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Abstract, The BEDT-TTF~[M(CN)~] (M
=

Ni, Pt) and BEDT-TTF4[M(C20~)~]
(M

=
Pt, Cu ) salts are metallic at room temperature but exhibit metal-to-semiconductor transitions

at lower temperatures. Their electronic structures have been studied by performing tight-binding
band structure calculations on their cationic sublattices. All of these salts possess electron and hole

Fermi surfaces, in agreement with their metallic character at room temperature. Although the

calculated Fermi surfaces for the two series of salts are not very different, the analysis of their

crystal structures suggests that the BEDT-TTF4[M(C204)41 (M
=

Pt, Cu) salts should have a

more anisotropic character than the BEDT-TTF41M(CN)41 (M
=

Ni, Pt) ones. The analogy

between the crystal and electronic structures of the BEDT-TTF4[M (C204 ~2l (M
=

Pt, Cu and the

BEDT-TTF~ReO~ salts, and the fact that the shape of the Ferrni surface of BEDT-TTF4[Pt(CN )41

does not change appreciably when the temperature is lowered, suggest that the metal-to-

semiconductor transition is due to a Peierls type mechanism for BEDT-TTF4[M(C204~l

(M
=

Pt, Cu) but not for BEDT-TTF~[M(CN)~] (M
=

Ni, Pt). The occurrence of a Peierls

transition in the BEDT-TTF~ [M (C~O~)~ (M
=

Pt, Cu salts is explained in terms of hidden Fermi

surface nesting.

Charge transfer salts of the organic donor molecule bis(ethylenedithio)-tetrathiafulvalene
(BEDT-TTF, (I)) typically contain slabs of donor molecules separated by layers of anions [I].

The large variety of packing motifs of the BEDT-TTF molecules within the slabs leads to a

remarkable diversity in their transport properties and hence these materials have been the focus

of intense investigation [1-3]. Since donor anion interactions largely dictate the BEDT-TTF

packing motifs, anions of very different shape and size [1, 3-6] have been employed. Although

a majority of these salts have been prepared using monovalent anions, several groups have

prepared charge transfer salts of BEDT-TTF and square planar organometallic dianions [7-14].

(*) Present address : Ames Laboratory, Iowa State University, Ames, Iowa 50011-3020, U.S.A.
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Gfirtner et al. [7] obtained three different BEDT-TTF~ lPt(CN)~] salts. One of them (p-phase)
is metallic at room temperature and near 200 K becomes semiconducting. The other salts (y-

and &phases) are semiconducting. Shibaeva et al. [8, 9] reported a BEDT-TTF~IPt(CN)~] salt

which, although it has a slightly different unit cell, is very similar in structure and physical
properties to the p-phase. Later, Fettouhi et al. [10] reported a structural refinement of

BEDT-TTF~IPt(CN)~] at 293 K and 135 K, I.e., before and after the metal-to-semiconductor

transition. They also suggested that the compounds reported by Ghrtner et al. [7] and Shibaeva

et al. [8, 9] were in fact the same. The BEDT-TTF~ [Ni (CN)~ salt has also been reported [15]

and is very similar in both structural and physical properties to BEDT-TTF~[Pt(CN)~].
The physical properties of the BEDT-TTF~ [M (CN )~ (M

=

Ni, Pt salts contrast with those

of the BEDT-TTF~~IVI(C~O~)~] (M=Pt,Cu) ones. Gdrtner etal. [16] reported a

BEDT-TTF~[Pt(C~O~)~] salt which is metallic down to about 60K where it becomes

semiconducting and near 200 K it undergoes a metal-to-metal transition. Recently, Wang et al.

[17] prepared a 4 :1 salt with [Cu(C~O~)~]~~ which is metallic at room temperature and

undergoes a metal-to-semiconductor transition at 65 K after two metal-to-metal transitions at

260K and 160K. The crystal structure of this salt is quite similar to that of

BEDT-TTF~IPt(C~O~)~] except for the fact that one of the two independent BEDT-TTF

molecules in BEDT-TTF~[Cu(C~O~)~] was shown to be disordered [18]. The metal-to-

semiconductor transition of the BEDT-TTF~ lM (C~O~ )~] (M
=

Pt, Cu ) salts are very sharp in

contrast to those of the BEDT-TTF~[M (CN )~] (M
=

Ni, Pt salts which are quite broad. This

suggests a different mechanism for the metal-to-semiconductor transitions in the two series of

salts. We have carried out tight binding band structure calculations [19] for all the above

mentioned metallic BEDT-TTF~[M(CN)~] (M=Ni,Pt) and BEDT-TTF~IM(C~O~)~]

