset of spinodal decomposition, off-threshold multifractality, rupture

(through an exactly soluble model) and earthquakes (through the Burridge-Knopoff model).

We have noted that the existence of a slow sweeping of the control parameter, which does

non apparently involve a parameter tuning, has been the cause for the confusion with the

characteristic SOC situation presenting truly no parameter tumng and functioning persistently

m a marginal stability condition. In the physical situations that have been examined, the

systems cannot operate persistently since the control parameter is swept and does not remain

constant as m the model sandpile for which the average slope is attracted to its marginal
stability limit. For critical instabilities (CI), the observation of power law distributions of

events is due to the cumulative measurements of fluctuations diverging at the instability. For

non critical instabilities such as first-order transitions (FOT), the power law distribution exists

on a limiting size range up to a maximum value which is an increasing function of the range of

interaction. Their observations reflect the long range nature of the interaction m the vanous

systems which have been studied : foreshocks and acoustic emissions (FOT with long range

elastic force), impact ionization breakdown m semiconductors (FOT with long range electric

interaction), the Barkhausen effect (FOT with long range magnetic interactions), charge

density waves (CI), pmned flux lattices (CI), elastic string in random potentials (CI) and real

sandpiles (FOT with long range grain-grain interaction by diffusion and convection).

In contrast to standard critical hydrodynamic instabilities [8, 55] where the effect of

diverging fluctuations has been predicted some lime ago [56] but detected only recently due to

its smallness [57], the fluctuations, precursors of the instabilities discussed in this paper, are

characterized by their large amplitude and relatively easy observation. It is at this quantitative
level that the analogy proposed here breaks down. We attnbute this quantitative difference

mainly to the threshold nature of their dynamics which amplifies fluctuations and also maybe

to the general long range nature of the interactions. Indeed, in each system, specific physical
mechanisms operate to enhance the rote of fluctuations. Let us cite one example, the case of

Sand. It is clear in this case that fluctuations are important due to the conjunction of rotation and

dilatancy effects which create a kind of frustration, similarly to what occurs m spin glasses, in

presence of frustration and disorder, fluctuations are known in general to be important, both

from sample to sample and also in the evolution of a given sample.
What is finally the difference between the class of systems discussed here and those obeying

SOC ? In the present language, a self-organized cntical system is one which functions

persistently at or near a global mstabihty. The only difference therefore is the existence of

some mechamsm which attracts the dynamics to the instability. We recover here the ideas

proposed more specifically to make self-orgamzed the standard critical phase transitions [4].
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