

Comparison of the electronic structures of the BEDT-TTF4[M(CN)4] (M = Ni, Pt) and BEDT-TTF4[M(C2O4)2] (M = Pt, Cu) salts. Structural requirements for hidden Fermi surface nesting

James Martin, Marie-Liesse Doublet, Enric Canadell

▶ To cite this version:

James Martin, Marie-Liesse Doublet, Enric Canadell. Comparison of the electronic structures of the BEDT-TTF4[M(CN)4] (M = Ni, Pt) and BEDT-TTF4[M(C2O4)2] (M = Pt, Cu) salts. Structural requirements for hidden Fermi surface nesting. Journal de Physique I, 1993, 3 (12), pp.2451-2461. 10.1051/jp1:1993256. jpa-00246879

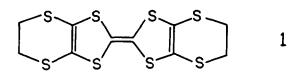
HAL Id: jpa-00246879 https://hal.science/jpa-00246879

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Classification Physics Abstracts 71.25P — 71.45L

Comparison of the electronic structures of the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) and BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) salts. Structural requirements for hidden Fermi surface nesting

James D. Martin (*), Marie-Liesse Doublet and Enric Canadell


Laboratoire de Chimie Théorique (CNRS URA 506), Université de Paris-Sud, 91405 Orsay Cedex, France

(Received 9 June 1993, revised 15 July 1993, accepted 3 August 1993)

— The BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) and BEDT-TTF₄[M(C₂O₄)₂] Abstract. (M = Pt, Cu) salts are metallic at room temperature but exhibit metal-to-semiconductor transitions at lower temperatures. Their electronic structures have been studied by performing tight-binding band structure calculations on their cationic sublattices. All of these salts possess electron and hole Fermi surfaces, in agreement with their metallic character at room temperature. Although the calculated Fermi surfaces for the two series of salts are not very different, the analysis of their crystal structures suggests that the BEDT-TTF₄[M(C_2O_4)₄] (M = Pt, Cu) salts should have a more anisotropic character than the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) ones. The analogy between the crystal and electronic structures of the BEDT-TTF₄[$M(C_2O_4)_2$] (M = Pt, Cu) and the BEDT-TTF₂ReO₄ salts, and the fact that the shape of the Fermi surface of BEDT-TTF₄[Pt(CN)₄] does not change appreciably when the temperature is lowered, suggest that the metal-tosemiconductor transition is due to a Peierls type mechanism for BEDT-TTF₄[M(C_2O_4)₂] (M = Pt, Cu) but not for BEDT-TTF₄[M(CN)₄] (M = Ni, Pt). The occurrence of a Peierls transition in the BEDT-TTF₄[M(C_2O_4)₂] (M = Pt, Cu) salts is explained in terms of hidden Fermi surface nesting.

Charge transfer salts of the organic donor molecule bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF, (1)) typically contain slabs of donor molecules separated by layers of anions [1]. The large variety of packing motifs of the BEDT-TTF molecules within the slabs leads to a remarkable diversity in their transport properties and hence these materials have been the focus of intense investigation [1-3]. Since donor — anion interactions largely dictate the BEDT-TTF packing motifs, anions of very different shape and size [1, 3-6] have been employed. Although a majority of these salts have been prepared using monovalent anions, several groups have prepared charge transfer salts of BEDT-TTF and square planar organometallic dianions [7-14].

^(*) Present address : Ames Laboratory, Iowa State University, Ames, Iowa 50011-3020, U.S.A.

BEDT-TTF

Gärtner *et al.* [7] obtained three different BEDT-TTF₄[Pt(CN)₄] salts. One of them (β -phase) is metallic at room temperature and near 200 K becomes semiconducting. The other salts (γ - and δ -phases) are semiconducting. Shibaeva *et al.* [8, 9] reported a BEDT-TTF₄[Pt(CN)₄] salt which, although it has a slightly different unit cell, is very similar in structure and physical properties to the β -phase. Later, Fettouhi *et al.* [10] reported a structural refinement of BEDT-TTF₄[Pt(CN)₄] at 293 K and 135 K, i.e., before and after the metal-to-semiconductor transition. They also suggested that the compounds reported by Gärtner *et al.* [7] and Shibaeva *et al.* [8, 9] were in fact the same. The BEDT-TTF₄[Ni(CN)₄] salt has also been reported [15] and is very similar in both structural and physical properties to BEDT-TTF₄[Pt(CN)₄].

The physical properties of the BEDT-TTF₄ [M (CN)₄] (M = Ni, Pt) salts contrast with those of the BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) ones. Gärtner *et al.* [16] reported a BEDT-TTF₄[Pt(C₂O₄)₂] salt which is metallic down to about 60 K where it becomes semiconducting and near 200 K it undergoes a metal-to-metal transition. Recently, Wang et al. [17] prepared a 4:1 salt with $[Cu(C_2O_4)_2]^2$ which is metallic at room temperature and undergoes a metal-to-semiconductor transition at 65 K after two metal-to-metal transitions at 260 K and 160 K. The crystal structure of this salt is quite similar to that of BEDT-TTF₄[Pt(C_2O_4)₂] except for the fact that one of the two independent BEDT-TTF molecules in BEDT-TTF₄[Cu(C_2O_4)₂] was shown to be disordered [18]. The metal-tosemiconductor transition of the BEDT-TTF₄[M(C_2O_4)₂] (M = Pt, Cu) salts are very sharp in contrast to those of the BEDT-TTF₄ [M (CN)₄] (M = Ni, Pt) salts which are quite broad. This suggests a different mechanism for the metal-to-semiconductor transitions in the two series of salts. We have carried out tight binding band structure calculations [19] for all the above mentioned metallic BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) and BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) salts. Our study suggests that the metal-to-semiconductor transitions in the two series of salts are indeed of different origin and are related to a slight but significant variation in the packing of the BEDT-TTF molecules. Since a detailed study of the difference between the electronic structure of the high and low temperature structures of BEDT-TTF₄[Pt(CN)₄] has been independently carried out by Rovira and Whangbo [20a], we will not report here this part of our study. After submission of our work, an experimental study of the physical properties of BEDT-TTF₄[Pt(C_2O_4)₂] has appeared [20b].

Crystal and electronic structure of BEDT-TTF₄[$M(CN)_4$] (M = Ni, Pt) salts.

The BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) salts exhibit crystal structures where layers of the BEDT-TTF donor molecules alternate with layers of the M(CN)₄²⁻ (M = Ni, Pt) anions. The different anions do not significantly alter the packing of the BEDT-TTF donor layers in these crystal structures [7-10]. A perspective view of a donor molecule layer (in the crystallographic *ac* plane) of BEDT-TTF₄[Ni(CN)₄] [15a] is shown in figure 1. Each donor molecule of figure 1 is viewed approximately along the direction of its central C = C bond. The repeat unit of this slab contains four donor molecules, pairwise related by centers of inversion, resulting in two symmetry inequivalent molecules. The two different types of BEDT-TTF molecules are distinguished in figure 1 with sulfur atoms represented by filled and empty balls, respectively.

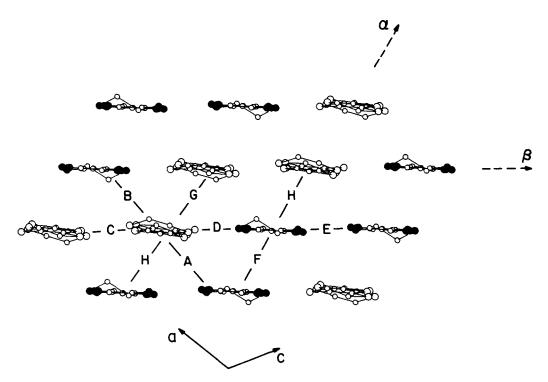


Fig. 1. — Perspective view of a BEDT-TTF layer of BEDT-TTF₄ [Ni(CN)₄] [15a]. The hydrogen atoms are not shown for simplicity. Each molecule is viewed approximately along its central C = C bond. The two different types of BEDT-TTF molecules are shown with empty and full sulfur atoms.

Structurally, the slab of figure 1 can be described as a series of inclined columnar type stacks running along a direction between c and (a + c) (the direction α in the Fig.) or as a series of step-chains running along the *a*-crystallographic axis. This stacking arrangement gives rise to eight different types of contacts between donor molecules, designated as A-H in figure 1. Short intermolecular S. S contacts smaller than 3.85 Å (see Tab. I) are observed for both the step

Table I. — S. S distances smaller than 3.85 Å and absolute values of the $\beta_{HOMO-HOMO}$ interaction energies (eV) for the different BEDT-TTF.. BEDT-TTF interactions in BEDT-TTF₄[Ni(CN)₄] [15a] (see Fig. 1 for labelling).