(M
=

Pt, Cu ) salts. Our study suggests that the metal-to-semiconductor transitions in the two

series of salts are indeed of different origin and are related to a slight but significant variation in

the packing of the BEDT-TTF molecules. Since a detailed study of the difference between the

electronic structure of the high and low temperature structures of BEDT-TTF~[Pt(CN)~] has

been independently carried out by Rovira and Whangbo [20a], we will not report here this part
of our study. After submission of our work, an experimental study of the physical properties of

BEDT-TTF~[Pt(C~O~)~] has appeared [20b].

Crystal and electronic structure of BEDT-TTF~[M(CN)4] (M
=

Ni, Pt) salts.

The BEDT-TTF41M(CN)41 (M
=

Ni, Pt) salts exhibit crystal structures where layers of the

BEDT-TTF donor molecules alternate with layers of the M(CN)( (M
=

Ni, Pt anions. The

different anions do not significantly alter the packing of the BEDT-TTF donor layers in these

crystal structures [7-10]. A perspective view of a donor molecule layer (in the crystallographic

ac plane) of BEDT-TTF~[Ni(CN)~] [Isa) is shown in figure I. Each donor molecule of

figure I is viewed approximately along the direction of its central C
=

C bond. The repeat unit

of this slab contains four donor molecules, pairwise related by centers of inversion, resulting in

two symmetry inequivalent molecules. The two different type8 of BEDT-TTF molecules are

distinguished in figure I with sulfur atoms represented by filled and empty balls, respectively.
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Fig. I. Perspective view of a BEDT-TTF layer of BEDT-TTF4 lNi(CN )41 Ii 5a]. The hydrogen atoms

are not shown for simplicity. Each molecule is viewed approximately along its central C
=

C bond. The

two different types of BEDT-TTF molecules are shown with empty and full sulfur atoms.

Structurally, the slab of figure I can be described as a series of inclined columnar type stacks

running along a direction between c and (a + c) (the direction
a

in the Fig. ) or as a series of

step-chains running along the a-crystallographic axis. This stacking arrangement gives rise to

eight different types of contacts between donor molecules, designated as A-H in figure I. Short

intermolecular S S contacts smaller than 3.85 A (see Tab. I) are observed for both the step

Table I. S. S distances smaller than 3.85 A and absolute values of the p~o~o_~o~o
interaction energies (eV) for the different BEDT-TTF.. BEDT-TTF interactions in BEDT-

TTF~[Ni(CN)41 llsa] (see Fig. I for labelling).

Interaction type S... S distances (A) p~~~~_~~~~ (eV)

A 3.599, 3.692, 3.751, 3.825 o.282

B 3.663, 3.676, 3.721, 3.841 o.215

C 3.446 (x 2), 3.727 (x 2) o.156

D 3.348, 3.376, 3.417, 3.517, 3.830 0.142

E 3.464, 3.604 (x 2) 0.137

F 3.812 (x 2) 0.102

G (4.144) (a) (x 2) 0.066

H 3.812, 3.836 0.060

(a) Shortest S.. S contact of this interaction type.
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chains (...ABAB...) and the columnar stacks (...FHGHF...), as well as for the w-type chains

(...CDEDC.. ) running along the p direction in the figure. The two symmetry inequivalent

BEDT-TTF molecules have very similar geometries and exhibit central C
=

C bondlengths of

1.371 and 1.373A, respectively, typical [21] of BEDT-TTF+1/2 The main difference

between these two types of donor molecules is that one of them (those with empty sulfur atoms

in Fig. I) are tilted along their longitudinal molecular axis with respect to those of the other

type. This tilting is the result of H N hydrogen bonding interactions between one of the two

types of BEDT-TTF and the M(CN)(~ anions.

Because of their nearly identical intramolecular geometries, the energies of the highest
occupied molecular orbital (HOMO) of the two different BEDT-TTF molecules are very

similar. Thus, the HOMO bands of the slab of donor molecules will result from a strong
mixing of the HOMO of both types of molecules. It is possible to estimate the contribution of

each of the respective chains to the electronic structure of the donor slab from the

corresponding p~o~o_~~~o interaction energies [22] listed in table I. Although the shortest

sulfur... sulfur contacts are those observed along the ..CDEDC., chain, the w-type
interactions required by this geometric construction result in reduced interaction energies.