Interaction type	S S distances (Å)	$\beta_{\text{HOMO-HOMO}}$ (eV)
A	3.599, 3.692, 3.751, 3.825	0.282
В	3.663, 3.676, 3.721, 3.841	0.215
C	3.446 (× 2), 3.727 (× 2)	0.156
D	3.348, 3.376, 3.417, 3.517, 3.830	0.142
E	3.464, 3.604 (× 2)	0.137
F	3.812 (× 2)	0.102
G	(4.144) (^a) (× 2)	0.066
H	3.812, 3.836	0.060

(a) Shortest S.. S contact of this interaction type.

chains (...ABAB...) and the columnar stacks (...FHGHF...), as well as for the π -type chains (...CDEDC..) running along the β direction in the figure. The two symmetry inequivalent BEDT-TTF molecules have very similar geometries and exhibit central C = C bondlengths of 1.371 and 1.373 Å, respectively, typical [21] of BEDT-TTF^{+1/2} The main difference between these two types of donor molecules is that one of them (those with empty sulfur atoms in Fig. 1) are tilted along their longitudinal molecular axis with respect to those of the other type. This tilting is the result of H ... N hydrogen bonding interactions between one of the two types of BEDT-TTF and the M (CN)₄²⁻ anions.

Because of their nearly identical intramolecular geometries, the energies of the highest occupied molecular orbital (HOMO) of the two different BEDT-TTF molecules are very similar. Thus, the HOMO bands of the slab of donor molecules will result from a strong mixing of the HOMO of both types of molecules. It is possible to estimate the contribution of each of the respective chains to the electronic structure of the donor slab from the corresponding $\beta_{HOMO-HOMO}$ interaction energies [22] listed in table I. Although the shortest sulfur ... sulfur contacts are those observed along the ...CDEDC... chain, the π -type interactions required by this geometric construction result in reduced interaction energies. These interactions are however greater than those of the inclined columnar stacks (...FHGHF...). The strongest interactions are observed for the step-chains along the *a*-crystallographic axis (...ABAB...). Thus, the BEDT-TTF slabs in BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) are best described as a series of step-chains along the *a*-direction interacting through weaker π - and σ -type contacts in the other directions of the slab.

The calculated band structure and Fermi surface for the BEDT-TTF slabs of BEDT-TTF₄[Ni(CN)₄] are shown in figures 2a and 2b, respectively. Since the unit cell of the slab contains four BEDT-TTF molecules, there are four HOMO bands. With the formal oxidation required by the stoichiometric formula, $(BEDT-TTF)_4^{2+}$, there are six electrons per unit cell to fill the bands of figure 2a so that the Fermi level (shown by a dashed line in the Fig.) cuts the two upper bands. Thus, the Fermi surface of figure 2b contains electron pockets

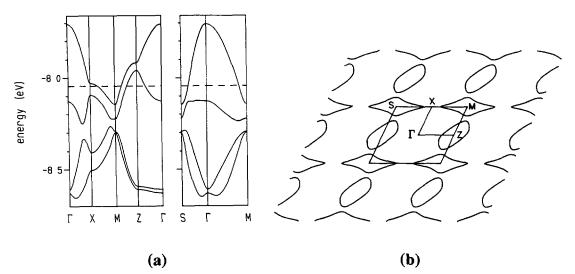


Fig. 2. — (a) Dispersion relations for the HOMO bands of the BEDT-TTF slabs in BEDT-TTF₄[Ni(CN)₄], where the dashed line refers to the Fermi level. Γ , X, Z, M and S refer to (0, 0), $(a^*/2, 0)$, $(0, c^*/2)$, $(a^*/2, c^*/2)$ and $(-a^*/2, c^*/2)$, respectively. (b) Fermi surface associated with the partially filled bands of part a.

centered at M and hole pockets centered at Z. This Fermi surface can be described as a series of « overlapping ellipses » with their short axis slightly off the *a*-direction. Consequently, BEDT-TTF₄[Ni(CN)₄] should be a two-dimensional (2D) metal with slightly better conductivity along this direction. This is consistent with our analysis of the strength of the different donor-donor interactions on the basis their β interactions energies.

Our calculated band structures and Fermi surfaces for the BEDT-TTF layers of BEDT-TTF₄[Pt(CN)₄] using the crystal structures of Gärtner *et al.* [7], Shibaeva *et al.* [8, 9] as well as the 293 K structure of Fettouhi *et al.* [10] are practically identical. Since band structures are very sensitive to small differences in orientation of the donor molecules because of the strong directionality of the π -type HOMOs, our results give strong support to the suggestion of Fettouhi *et al.* [10] that the three reported BEDT-TTF₄[Pt(CN)₄] phases are in fact the same. For our subsequent discussion it is very important to recognize that the Fermi surface of figure 2b is very similar to that calculated with the same method for the room temperature structure of the BEDT-TTF₂ReO₄ salt [23].

Crystal and electronic structure of BEDT-TTF₄[$M(C_2O_4)_2$ (M = Pt, Cu) salts.

The donor layers of BEDT-TTF₄[$M(C_2O_4)_2$] (M = Pt, Cu) [16-18] alternate with layers of isolated $M(C_2O_4)_2^2$ anions. A perspective view of the donor lavers in BEDT-TTF₄[Pt(C_2O_4)₂] [16], where each BEDT-TTF molecule is viewed approximately along the central C = C bond, is shown in figure 3. This slab can be described as a series of columnar stacks along the a-direction. Every stack is built from two different BEDT-TTF molecules. Because of the presence of inversion centers in between the stacks, the repeat unit of the slab contains two columnar stacks and thus four BEDT-TTF molecules. There are eight different types of donor ... donor interaction types in the layers of figure 3. The different S...S contacts smaller than 3.8 Å and the corresponding $\beta_{HOMO-HOMO}$ interaction energies [22] for each of these intermolecular contacts are reported in table II. It is clear that the interactions along the stacks are by far the strongest, and that some of the inter-stack interactions (for instance C, E and G) are extremely weak. It is to be noted that interaction B which is

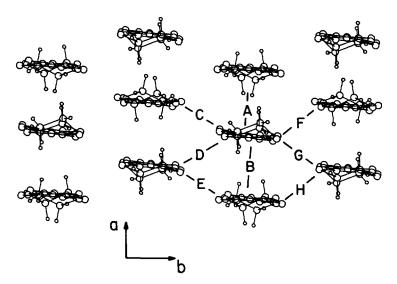


Fig. 3. — Perspective view of a BEDT-TTF layer of BEDT-TTF₄[Pt(C_2O_4)₂] [16]. Each molecule is viewed approximately along its central C = C bond.

JOURNAL DE PHYSIQUE I - T 3, Nº 12, DECEMBER 1993

N° 12

Interaction type	SS distances (Å)	$\beta_{\text{HOMO-HOMO}}$ (eV)
Α	3.662, 3.711 (× 2), 3.792	0.639
В	(3.905) (a)	0.352
C	3.511 (× 2), 3.573 (× 2), 3.770 (× 2)	0.026
D	3.619, 3.671, 3.673, 3.701, 3.766	0.172
E	3.423 (× 2), 3.624 (× 2)	0.056
F	3.651 (× 2), 3.807 (× 2)	0.177
G	3.373, 3.382, 3.584, 3.750	0.005
н	3.668 (× 2), 3.716 (× 2)	0.151

Table II. — S. S distances smaller than 3.8 Å and absolute values of the $\beta_{HOMO-HOMO}$ interaction energies (eV) for the different BEDT-TTF.. BEDT-TTF interactions in BEDT-TTF₄[Pt(C₂O₄)₂] [16] (see Fig. 3 for labelling).

(a) Shortest S., S contact of this interaction type.

associated with quite long S...S contacts leads to a strong interaction energy. This is reminiscent of the situation for the BEDT-TTF₂ReO₄ salt, whose slabs are quite similar to that of figure 3, and where the strong interaction energies are also associated with some of the interaction types with the longer S...S contacts [24]. This demonstrates the importance of the orientation of the p-type sulfur orbitals and the need to use overlap integrals (S) or interaction energies (β) when analyzing the strength of the donor-donor interactions. Our study of BEDT-TTF₄[Cu(C₂O₄)₂] [17, 18] lead to similar results.

The calculated band structure and Fermi surface for the BEDT-TTF slabs of BEDT-TTF₄[Pt(C_2O_4)₂] are shown in figures 4a and 4b, respectively. The four HOMO bands

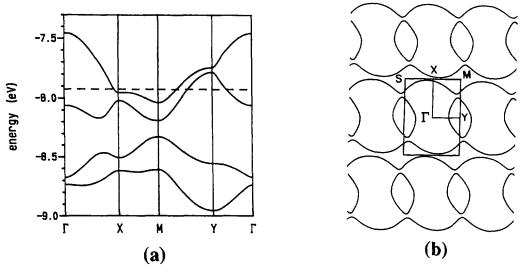


Fig. 4. — (a) Dispersion relations for the HOMO bands of the BEDT-TTF slabs in BEDT-TTF₄[Pt(C₂O₄)₂], where the dashed line refers to the Fermi level. Γ , X, Y and M refer to (0, 0), $(a^*/2, 0)$, (0, $b^*/2$) and $(a^*/2, c^*/2)$, respectively. (b) Fermi surface associated with the partially filled bands of part a.

2457

result from a strong mixing of the HOMOs of the two types of molecules. With the formal oxidation required by the stoichiometric formula (BEDT-TTF) $_{4}^{2+}$, there are six electrons per unit cell to fill the bands of figure 4a so that the Fermi level (shown by a dashed line in the Fig.) cuts the two upper bands. Thus the Fermi surface of figure 4b contains both hole and electron pockets. The Fermi surface of the hole pockets is a closed loop centered at Y and hence is 2D in character. The Fermi surface of the electron pockets is open and hence is one-dimensional (1D) in character. Consequently, as suggested by the analysis of its crystal structure, BEDT-TTF₄ [Pt(C_2O_4)₂] should be а 2D metal but more anisotropic than BEDT-TTF₄ [Pt(CN)₄]. An important observation is that the Fermi surface of figure 4b is very similar to that calculated with the same method for the low temperature (125 K) structure of the BEDT-TTF₂ReO₄ salt [23].

The Fermi level of figure 4a lies only slightly above the upper band at the X point. Consequently, relatively small changes in the crystal structure could change the shape of the electron Fermi surface from open (1D) to closed (2D) nearby the X point. This seems to be the case for BEDT-TTF₄[Cu(C₂O₄)₂] according to our calculations. We suggest that the metal-tometal transitions (at 260 K and 160 K for BEDT-TTF₄[Cu(C₂O₄)₂] [17] and 200 K for BEDT-TTF₄[Pt(C_2O_4)₄] [16] before the metal-to-semiconductor transition (at 65 K for BEDT-TTF₄ [Cu (C₂O₄)₂] [17] and 60 K for BEDT-TTF₄ [Pt (C₂O₄)₄] [16] in these salts are associated with this type of slight changes of the Fermi surface. These modifications, which will affect the conductivity of the salt, are probably brought about by small structural readjustments of the slab, associated with partial disorder in the outer six-membered rings of the donors which change when the temperature is lowered. Disorder in one of the two BEDT-TTF molecules has indeed been found in the room temperature structure of BEDT-TTF₄[Cu(C₂O₄)₂] [18]. We believe our suggestion finds support in the very recent study by Tajima et al. [20b]. These authors have found that the metal-to-metal transition at 200 K for BEDT-TTF₄[Pt(C₂O₄)₄] is associated with the appearance of a superstructure $(3 \times a)$ below the transition. Although the hole Fermi surface of this salt (see Fig. 4b) exhibits some flat portions, the corresponding nesting vector is not consistent with a commensurate $3 \times a$ superstructure. Hence, we do not believe that nesting of the Fermi surface is the driving force for the metal-to-metal transitions in BEDT-TTF₄ [M (C₂O₄)₄] (M = Pt, Cu).

Comparison of the Fermi surfaces of the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) and BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) salts and structural requirements for hidden Fermi surface nesting.

The Fermi surfaces of figures 2b and 4b are not that different. As noted above small structural modifications could change the electron pocket Fermi surface of figure 4b from 1D to 2D in which case the Fermi surfaces for the two series of salts would be very similar. Furthermore, the Fermi surfaces of figures 2b and 4b are nearly identical to those of the room temperature and low temperature (125 K) structures of the BEDT-TTF₂ReO₄ salt [23]. This salt contains BEDT-TTF slabs which are composed of parallel stacks of donors very much like those of figure 3. The room temperature Fermi surfaces. Lowering the temperature (≈ 125 K) leads to a new Fermi surface similar to that of figure 4b, with a 2D hole Fermi surface but a 1D electron Fermi surface. Finally, at 77 K BEDT-TTF₂ReO₄ undergoes a metal-to-insulator transition associated with a (1/2, 0, 1/2) structural modulation. Below 77 K the donor stack periodicity is doubled [27], suggesting that the transition results from a Peierls transition. However the Fermi surfaces of BEDT-TTF₂ReO₄ do not exhibit the 2 k_f nesting vector of 0.5 a^* needed to explain this phase transition as a simple Peierls transition. Recently, these puzzling

observations were explained on the basis of the concept of hidden Fermi surface nesting [23]. Hence, on the basis of the similarity of the Fermi surfaces of BEDT-TTF₂ReO₄ and those of figures 2b and 4b, the metal-to-semiconductor transitions of both BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) and BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) could result from a hidden Fermi surface nesting mechanism.

The concept of hidden Fermi surface nesting as applied to BEDT-TTF₂ReO₄ [23], is that some weak local structural changes, possibly slight displacements of the BEDT-TTF molecules perpendicular to the stack direction, or slight rotations of the BEDT-TTF molecules, could modify the relative magnitudes of the inter- and intrastack transfer integrals, affecting the dimensionality of the system and ultimately leading to the appearance of the otherwise hidden nesting vector in the low temperature Fermi surfaces. Essential for this scenario is that the energy gained by the CDW structural modulation associated with the hidden nesting more than compensates the energy needed for the reduction of the interstack interactions. Thus, the system will undergo the metal-to-semiconductor transition stabilizing this hidden nesting vector only when the reduction of the interstack interactions can be achieved without a strong energy penalty (i.e., when the system is structurally prepared to readjust the Fermi surface with just minor structural changes). In the following we examine why this is most likely the case for BEDT-TTF₄[M(C₂O₄)₄] (M = Pt, Cu) but not for BEDT-TTF₄[M(CN)₄] (M = Ni, Pt).

The essential differences between the donor slabs of BEDT-TTF₄ [M(CN)₄] (M = Ni, Pt) and BEDT-TTF₄[M(C_2O_4)₂] (M = Pt, Cu), as indicated by our analysis of the different types of intermolecular interactions and their β integrals, is summarized in figure 5. The principal stacks (symbolized by the bold line in Fig. 5) are of the step-chain type in BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) but of the columnar type in BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu). Careful examination of figures 3 and 5, shows that the different step-chains in BEDT-TTF₄ [M(CN)₄] (M = Ni, Pt) are strongly interconnected because of the very nature of these step-chains, and suggests that it is not possible to change the dimensionality of the Fermi surfaces, as required by the hidden nesting mechanism, by minor structural modifications. By contrast, the parallel columnar stacks found in BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) can readily loose interstack interactions, thus providing the driving force for the hidden nesting mechanism. In other words, the internal structure of the BEDT-TTF slabs seems to be prepared to sustain a hidden nesting type mechanism as the origin for the metal-to-semiconductor transition for BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) but not for BEDT-TTF₄[M(CN)₄] (M = Ni, Pt). The similarity in structure, temperature of the metal-to-semiconductor transition (65 K for BEDT-TTF₄[Cu (C₂O₄)₂] [17], 60 K for BEDT-TTF₄[Pt(C₂O₄)₄] [16] and 77 K for BEDT-TTF₂ReO₄ [25] and the sharp change in the resistivity vs. temperature curves at the transition, provides support for our proposal.

The very gradual nature of the transition in the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) salts and the previous analysis suggest that a hidden nesting mechanism is not at the origin of the transition in this case. Since a low temperature structure is available for BEDT-TTF₄[Pt(CN)₄] [10] we calculated both the room temperature and low temperature structure Fermi surfaces for this salt. The two Fermi surfaces are very similar in shape and look like those of figure 2b with closed electron and hole pockets. The only difference is that the size of the electron and hole pockets is slightly smaller at low temperature. Thus the necessary condition for the occurrence of hidden Fermi surface nesting is not fulfilled in the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) salts [28]. On the basis of these results the only mechanism which could explain the metal-tosemiconductor transition in the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) salts is an electronic localization.

2459

Fig. 5. — Projection views showing the essential differences between the donor networks of (a) BEDT-TTF₄[M(CN)₄] (M = Ni, Pt), and (b) BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu).

Concluding remarks.

Tight binding band structure calculations for the room temperature structures of the donor slabs in the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) and BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) salts show the existence of electron and hole Fermi surfaces, in agreement with the metallic character of these salts at room temperature. Our calculations for the different structures of the BEDT-TTF₄ [Pt(CN)₄] salt, provides support for the suggestion of Fettouhi *et al.* [10] that the compounds reported by Gärtner et al. [7] and Shibaeva et al. [8, 9] are in fact the same. Although the Fermi surfaces for the two series of salts are not very different, those of the BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) salts have a greater 1D character than those of the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) salts. The shape of the Fermi surface of the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) salts is not significantly modified at low temperature. These two facts as well as the analysis of the internal structure of the different BEDT-TTF slabs and the similarity in structure and physical properties of the BEDT-TTF₄[M(C_2O_4)₂] (M = Pt, Cu) and BEDT-TTF₂ReO₄ salts, suggest that a Peierls transition associated with a hidden Fermi surface type mechanism is at the origin of the metal-to-semiconductor transitions in BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) salts but not in the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) ones. Electronic localization seems to be the most likely origin for the metal-toinsulator transition in the BEDT-TTF₄[M(CN)₄] (M = Ni, Pt) salts [20a]. Recently, the concept of hidden nesting has also been found essential to understand the structural instabilities

N° 12

of purple bronzes AMo_6O_{17} (A = K, Na, Tl) [29], Magnéli phases Mo_4O_{11} and monophosphate tungsten bronzes [30], layered transition metal dichalcogenides $1T-MX_2$ (X = S, Se, Te) [31], LiVO₂ [32] and Sr₃V₂O₇ [23]. Hence, it would be very important to determine the low temperature structures of the BEDT-TTF₄[M(C₂O₄)₂] (M = Pt, Cu) salts in order to calculate their Fermi surfaces and test the proposed occurrence of hidden Fermi surface nesting in these organic charge transfer salts.