These interactions are however greater than those of the inclined columnar stacks

(.. FHGHF...). The strongest interactions are observed for the step-chains along the a-

crystallographic axis (.. ABAB.. ). Thus, the BEDT-TTF slabs in BEDT-TTF~[M(CN)~]
(M

=

Ni, Ptl'are best described as a series of step-chains along the a-direction interacting
through weaker ar- and «-type contacts in the other directions of the slab.

The calculated band structure and Fermi surface for the BEDT-TTF slabs of

BEDT-TTF~ lNi(CN)~] are shown in figures 2a and 2b, respectively. Since the unit cell of the

slab contains four BEDT-TTF molecules, there are four HOMO bands. With the formal

oxidation required by the stoichiometric formula, (BEDT-TTF )( +, there are six electrons per

unit cell to fill the bands of figure 2a so that the Fermi level (shown by a dashed line in the Fig. )

cuts the two upper bands. Thus, the Fermi surface of figure 2b contains electron pockets

~ F/ F/ ~

-6

~ ffi ffi ~
~

j~ s x
~

~
t~
~ ~
~ r

~

-8

~ ~
~ £~ £~ ~

r x i r S r ~ /~ /~ ~

(a) (b)

Fig. 2.-(a) Dispersion relations for the HOMO bands of the BEDT-TTF slabs in

BEDT-TTF4fl4i(CN)~], where the dashed line refers to the Fermi level. r, X, Z, M and S refer to

(o, 0), (a*/2, 0), (0, c*/2), (a*/2, c*/2) and a*/2, c*/2), respectively. (b) Ferrni surface associated

with the partially filled bands of part a.
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centered at M and hole pockets centered at Z. This Fermi surface can be described as a series of

«
overlapping ellipses

»
with their short axis slightly off the a-direction. Consequently,

BEDT-TTF~ lNi(CN)~] should be a two-dimensional (2D) metal with slightly better conducti-

vity along this direction. This is consistent with our analysis of the strength of the different

donor-donor interactions on the basis their p interactions energies.
Our calculated band structures and Fermi surfaces for the BEDT-TTF layers of

BEDT-TTF~ lPt(CN)~] using the crystal structures of Gbrtner et al. [7], Shibaeva et al. [8, 9]

as well as the 293 K structure of Fettouhi et al. [10] are practically identical. Since band

structures are very sensitive to small differences in orientation of the donor molecules because

of the strong directionality of the w-type HOMOS, our results give strong support to the

suggestion of Fettouhi et al. [10] that the three reported BEDT-TTF~[Pt(CN)~] phases are in

fact the same. For our subsequent discussion it is very important to recognize that the Fermi

surface of figure 2b is very similar to that calculated with the same method for the room

temperature structure of the BEDT-TTF2Re04 salt [23].

Crystal and electronic structure of BEDT-TTF~[M(C~04)~ (M
=

Pt, Cu) salts.

The donor layers of BEDT-TTF4[M(C~04)~] (M
=

Pt, Cu [16-18] altemate with layers of

isolated M (C~04 )( anions. A perspective view of the donor layers in

BEDT-TTF~IPt(C~04)21 l16], where each BEDT-TTF molecule is viewed approximately
along the central C

=

C bond, is shown in figure 3. This slab can be described as a series of

columnar stacks along the a-direction. Every stack is built from two different BEDT-TTF

molecules. Because of the presence of inversion centers in between the stacks, the repeat unit

of the slab contains two columnar stacks and thus four BEDT-TTF molecules. There are eight
different types of donor donor interaction types in the layers of figure 3. The different S S

contacts smaller than 3.8 A and the corresponding p~o~o_~o~o interaction energies [22] for

each of these intermolecular contacts are reported in table II. It is clear that the interactions

along the stacks are by far the strongest, and that some of the inter-stack interactions (for
instance C, E and G) are extremely weak. It is to be noted that interaction B which is

~
~

~
~

~
~,c,j,~,~

~
~i~iii~

a~~
Fig. 3. Perspective view of a BEDT-TTF layer of BEDT-TTF~~Pt(C~O~~] [16]. Each molecule is

viewed approximately along its central C
=

C bond.
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Table II. S. S distances smaller than 3.8 A and absolute values of the p~o~o_~o~o
interaction energies (eV) for the different BEDT-TTF.. BEDT-TTF interactions in BEDT-

TTF4lPt(C204)21 l16] (see Fig. 3 for labelling).