Acknowledgments.

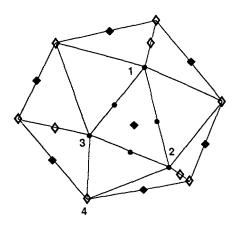
We are grateful to D. Schweitzer for sending us the crystal structure of BEDT-TTF₄[Pt(CN)₄] before publication, H. Tajima and M.-H. Whangbo for sending us copies of their work on BEDT-TTF₄[Pt(C₂O₄)₂] and BEDT-TTF₄[Pt(CN)₄], respectively, R. P. Shibaeva for a useful discussion and to one of the referees for pointing out to us the work of reference [20b]. The stay of J. D. M. at Orsay, France, was supported by a postdoctoral grant from the National Science Foundation (Grant No. INT-9007963).

References

- Williams J. M., Ferraro J. R., Thorn R. J., Carlson K. D., Geiser U., Wang H. H., Kini A. M., Whangbo M.-H., Organic Superconductors (Prentice Hall, New Jersey) 1992.
- [2] Ishiguro T., Yamaji K., Organic Superconductors (Springer-Verlag, Berlin) 1990.
- [3] Williams J. M., Schultz A., Geiser U., Carlson K. D., Kini A. M., Wang H. H., Kwok W.-K., Whangbo M.-H., Schirber J. E., Science 251 (1991) 1501.
- [4] Urayama H., Yamochi H., Saito G., Sato S., Kawamoto A., Tanaka J., Mori T., Maruyama Y., Inokuchi H., Chem. Lett. (1988) 463.
- [5] Buranov L. I., Zvarkyna A. V., Kartsovnik M. V., Kushch N. D., Laukhin V. N., Lobkovskaya R. M., Merzhanov V. A., Fedutin L. N., Shibaeva R. P., Yagubskii E. B., Zh. Eksp. Teor. Fiz. 92 (1987) 594.
- [6] Batail P., Boubekeur K., Davidson A., Fourmigué M., Lenoir C., Livage C., Pénicaud A., The Physics and Chemistry of Organic Superconductors, G. Saito and S. Kagoshima Eds. (Springer-Verlag, Berlin, 1990) p. 353.
- [7] Gärtner S., Heinen H., Keller H. J., Niebl R., Nuber B., Schweitzer D., Z. Naturforsch. 45b (1990) 763.
- [8] Shibaeva R. P., Lobkovskaya R. M., Korotkov V. B., Kushch N. D., Yagubskii E. B., Makova M. K., Synth. Met. 27 (1988) A 457.
- [9] Lobkovskaya R. M., Kushch N. D., Shibaeva R. P., Yagubskii E. B., Simonov M. A., Kristallografiya 34 (1989) 698.
- [10] Fettouhi M., Ouahab L., Grandjean D., Toupet L., Acta Cryst. B 48 (1992) 275.
- [11] Lobkovskaya R. M., Shibaeva R. P., Kushch N. D., Yagubskii E. B., Kristallografiya 35 (1990) 75.
- [12] Mori H., Hirabayashi I., Tanaka S., Mori T., Maruyama Y., Inokuchi H., Solid State Commun. 80 (1991) 411.
- [13] Mori T., Kato K., Maruyama Y., Inokuchi H., Mori H., Hirabayashi I., Tanaka S., Solid State Commun. 82 (1992) 177.
- [14] Ouahab L., Padiou J., Grandjean D., Garrigou-Lagrange C., Delhaes P., Bencharif M., Chem. Commun. (1989) 1038.
- [15] (a) Kawamoto A., Tanaka M., Tanaka J., Bull. Chem. Soc. Jpn 64 (1991) 3160;
 - (b) Tanaka M., Takeuchi H., Sano M., Enoki T., Suzuki K., Imaeda K., Bull. Chem. Soc. Jpn 62 (1989) 1432;
 - (c) Tanaka M., Takeuchi H., Kawamoto A., Tanaka J., Enoki T., Suzuki K., Imaeda K., Inokuchi H., The Physics and Chemistry of Organic Superconductors, G. Saito and S. Kagoshima Eds. (Springer-Verlag, Berlin 1990) p. 298.

N° 12 ELECTRONIC STRUCTURE OF SOME BEDT-TTF₄X SALTS

- [16] Gärtner S., Heinen H., Schweitzer D., Nuber B., Keller H. J., Synth. Met. 31 (1989) 199.
- [17] Wang P., Bandow S., Maruyama Y., Wang X., Zhu D., Synth. Met. 44 (1991) 147.
- [18] Qian M., Rudert R., Luger P., Ge C., Wang X., Acta Cryst. C 47 (1991) 2358.
- [19] Whangbo M.-H., Hoffmann R., J. Am. Chem. Soc. 100 (1988) 6093. Our calculations are of the extended Hückel type (Hoffmann R., J. Chem. Phys. 39 (1963) 1397) and use a double-ζ basis set (Clementi E., Roetti C., At. Nucl. Data Tables 14 (1974) 177) for all atoms except hydrogen. A modified Wolfsberg-Helmholz formula (Ammeter J., Bürgi H.-B., Thibeault J., Hoffmann R., J. Am. Chem. Soc. 100 (1978) 3686) was used to evaluate the nondiagonal H_{μν} values. The exponents and parameters were taken from : Whangbo M.-H., Williams J. M., Leung P. C. W., Beno M. A., Emge T. M., Wang H. H., Carlson K. D., Crabtree G. W., J. Am. Chem. Soc. 107 (1985) 5815.
- [20] (a) Rovira C., Whangbo M.-H., Synth. Met., in press;
 - (b) Tajima H., Toyoda S., Inokuchi M., Kuroda H., Kobayashi H., Synth. Met. 55-57 (1993) 2257.
- [21] Beno M. A., Geiser U., Kotska K. L., Wang H. H., Webb K. S., Firestone M. A., Carlson K. D., Nunez L., Whangbo M.-H., Williams J. M., *Inorg. Chem.* 26 (1987) 1912.
- [22] (a) Whangbo M.-H., Williams J. M., Leung P. C. W., Beno M. A., Emge T. J., Wang H. H., *Inorg. Chem.* 24 (1985) 3500;
 - (b) Williams J. M., Wang H. H., Emge T. J., Geiser U., Beno M. A., Leung P. C. W., Carlson K. D., Thorn R. J., Schultz A. J., Whangbo M.-H., Prog. Inorg. Chem. 35 (1987) 51;
 - (c) Since overlap is explicitely included in extended Hückel calculations, these interaction energies (β) should not be confused with the conventional transfer integrals (t). Although the two quantities are obviously related and have the same physical meaning, the absolute values of β are somewhat greater than those of t.
- [23] Whangbo M.-H., Ren J., Liang W., Canadell E., Pouget J.-P., Ravy S., Williams J. M., Beno M. A., *Inorg. Chem.* **31** (1992) 4169.
- [24] Whangbo M.-H., Beno M. A., Leung P. C. W., Emge T. J., Wang H. H., Williams J. M., Solid State Commun. 59 (1986) 813.
- [25] Parkin S. S. P., Engler E. M., Schumaker R. R., Lagier R., Lee V. Y., Scott J. C., Green R., Phys. Rev. Lett. 50 (1983) 270.
- [26] Ravy S., Moret, Pouget J. P., Comes R., Parkin S. S. P., Phys. Rev. B 33 (1986) 2049.
- [27] Ravy S., Moret, Pouget J. P., Comes R., Synth. Met. 19 (1987) 237.
- [28] For another discussion of the nature of the transition in these salts, see reference [20a].
- [29] Whangbo M.-H., Canadell E., Foury P., Pouget J. P., Science 252 (1991) 96.
- [30] (a) Canadell E., Whangbo M.-H., Int. J. Mod. Phys. B, in press;
 (b) Canadell E., Whangbo M.-H., Phys. Rev. B 43 (1991) 1894;
 (c) Canadell E., Whangbo M.-H., Chem. Rev. 91 (1991) 965.
- [31] Whangbo M.-H., Canadell E., J. Am. Chem. Soc. 114 (1992) 9587.
- [32] Rovira C., Whangbo M.-H., Inorg. Chem., in press.