Interaction type S... S distances (A) p~~~~_~~~~ (eV)

A 3.662, 3.711 (x 2), 3.792 O.639

B (3.905) (a)
~

o.352

C 3.sll (x 2), 3.573 (x 2), 3.770 (x 2) O.026

D 3.619, 3.671, 3.673, 3.701, 3.766 0.172

E 3.423 (x 2), 3.624 (x 2) 0.056

F 3.651 (x 2), 3.807 (x 2) 0.177

G 3.373, 3.382, 3.584, 3.750 0.005

H 3.668 (x 2), 3.716 (x 2) 0,lsl

(a) Shortest S S contact of this interaction type.

associated with quite long S... S contacts leads to a strong interaction energy. This is

reminiscent of the situation for the BEDT-TTF~ReO~ salt, whose slabs are quite similar to that

of figure 3, and where the strong interaction energies are also associated with some of the

interaction types with the longer S S contacts [24]. This demonstrates the importance of the

orientation of the p-type sulfur orbitals and the need to use overlap integrals (S) or interaction

energies (p) when analyzing the strength of the donor-donor interactions. Our study of

BEDT-TTF~[Cu(C~O~)~] [17, 18] lead to similar results.

The calculated band structure and Fermi surface for the BEDT-TTF slabs of

BEDT-TTF~ [Pt(C~O~)~ are shown in figures 4a and 4b, respectively. The four HOMO bands

->

0 0

l 0 0
r x x r

(~l) ~~~

Fig. 4.-(a) Dispersion relations for the HOMO bands of the BEDT-TTF slabs in

BEDT-TTF41Pt(C~04)21, where the dashed line refers to the Fermi level. 1~ X, Y and M refer to

(o, 0 ), (a */2, o ), (o, b */2 ) and (a */2,
c

*/2), respectively. (b) Fermi surface associated with the partially

filled bands of part a.
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result from a strong mixing of the HOMOS of the two types of molecules. With the formal

oxidation required by the stoichiometric formula (BEDT-TTF )( +, there are six electrons per

unit cell to fill the bands of figure 4a so that the Fermi level (shown by a dashed line in the Fig. )

cuts the two upper bands. Thus the Fermi surface of figure 4b contains both hole and electron

pockets. The Fermi surface of the hole pockets is a closed loop centered at Y and hence is 2D

in character. The Fermi surface of the electron pockets is open and hence is one-dimensional

(lD) in character. Consequently, as suggested by the analysis of its crystal structure,

BEDT-TTF~ lPt (C~O~ )~ should be a 2D metal but more anisotropic than

BEDT-TTF~ lPt(CN )~ ]. An important observation is that the Fermi surface of figure 4b is very
similar to that calculated with the same method for the low temperature (125 K) structure of the

BEDT-TTF~ReO~ salt [23].

The Fermi level of figure 4a lies only slightly above the upper band at the X point.
Consequently, relatively small changes in the crystal structure could change the shape of the

electron Fermi surface from open (lD) to closed (2D) nearby the X point. This seems to be the

case for BEDT-TTF~ [Cu (C~O~ )~] according to our calculations. We suggest that the metal-to-

metal transitions (at 260K and 160K for BEDT-TTF~[Cu(C~O~)~] [17] and 200K for

BEDT-TTF~IPt(C~O~)~] [16] before the metal-to-semiconductor transition (at 65K for

BEDT-TTF~[Cu(C~O~)~] [17] and 60 K for BEDT-TTF~IPt(C~O~)~] [16] in these salts are

associated with this type of slight changes of the Fermi surface. These modifications, which

will affect the conductivity of the salt, are probably brought about by small structural

readjustments of the slab, associated with partial disorder in the outer six-membered rings of

the donors which change when the temperature is lowered. Disorder in one of the two BEDT-

TTF molecules has indeed been found in the room temperature structure of

BEDT-TTF~[Cu(C~O~)~] [18]. We believe our suggestion finds support in the very recent

study by Tajima et al. [20b]. These authors have found that the metal-to-metal transition at

200K for BEDT-TTF~[Pt(C~O~)~] is associated with the appearance of a superstructure

(3 x a) below the transition. Although the hole Fermi surface of this salt (see Fig. 4b) exhibits

some flat portions, the corresponding nesting vector is not consistent with a commensurate

3 x a superstructure. Hence, we do not believe that nesting of the Fermi surface is the driving
force for the metal-to-metal transitions in BEDT-TTF~IM(C~O~)~] (M

=

Pt, Cu ).

Comparison of the Fermi surfaces of the BEDT-TTF41M(CN)~] (M
=

Ni, Pt) and BEDT-

TTF4lM(C~04)21 (M
=

Pt, Cu) salts and structural requirements for hidden Fermi surface

nesting.

The Ferrni surfaces of figures 2b and 4b are not that different. As noted above small structural

modifications could change the electron pocket Fermi surface of figure 4b from lD to 2D in

which case the Fermi surfaces for the two series of salts would be very similar. Furthermore,

the Fermi surfaces of figures 2b and 4b are nearly identical to those of the room temperature

and low temperature (125 K) structures of the BEDT-TTF~ReO~ salt [23]. This salt contains

BEDT-TTF slabs which are composed of parallel stacks of donors very much like those of

figure 3. The room temperature Fermi surface of BEDT-TTF~Re04 is like that of figure 2b,

I,e., with 2D electron and hole Fermi surfaces. Lowering the temperature (= 125 K leads to a

new Fermi surface similar to that of figure 4b, with a 2D hole Fermi surface but a lD electron

Fermi surface. Finally, at 77 K BEDT-TTF~ReO~ undergoes a metal-to-insulator transition

associated with a (1/2, 0, 1/2) structural modulation. Below 77 K the donor stack periodicity is

doubled [27], suggesting that the transition results from a Peierls transition. However the

Fermi surfaces of BEDT-TTF~ReO~ do not exhibit the 2 k~ nesting vector of o.5 a * needed to

explain this phase transition as a simple Peierls transition. Recently, these puzzling
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observations were explained on the basis of the concept of hidden Fermi surface nesting [23].

Hence, on the basis of the similarity of the Fermi surfaces of BEDT-TTF2ReO~ and those of

figures 2b and 4b, the metal-to-semiconductor transitions of both BEDT-TTF~IM(CN)~]

(M
=

Ni, Pt) and BEDT-TTF~[M(C~O~)~] (M
=

Pt, Cu) could result from a hidden Fermi

surface nesting mechanism.

The concept of hidden Fermi surface nesting as applied to BEDT-TTF2ReO~ [23], is that

some weak local structural changes, possibly slight displacements of the BEDT-TTF

molecules perpendicular to the stack direction, or slight rotations of the BEDT-TTF

molecules, could modify the relative magnitudes of the inter- and intrastack transfer integrals,

affecting the dimensionality of the system and ultimately leading to the appearance of the

otherwise hidden nesting vector in the low temperature Fermi surfaces. Essential for this

scenario is that the energy gained by the CDW structural modulation associated with the

hidden nesting more than compensates the energy needed for the reduction of the interstack

interactions. Thus, the system will undergo the metal-to-semiconductor transition stabilizing
this hidden nesting vector only when the reduction of the interstack interactions can be

achieved without a strong energy penalty (I.e., when the system is structurally prepared to

readjust the Fermi surface with just minor structural changes). In the following we examine

why this is most likely the case for BEDT-TTF~[M(C~O~)~] (M
=

Pt, Cu) but not for

BEDT-TTF~[M(CN)~] (M
=

Ni, Pt).

The essential differences between the donor slabs of BEDT-TTF~[M(CN)~] (M
=

Ni, Pt)
and BEDT-TTF4 lM (C204 )21 (M

=
Pt, Cu ), as indicated by our analysis of the different types

of intermolecular interactions and their p integrals, is summarized in figure 5. The principal
stacks (symbolized by the bold line in Fig. 5) are of the step-chain type in

BEDT-TTF41M(CN)41 (M
=

Ni, Pt) but of the columnar type in BEDT-TTF~[M(C~O~)~]
(M

=
Pt, Cu ). Careful examination of figures 3 and 5, shows that the different step-chains in

BEDT-TTF4 lM (CN )41 (M
=

Ni, Pt are strongly interconnected because of the very nature of

these step-chains, and suggests that it is not possible to change the dimensionality of the Ferrni

surfaces, as required by the hidden nesting mechanism, by minor structural modifications. By
contrast, the parallel columnar stacks found in BEDT-TTF~[M(C~O~)~] (M