Erratum

A classification of the periodic directions in the rational approximants of icosahedral quasicrystals

O. Radulescu

J. Phys. I. France 3 (1993) 2099-2113

Figure 2 on page 2109 is incorrect. The corrected figure is given below :

JOURNAL de PHYSIQUE I

1993 AUTHOR INDEX

VOLUME 3

Author Index

Acharyya (M.) Structural properties of a planar random heap of hard discs	905
Acharyya (M.). — Structural properties of a planar random heap of hard discs. (Erratum)	2123
Adnani (N.) and Titman (J.M.). — Hydrogen diffusion in Zr-Pd amorphous alloys	1643
Albinet (G.), Tremblay (R.R.) and Tremblay (AM.S.). — Scaling behavior of multifractal-	
moment distributions near criticality .	323
Almeida (M.). — See Gama (V.)	1235
	1219
Anglès d'Auriac (J.C.) and Douçot (B.). — Screening of an external magnetic field by spin	
currents: the infinite U Hubbard model	501
Anglès d'Auriac (J.C.), Chen (J.) and Maillard (J.M.). — Two numerical investigations of	
the three-state chiral Potts model	567
Auban-Senzier (P.), Bourbonnais (C.), Jérome (D.), Lenoir (C.), Batail (P.), Canadell (E.),	
Buisson (J.P.) and Lefrant (S.). — Isotope effect in the organic superconductor $\beta_{\rm H}$ -	
$(BEDT-TTF)_2I_3$ where BEDT-TTF is bis(ethylenedithiotetrathiafulvalene).	871
Auban-Senzier (P.). — See Gama (V.).	1235
	1953
Aussedat (J.), Boutron (P.), Coquilhat (P.), Descotes (J.L.), Faure (G.), Ferrari (M.), Kay	
(L.), Mazuer (J.), Monod (P.), Odin (J.) and Ray (A.). — Organ preservation at low	
temperature: a physical and biological problem	515
Averbuch (P.). — General description of homogeneous isotropic disordered systems	559
Avishai (Y.), Pichard (JL.) and Muttalib (K.A.). — Quantum transmission in disordered	
	2343
Azaria (P.), Delamotte (B.) and Mouhanna (D.). — Symmetry breaking and finite size	
scaling in antiferromagnets .	291

Balibar (S.), Guthmann (C.) and Rolley (E.) From vicinal to rough crystal surfaces	1475
Barat (K.), Karmakar (S.N.) and Chakrabarti (B.K.) Series studies of self-avoiding walks	
near the θ -points on 2D and 3D clusters at the percolation thresholds .	2007
Barbara (B.). — See Uehara (M.)	863
Barelli (A.). — See Bellissard (J.)	471
Barthel (E.), Quirion (G.), Wzietek (P.), Jérome (D.), Christensen (J.B.), Jørgensen (M.)	
and Bechgaard (K.) Motional narrowing of the nuclear magnetic resonance line by	
the sliding of spin-density waves	1501
Barthélémy (M.) and Orland (H.). — Replica field theory for composite media .	2171

Bascle (J.), Garel (T.) and Orland (H.). — Some physical approaches to protein folding .	259
Bassler (K.E.) and Olvera de la Cruz (M.) Monte Carlo study of diblock copolymers in	
dilute solution	2387
Batail (P.). — See Auban-Senzier (P.)	871
Batail (P.). — See Coulon (C.)	1153
Batail (P.). — See Wzietek (P.)	171
Beaugnon (E.), Bourgault (D.), Braithwaite (D.), de Rango (P.), Perrier de la Bathie (R.),	
Sulpice (A.) and Tournier (R.). — Material processing in high static magnetic fields.	
A review of an experimental study on levitation, phase separation, convection and tex-	
turation	399
Bechgaard (K.). — See Barthel (E.)	1501
Bechgaard (K.). — See Liu (Q.).	803
Bechgaard (K.). — See Liu (Q.)	821
Bechgaard (K.). — See Wzietek (P.)	171
Bellissard (J.) and Barelli (A.) Semiclassical methods in solid state physics: two exam-	
ples	471
Belorizky (E.). — Energy levels and exchange interactions of spin clusters	423
Ben Amar (M.). — Compact or fractal patterns in diffusion limited growth	353
Ben Fredj (A.). — See Bouchriha (H.)	203
Bendani (A.) and Bonpunt (L.). — Self-diffusion in naphtalene single crystals	1059
Bendani (A.), Dautant (A.) and Bonpunt (L.) Diffusion tensor and molecular jump	
frequencies in naphthalene single crystals	887
Benyoussef (A.), Laanaït (L.) and Loulidi (M.) Phase diagrams of antiferromagnetic	
Z(q) models	2397
Berche (B.). — See Turban (L.)	925
Berchier (D.). — See Gordon (M.B.)	377
Berger (D.). — See Monceau (P.)	1891
Bergersen (B.). — See Xu (HJ.)	2029
Bernas (H.). – See Nédellec (P.)	2285
Berret (JF.), Ravy (S.) and Hennion (B.). — Diffuse scattering in $K_{1-x}(ND_4)_x I$ mixed	
crystals	1031
Bertault (M.). — See Etrillard (J.) .	2437
Biferale (L.). — See Menci (N.).	1105
Billard (L.). — See Eymery (J.)	787
Billard (L.). — See Maret (M.)	1873
Binder (PM.), Ko (D.Y.K.), Ówczarek (A.L.) and Twining (C.J.) Ordered cellular au-	
tomata in one dimension	21
Blumenfeld (R.). — See Bowen (C.) .	83
Bohm (C.). — See Tafreshi (M.A.)	1649
Bonpunt (L.). — See Bendani (A.)	1059
Bonpunt (L.). — See Bendani (A.)	887
Boubekeur (K.). — See Coulon (Ć.) .	1153
Bouchaud (JP.). — See Ladieu (F.)	2311
Bouchriha (H.), Monge (J.L.), Ern (V.), Romdhane (S.) and Ben Fredj (A.) High power	
microwave perturbation of the Triplet-Doublet interaction in molecular crystals. Ap-	
plication to the photoconductivity of anthracene. (Text in French)	203
Boukraa (S.) and Maillard (JM.). — Symmetries of lattice models in statistical mechanics	
and effective algebraic geometry	239
Boulon (G.). — See Grinberg (M.)	1973

Boulon (G.). — See Lupei (V.) Boulon (G.). — See Nelson (P.R.)	1245
Boulon (G.). — See Nelson (P.R.)	855
sional organic conductors. I. Scaling theory	143
Bourbonnais (C.). — See Auban-Senzier (P.) .	871
Bourbonnais (C.). — See Gama (V.) .	1235
Bourbonnais (C.). — See Wzietek (P.)	171
Bourgault (D.). — See Beaugnon (E.)	399
Bousseksou (A.), Varret (F.) and Nasser (J.). — Ising-like model for the two step spin-	077
crossover of binuclear molecules	1463
Boutron (P.). — See Aussedat (J.)	515
Bowen (C.), Hunter (D.L.), Blumenfeld (R.) and Jan (N.) Magnetism and high T _c su-	
perconductors	83
Braithwaite (D.). — See Beaugnon (E.)	399
Brankov (J.G.), Ivashkevich (E.V.) and Priezzhev (V.B.) Boundary effects in a two-	
dimensional Abelian sandpile	1729
Brazovskii (S.). — A general approach to charge/spin density waves electrodynamics	2417
Brechet (Y.). — See Jensen (H.J.)	611
Brener (E.A.) and Temkin (D.E.). — Stability of a plate crystal growing in a channel	2199
Brenier (A.). — See Grinberg (M.)	1973
Brenier (A.). — See Grinberg (M.) Brückel (Th.), Paulsen (C.), Prandl (W.) and Weiss (L.). — Magnetic structure, phase tran-	
sition and magnetization dynamics of pseudo-1D CoNiTAC mixed crystals	1839
Brunel (N.). — Effect of synapse dilution on the memory retrieval in structured attractor	
neural networks	1693
Buisson (J.P.). — See Auban-Senzier (P.)	871
Bulbich (A.A.) and Pumpyan (P.E.) New phase nucleus appearance on a twin boundary,	
	1175
Burger (J.P.). — See Nédellec (P.)	2285
Cabaud (B.). — See Mélinon (P.)	1585
Canadell (E.). — See Auban-Senzier (P.)	871
Canadell (E.). — See Martin (J.D.)	2451
Čápek (V.). — Mori approach to exciton memories in initially unrelaxed exciton-phonon	
systems: direct and reorganized perturbation expansions .	2229
Caroli (B.). — See van Saarloos (W.).	741
Caroli (C.). — See van Saarloos (W.)	741
Castiaux (A.). — See Lambin (Ph.) .	1417
	2007
Chandra (P.), Coleman (P.) and Ritchey (I.). — The anisotropic kagomé antiferromagnet:	
a topological spin glass?	591
Chaussy (J.). — See Gandit (Ph.)	459
Chen (J.). — See Anglès d'Auriac (J.C.) .	567
	2029
	2139
Chouteau (G.). — See El Hafidi (M.) .	371
	1501
Ciesielski (W.). — See Kushch (N.D.) .	1987

Ciria (J.C.), Parisi (G.), Ritort (F.) and Ruiz-Lorenzo (J.J.) The de Almeida-Thouless	
line in the four dimensional Ising spin glass	2207
Colafrancesco (S.). — See Menci (N.).	1105
Coleman (P.). — See Chandra (P.)	591
Colliex (C.). — See Tafreshi (M.A.).	1649
Colline (A.). — See Krauzman (M.)	1007
Coolen (A.C.C.). — See Sherrington (D.)	331
Coolen (A.C.C.). — See Viana (L.) .	777
Coquilhat (P.). — See Aussedat (J.)	515
Cotfas (N.) Elements of tight-binding method in terms of graph theory	2269
Coulon (C.), Livage (C.), Gonzalvez (L.), Boubekeur (K.) and Batail (P.) Electronic	
magnetic resonance in a series of antiferromagnetic molecular perovskites .	1153
Creuzet (F.). — See Wzietek (P.)	171
Crisanti (A.), Paladin (G.), Serva (M.) and Vulpiani (A.). — Lack of self-averaging in weakly	
	1993
Cruz (H.) and Das Sarma (S.) Transport properties of a class of deterministic one di-	
mensional models with mobility edges .	1515
Csillag (S.). — See Tafreshi (M.A.)	1649
Cvijović (D.) and Klinowski (J.). — The oCLP family of triply periodic minimal surfaces	909
Das Sarma (S.). — See Cruz (H.)	1515
Dautant (A.). — See Bendani (A.)	887
de Almeida (R.M.C.). — Equivalence between Glauber and heat bath dynamics in damage	
spreading simulations	951
de Boissieu (M.) See Menguy (N.).	1953
de Fouquet (J.). — See Pautrot (S.)	1209
de Miranda-Neto (J.A.) and Moraes (F.) Symmetry properties of the Bethe and Husimi	
	29
de Miranda-Neto (J.A.) and Moraes (F.). — Vitreous B_2O_3 : a geometrical study	1119
de Rango (P.). — See Beaugnon (E.)	399
De'Bell (K.). — See Miller (J.D.)	1717
Debeau (M.), Depondt (Ph.), Hennion (B.) and Reichardt (W.). — Phonons in orientation-	1617
ally disordered neopentane $C(CD_3)_4$ Degiorgi (L.). — See Donovan (S.) .	1617
	1493
Delamotte (B.). — See Azaria (P.).	291
	1777
Delaye (J.M.) and Limoge (Y.). — Molecular dynamics study of vacancy-like defects in a model glass: static behaviour	
model glass: static behaviour	2063
	2079
	2299
Depondt (Ph.). — See Debeau (M.) Derrida (B.) and Evans (M.R.). — Exact correlation functions in an asymmetric exclusion	1617
model with open boundaries	311
des Cloizeaux (J.). — Dynamic form function of a long polymer constrained by entangle-	511
	1523
des Cloizeaux (J.). — Polymer melts: a theoretical justification of double reptation .	61
ues cioizeaux (3.). — i orginer mens, a meereneur jusimeurien er deuere reptation .	01

Descotes (J.L.). — See Aussedat (J.)	515 V
state of $(TMTSF)_2 PF_6 \dots$	1493
Doublet (ML.). — See Martin (J.D.)	2451
Douçot (B.). — See Anglès d'Auriac (J.C.)	501
Douçot (B.). — See Jensen (H.J.) .	611
Dumoulin (L.). — See Nédellec (P.)	2285
Dyachenko (O.A.). — See Lyubovskii (R.B.) .	2411
Eberlein (C.). — Radiation-reaction force on a moving mirror	2151
El Hafidi (M.), Chouteau (G.), Polo (V.), Pernot (P.) and Vangelisti (R.). — Magnetie behaviour of spin 1/2 finite chains intercalated into graphite. Example of the copper	c r
chloroaluminate complex	371
Elkaim (E.). — See Menguy (N.)	1953
Enders (A.) and Nimtz (G.). — Zero-time tunneling of evanescent mode packets .	1089
Enze $(L.)$. — See Lu-Jun $(C.)$.	1053
Ern (V.). — See Bouchriha (H.)	203
Etrillard (J.), Toudic (B.), Bertault (M.), Even (J.), Gourdji (M.), Péneau (A.) and Guibe (L.). — ³⁵ Cl NQR and calorimetric reinvestigation of the incommensurate phase o	€ f
bis(4-chlorophenyl) sulfone: evidence for no lock-in transition	2437
Eu (B.C.). — See Mao (K.) \dots	1757
Evans (M.R.). — See Derrida (B.)	311
Even (J.). — See Etrillard (J.) Eymery (J.), Lançon (F.) and Billard (L.). — Au-Ni solid solutions studied by numerica	2437 1
relaxation	787
Faure (G.). — See Aussedat (J.)	515
Ferrari (M.). — See Aussedat (J.)	515
Fogden (A.), Haeberlein (M.) and Lidin (S.). — Generalizations of the gyroid surface	2371
Fraysse (N.), Sornette (A.) and Sornette (D.) Critical phase transitions made self	-
organized: proposed experiments	1377
Fuchs (G.). — See Mélinon (P.)	1585

Fuchs (G.). —	See Mélinon	(P.)	•
---------------	-------------	------	---

Gähler (F.). — See Los (J.).	107
Gähler (F.). — See Los (J.)	1431
Gama (V.), Henriques (R.T.), Almeida (M.), Bourbonnais (C.), Pouget (J.P.), Jérome (D.),	
Auban-Senzier (P.) and Gotschy (B.). — Structural and magnetic investigations of the	
Peierls transition of α -(Per) ₂ M(mnt) ₂ with M = Fe and Co	1235
Gandit (Ph.), Terki (F.), Chaussy (J.) and Lejay (P.). — Phase diagram (T, H) investigation	
by direct measurement of dR/dT in a magnetic material.	459
Garapon (C.). — See Nelson (P.R.) .	855
Garel (T.). — See Bascle (J.)	259
Godard (JM.). — See Moret (R.)	1085
Godrèche (C.), Luck (J.M.), Janner (A.) and Janssen (T.) Fractal atomic surfaces of	
	1921

Gompper (G.). — See Goos (J.)	1551
Gompper (G.). — See Kroll (D.M.)	1131
Gonzalvez (L.). — See Coulon (C.)	1153
Goos (J.) and Gompper (G.). — Topological defects in lamellar phases: passages, and their	
fluctuations	1551
Gordon (M.B.), Peretto (P.) and Berchier (D.). — Learning algorithms for perceptrons	
from statistical physics	377
Gotschy (B.). — See Gama (V.) .	1235
Gourdji (M.). — See Etrillard (J.) .	2437
Graja (A.). — See Kushch (N.D.)	1987
Granger (R.), Marqueton (Y.) and Triboulet (R.). — Optical phonons in bulk $Cd_{1-x}Zn_x$ Te	
mixed crystals in the whole composition range	135
Grecu (D.) and Visinescu (A.). — On the lattice corrections to the free energy of kink-	
bearing nonlinear one-dimensional scalar systems .	1541
Grest (G.S.). — See Petsche (I.B.)	1741
Grinberg (M.), Brenier (A.), Boulon (G.), Pedrini (C.), Madej (C.) and Suchocki (A.)	
Jahn-Teller effect in V^{4+} doped $Gd_3Ga_5O_{12}$ garnet	1973
Gritsenko (V.V.). — See Lyubovskii (R.B.)	2411
Grubich (A.O.), Lugovskaya (O.M.) and Cherkas (S.L.) Observation of diffraction ra-	
diation of oscillator on angular distribution measurement	2139
Grüner (G.). — See Donovan (S.) .	1493
Guibé (L.) See Etrillard (J.)	2437
Gupta (A.K.), Jayannavar (A.M.) and Sen (A.K.) Distribution of conductance and its	
universal fluctuations in 1-D disordered, mesoscopic systems	1671
Gutfraind (R.) and Sapoval (B.). — Active surface and adaptability of fractal membranes	
and electrodes	1801
Guthmann (C.). — See Balibar (S.) .	1475
Guyot (P.). — See Menguy (N.)	1953
Haeberlein (M.). — See Fogden (A.)	2371
Halpin-Healy (T.). — See Krug (J.)	2179
Hansen (A.), Hinrichsen (E.L.) and Roux (S.) Non-directed polymers in a random	
medium	1569
Hasenbusch (M.). — Direct Monte Carlo measurement of the surface tension in Ising	
models	753
Heermann (D.). — See Münkel (C.) .	1359
Heger (G.). — See Schiebel (P.)	987
Hello (P.) and Vinet (JY.) Numerical model of transient thermal effects in high power	
optical resonators	717
Hennion (B.). — See Berret (JF.)	1031
Hennion (B.). — See Debeau (M.)	1617
Henriques (R.T.). — See Gama (V.)	1235
Herrmann (H.J.). — See Lauritsen (K.B.)	1941
Higgs (P.G.). — RNA secondary structure: a comparison of real and random sequences	43
Hilhorst (H.J.). — See Thill (M.J.)	2041
Hinrichsen (E.L.). — See Hansen (A.)	1569
Hoareau (A.). — See Mélinon (P.)	1585