=
Pt, Cu) can

readily loose interstack interactions, thus providing the driving force for the hidden nesting
mechanism. In other words, the intemal structure of the BEDT-TTF slabs seems to be prepared

to sustain a hidden nesting type mechanism as the origin for the metal-to-semiconductor

transition for BEDT-TTF4 lM (C204 )21 (M
=

Pt, Cu but not for BEDT-TTF~ [M (CN )~
(M

=

Ni, Pt ). The similarity in structure, temperature of the metal-to-semiconductor transition

(65 K for BEDT-TTF41CU (C204)21 11 7], 60 K for BEDT-TTF4 [Pt(C204)41 [16] and 77 K for

BEDT-TTF2Re04 [25] and the sharp change in the resistivity vs. temperature curves at the

transition, provides support for our proposal.
The very gradual nature of the transition in the BEDT-TTF~[M(CN)~] (M

=

Ni, Pt) salts

and the previous analysis suggest that a hidden nesting mechanism is not at the origin of the

transition in this case. Since a low temperature structure is available for BEDT-TTF~ lPt(CN)~
llo] we calculated both the room temperature and low temperature structure Fermi surfaces for

this salt. The two Fermi surfaces are very similar in shape and look like those of figure 2b with

closed electron and hole pockets. The only difference is that the size of the electron and hole

pockets is slightly smaller at low temperature. Thus the necessary condition for the occurrence

of hidden Fermi surface nesting is not fulfilled in the BEDT-TTF~[M(CN)~] (M
=

Ni, Pt)
salts [28]. On the basis of these results the only mechanism which could explain the metal-to-

semiconductor transition in the BEDT-TTF~IM(CN)~] (M
=

Ni, Pt) salts is an electronic

localization.
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[BEDT.TTF],[M(CN),] [BEDT.TTF],[M(C~O,)~]

jai ib)

Fig. 5. -Projection views showing the essential differences between the donor networks of (a)

BEDT-TTF~IM(CN)~] (M Ni, Pt), and (b) BEDT-TTF~IM(C204)21 (M
=

Pt, Cu).

Concluding remarks.

Tight binding band structure calculations for the room temperature structures of the donor slabs

in the BEDT-TTF~IM(CN)~] (M
=

Ni, Pt) and BEDT-TTF~[M(C~04)21 (M
=

Pt, Cu salts

show the existence of electron and hole Fermi surfaces, in agreement with the metallic

character of these salts at room temperature. Our calculations for the different structures of the

BEDT-TTF~ [Pt(CN )~ salt, provides support for the suggestion of Fettouhi et al. [lO] that the

compounds reported by Gdrtner et al. [7] and Shibaeva et al. [8, 9] are in fact the same.

Although the Fermi surfaces for the two series of salts are not very different, those of the

BEDT-TTF~IM(C~O~)~] (M
=

Pt, Cu) salts have a greater lD character than those of the

BEDT-TTF~IM(CN)~] (M=Ni,Pt) salts. The shape of the Ferrni surface of the

BEDT-TTF~[M(CN)~] (M
=

Ni, Pt) salts is not significantly modified at low temperature.
These two facts as well as the analysis of the intemal structure of the different BEDT-TTF

slabs and the similarity in structure and physical properties of the BEDT-TTF~IM(C~O~~]
(M

=

Pt, Cu ) and BEDT-TTF~ReO~ salts, suggest that a Peierls transition associated with a

hidden Fermi surface type mechanism is at the origin of the metal-to-semiconductor transitions

in BEDT-TTF~IM(C~O~)~] (M=Pt,Cu) salts but not in the BEDT-TTF~IM(CN)~]
(M

=

Ni, Pt) ones. Electronic localization seems to be the most likely origin for the metal-to-

insulator transition in the BEDT-TTF~[M(CN)~] (M
=

Ni, Pt) salts [20a]. Recently, the

concept of hidden nesting has also been found essential to understand the structural instabilities
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of purple bronzes AMO~OI~ (A
=

K, Na, Tl) [29], Magndli phases Mo~oii and monophosphate

tungsten bronzes [30], layered transition metal dichalcogenides lT-MX2 (X
=

S, Se, Te) [31],

LiVO~ [32] and Sr~V~O~ [23]. Hence, it would be very important to determine the low

temperature structures of the BEDT-TTF~ lM (C~04)21 (M
=

Pt, Cu ) salts in order to calculate

their Fermi surfaces and test the proposed occurrence of hidden Fermi surface nesting in these

organic charge transfer salts.
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