Horner (H.). — See Kinzelbach (H.).	1329
Horner (H.). — See Kinzelbach (H.).	1901
Hoser (A.). — See Schiebel (P.) .	987
Hunter (D.L.). — See Bowen (C.)	83
Husslein (Th.). — See Morgenstern (I.)	1043
Husslein (Th.). — See Morgenstern (I.)	1086

Isambert (H.). — See Monceau (P.)	1891
Ivashkevich (E.V.). — See Brankov (J.G.)	1729

Jørgensen (M.). — See Barthel (E.)	1501
Jaekel (MT.) and Reynaud (S.). — Inertia of Casimir energy	1093
Jaekel (MT.) and Reynaud (S.) Quantum fluctuations of position of a mirror in	L
vacuum	1
Jaekel (MT.) and Reynaud (S.). — Quantum Langevin equations and stability.	339
Jan(N.) See Bowen(C.).	83
Jan (N.). — See Ray (T.S.)	2125
Janner (A.). — See Godrèche (C.)	1921
Jannink (G.) Oscillations in the reflectivity of a diffuse polymer layer. An analogy with	
the Ramsauer Townsend effect .	1405
Janssen (T.). — See Godrèche (C.)	1921
Janssen (T.). — See Los (J.)	107
Janssen (T.). — See Los (J.)	1431
Jayannavar (A.M.). — Electronic conduction in highly anisotropic systems .	1969
Jayannavar (A.M.). — See Gupta (A.K.)	1671
Jensen (H.J.), Brechet (Y.) and Douçot (B.) Instabilities of an elastic chain in a random	
potential	611
Jensen (P.). — See Mélinon (P.)	1585
Jérome (D.). — See Auban-Senzier (P.)	871
Jérome (D.). — See Barthel (E.) .	1501
Jérome (D.). — See Gama (V.)	1235
Jérome (D.). — See Wzietek (P.) .	171
Johannsen (I.). — See Liu (Q.)	803
Johannsen (I.). — See Liu (Q.)	821
Julien (J.P.) and Mayou (D.) Solution of self-consistent field equations by the recursion	
method	1861

Kamien (R.D.) and Lubensky (T.C.). — Twisted line liquids	2131
Kamien (R.D.). — Flory exponents from a self-consistent renormalization group	1663
Kaneyoshi (T.). — See Legal (G.)	2115
Karmakar (S.N.). — See Barat (K.)	2007
Kartsovnik (M.V.), Kovalev (A.E.) and Kushch (D.N.). — Magnetotransport investigation	
of the low-temperature state of (BEDT-TTF) ₂ TlHg(SCN) ₄ : evidence for a Peierls-	
type transition	1187
Kay (L.). — See Aussedat (J.)	515

Khater (A.). — See Legal (G.) .	2115
	1493
Kinzelbach (H.) and Horner (H.) Dynamics of manifolds in random media: the self-	
consistent Hartree approximation	1329
Kinzelbach (H.) and Horner (H.). — Dynamics of manifolds in random media II: long	
range correlations in the disordered medium .	1901
Kirin (D.). — See Krauzman (M.) .	1007
Klinowski (J.). – See Cvijović (D.) .	909
Ko (D.Y.K.). — See Binder (PM.)	21
Kolesík (M.) and Šamaj (L.). — New variational series expansions for lattice models	93
Kopylov (V.N.) and Palnichenko (A.V.) Specific heat of the high T _c organic supercon-	
ductor κ -(ET) ₂ Cu[N(CN) ₂]Br .	693
Köstler (H.). — See Nédellec (P.)	2285
Kovalev (A.E.). — See Kartsovnik (M.V.)	1187
Krauzman (M.), Colline (A.), Kirin (D.), Pick (R.M.) and Toupry (N.) Dynamics of the	
commensurate-incommensurate phase transition in $C_2O_4DND_4$, $1/2D_2O$: a polarized	
Raman study under pressure	1007
Krekels (T.). — See Milat (O.)	1219
Kroll (D.M.) and Gompper (G.). — Floppy tethered networks	1131
Krug (J.) and Halpin-Healy (T.) Directed polymers in the presence of columnar	
disorder	2179
Krygowski (T.M.). — See Kushch (N.D.)	1987
Kupke (T.) and Trebin (HR.). — Planes and rows in icosahedral quasilattices	1629
Kurchan (J.), Parisi (G.) and Virasoro (M.A.). — Barriers and metastable states as saddle	
points in the replica approach	1819
Kushch (D.N.). — See Kartsovnik (M.V.)	1187
Kushch (N.D.), Majchrzak (I.), Ciesielski (W.), Graja (A.), Woźniak (K.) and Krygowski	
(T.M.). — New sulfur-fullerite; its preparation, structure and spectral properties .	1987
	2397
Ladieu (F.) and Bouchaud (JP.). — Conductance statistics in small GaAs:Si wires at low	
temperatures. I. Theoretical analysis: truncated quantum fluctuations in insulating	
	2311
Ladieu (F.), Mailly (D.) and Sanquer (M.). — Conductance statistics in small insulating	
GaAs:Si wires at low temperature. II: experimental study	2321
Lambin (Ph.), Senet (P.), Castiaux (A.) and Philippe (L.) Surface dielectric response	–
	1417
Lançon (F.). — See Eymery (J.) .	787
	1873
	1953
Lauritsen (K.B.), Moukarzel (C.) and Herrmann (H.J.). — Statistical laws and mechanics	
	1941
Le Caër (G.) and Delannay (R.). — The administrative divisions of mainland France as 2D	
	1777
Lecheminant (P.). — Semiclassical limit and quantum chaos	299
	2017
Lefèvre (E.). — See Tafreshi (M.A.) .	1649

Lefèvre (O.) and Nadal (JP.). — Relevant parameters for a class of sequence-retrieving	1202
neural networks	1303
Lefrant (S.). — See Auban-Senzier (P.)	871
Legal (G.), Khater (A.) and Kaneyoshi (T.). — Phase diagram at a disordered interface	0115
between two ferromagnetic Ising systems	2115
Legris (A.), Rullier-Albenque (F.), Radeva (E.) and Lejay (P.). — Effects of electron irra-	1405
diation on YBa ₂ Cu ₃ O _{7-δ} superconductor	1605 459
Lejay (P.). — See Gandit (Ph.) . Lejay (P.). — See Legris (A.)	
Lenoir (C.). — See Legils (A.)	1605
	871
Lévy (JC.S.). — See Monceau (P.)	1891
Lévy (L.P.). — Reptation and hysteresis in disordered magnets.	533
	2371
	2063
	2079
Liu (Q.), Ravy (S.), Pouget (J.P.), Johannsen (I.) and Bechgaard (K.). — X-ray investiga- tion of the tetramethyldithiadiselenafulvalene (TMDTDSF) ₂ X series of organic con-	
ductors. I. Study of the orientational disorder of the TMDTDSF molecule	803
Liu (Q.), Ravy (S.), Pouget (J.P.), Johannsen (I.) and Bechgaard (K.). — X-ray investiga-	003
tion of the tetramethyldithiadiselenafulvalene (TMDTDSF) ₂ X series of organic con-	
ductors. II. Influence of the orientational disorder on the structural instabilities	821
	1153
Livage (C.). — See Coulon (C.) Los (J.), Janssen (T.) and Gähler (F.). — Phonons in models for icosahedral quasicrystals:	1155
	1431
	1431
Los (J.), Janssen (T.) and Gähler (F.). — Scaling properties of vibrational spectra and eigen-	107
states for tiling models of icosahedral quasicrystals .	107
	1245
Lou (L.). — See Nelson (P.R.)	855
	2397
Lu-Jun (C.), Ning (W.) and Enze (L.). — Effect of discrete charge distribution of adsorbed	1050
	1053
	2131
	1921
	2139
r	1245
Lupei (V.), Lou (L.), Boulon (G.), Lupei (A.) and Tiseanu (C.). — Static and dynamic	
I	1245
	2411
Lyubovskii (R.B.), Lyubovskaya (R.N.), Dyachenko (O.A.), Gritsenko (V.V.), Makova	
(M.K.) and Merzhanov (V.A.) New organic superconductor based on deuterated	
bis(ethylenedithio)-tetrathiafulvalene, κ -(d ₈ -ET) ₄ (HgBr ₂ . Hg ₂ Br ₆)	2411

Madej (C.). — See Grinberg (M.)	1973
Mahoux (G.) and Mehta (M.L.). — Corrigendum and addendum to section 3 of "Level	
spacing function and non linear differential equations"	1507
Mahoux (G.) and Mehta (M.L.). — Level spacing functions and non linear differential	
equations.	697

Maillard (JM.). — See Boukraa (S.)	239
Maillard (J.M.). — See Anglès d'Auriac (J.C.).	567
Mailly (D.). — See Ladieu (F.)	2321
Majchrzak (I.). — See Kushch (N.D.)	1987
Makova (M.K.). — See Lyubovskii (R.B.)	2411
Mao (K.) and Eu (B.C.). — Relativistic Boltzmann equation and relativistic irreversible thermodynamics	
Maret (M.), Lançon (F.) and Billard (L.) Bond-orientational order in liquid alumi-	
$nium_{80}$ -transition metal ₂₀ alloys .	1873
Marqueton (Y.). — See Granger (R.)	135
Martin (J.D.), Doublet (ML.) and Canadell (E.). — Comparison of the electronic structures of the BEDT-TTF ₄ [M(CN) ₄] (M = Ni, Pt) and BEDT-TTF ₄ [M(C ₂ O ₄) ₂] (M =	
Pt, Cu) salts. Structural requirements for hidden Fermi surface nesting.	2451
Matuttis (HG.). — See Morgenstern (I.)	1043
Matuttis (HG.). — See Morgenstern (I.)	1086
Mayou (D.). — See Julien (J.P.) .	1861
Mazot (Ph.). — See Pautrot (S.)	1209
Mazuer (J.). — See Aussedat (J.).	515
Mehta (M.L.). — See Mahoux (G.) .	1507
Mehta (M.L.). — See Mahoux (G.)	697
Mélinon (P.), Fuchs (G.), Cabaud (B.), Hoareau (A.), Jensen (P.), Paillard (V.) and Treilleux (M.). — Low-energy cluster beam deposition: do you need it ?	1585
Menaucourt (J.) Krypton adsorption at 68.85 K on (0001) graphite pre-plated with	
ethylene. (Text in French)	1201
Menci (N.), Colafrancesco (S.) and Biferale (L.). — Monte Carlo simulations of aggrega- tion phenomena	1105
Menguy (N.), de Boissieu (M.), Guyot (P.), Audier (M.), Elkaim (E.) and Lauriat (J.P.). —	1105
Single crystal X-ray study of a modulated icosahedral AlCuFe phase	1953
Merzhanov (V.A.) See Lyubovskii (R.B.)	2411
Mihalkovič (M.) and Mrafko (P.) Icosahedral quasicrystals: tilings of icosahedral clus-	
ters	687
	1010
tetrahedral chains in Ga- and Co-substituted YBCO intergrowths	1219
riance	1717
Monasson (R.). — Storage of spatially correlated patterns in autoassociative memories .	
Monceau (P.), Lévy (JC.S.), Isambert (H.) and Berger (D.) Optical diffraction of	
stretched lacunary spring networks	1891
Monge (J.L.). — See Bouchriha (H.)	203
Monod (P.). — See Aussedat (J.)	515
Moraes (F.). — See de Miranda-Neto (J.A.)	29
Moraes (F.). — See de Miranda-Neto (J.A.)	1119
	2299
Moret (R.), Ravy (S.) and Godard (JM.). — X-ray diffuse scattering study of the orienta-	1005
tional ordering in single crystal C_{60} . (<i>Erratum</i>)	1085
Morgensiern (1.), Hussiein (1.1.), Singer (J.M.) and Matuttis (HG.). — Double layer Hub-	1042
bard model: off-diagonal long range order in the nodeless d-wave channel Morgenstern (I.), Husslein (Th.), Singer (J.M.) and Matuttis (HG.). — Numerical simu-	1043
	1086
lation of the double layer Hubbard model. (Erratum).	1000

Mouhanna (D.). — See Azaria (P.)	291
Moukarzel (C.). — See Lauritsen (K.B.)	1941
Mrafko (P.). — See Mihalkovič (M.)	687
Münkel (C.) and Heermann (D.). — The crumpling transition of dynamically triangulated	l
random surfaces	1359
Muttalib (K.A.). — See Avishai (Y.) .	2343
Muttalib (K.A.). — See Slevin (K.)	1387

Nadal (JP.). — See Lefèvre (O.)	1303
Nakanishi (H.), Sahimi (M.), Robertson (M.C.), Sammis (C.C.) and Rintoul (M.D.)	
Fractal properties of the distribution of earthquake hypocenters .	733
Nasser (J.). — See Bousseksou (A.)	1463
Nédellec (P.), Dumoulin (L.), Burger (J.P.), Bernas (H.), Köstler (H.) and Traverse (A.)	
Inhomogeneous magnesium hydride synthesized by low temperature ion implantation:	
weak localization effect	2285
Nelson (P.R.), Lou (L.), Boulon (G.), Garapon (C.) and Pedrini (C.) Anomalous exci-	
tation profile and its relationship to multiple dopan sites in (Nd, Cr)YAlO ₃	855
Nimtz (G.). — See Enders (A.)	1089
Ning (W.). — See Lu-Jun (C.)	1053
Nozières (P.). — Amplitude expansion for the Grinfeld instability due to uniaxial stress at	
a solid surface.	681

Odin (J.). — See Aussedat (J.)	515
Oguey (C.) and Sadoc (JF.) Crystallographic aspects of the Bonnet transformation for	•
periodic minimal surfaces (and crystals of films)	839
Olvera de la Cruz (M.) See Bassler (K.E.)	2387
Orland (H.). — See Barthélémy (M.)	2171
Orland (H.). — See Bascle (J.)	259
Owczarek (A.L.). — See Binder (PM.)	21

Paillard (V.). — See Mélinon (P.) .	1585
Paladin (G.). — See Crisanti (A.)	1993
Palnichenko (A.V.). — See Kopylov (V.N.).	693
Pannetier (B.). — See Runge (K.)	389
Parisi (G.) and Ritort (F.). — The remanent magnetization in spin-glass models	969
Parisi (G.). — Charge density waves and the replica method .	579
Parisi (G.). — See Ciria (J.C.)	2207
Parisi (G.). — See Kurchan (J.)	1819
Parlebas (J.C.). — See Rakotomahevitra (A.)	2299
Paulsen (C.). — See Brückel (Th.)	1839
Pautrot (S.), Mazot (Ph.) and de Fouquet (J.) Characterization of vacancy-calcium	1
dipole by electric and mechanical relaxation measurements in single crystals of calcied	l
zirconia. (Text in French)	1209
Pedrini (C.). — See Grinberg (M.)	1973
Pedrini (C.). — See Nelson (P.R.)	855

Péneau (A.). — See Etrillard (J.) .	2437
Peretto (P.). — See Gordon (M.B.)	377
Pernot (P.). — See El Hafidi (M.)	371
Perrier de la Bathie (R.). — See Beaugnon (E.)	399
Petsche (I.B.) and Grest (G.S.) Molecular dynamics simulations of the structure o	f
closed tethered membranes .	1741
Philippe (L.). — See Lambin (Ph.)	1417
Pichard (JL.). — See Avishai (Y.) .	2343
Pichard (JL.). — See Slevin (K.) .	1387
Pick (R.M.). — See Krauzman (M.)	1007
Pimpinelli (A.), Villain (J.) and Wolf (D.E.). — Fractal terraces in MBE growth .	447
Plakhov (A.Yu.). — See Semenov (S.A.)	767
Plischke (M.). — See Siegert (M.) .	1371
Polo (V.). — See El Hafidi (M.)	371
Pomeau (Y.). — Bifurcation in a random environment	365
Pouget (J.P.). — See Gama (V.)	1235
Pouget (J.P.). — See Liu (Q.) .	803
Pouget (J.P.). — See Liu (Q.) \ldots	821
Prandl (W.). — See Brückel (Th.)	1839
Prandl (W.). — See Schiebel (P.)	987
Priezzhev (V.B.). — See Brankov (J.G.)	1729
Pumpyan (P.E.). — See Bulbich (A.A.) .	1175

Quirion (G.). - See Barthel (E.) .

Radeva (E.). — See Legris (A.)	1605
Radulescu (O.). — A classification of the periodic directions in the rational approximants of icosahedral quasicrystals .	
Radulescu (O.). — A classification of the periodic directions in the rational approximants	
of icosahedral quasicrystals. (Erratum)	2463
Rakotomahevitra (A.), Demangeat (C.), Parlebas (J.C.), Moraitis (G.) and Razafindrakoto	
(E.). — Electronic structure model for single B, C or N adatoms upon graphite .	2299
Ravy (S.). — See Berret (JF.).	1031
Ravy (S.). — See Liu (Q.) .	803
Ravy (S.). — See Liu (Q.)	821
Ravy (S.). — See Moret (R.)	1085
Ray (A.). — See Aussedat (J.)	515
Ray (T.S.) and Jan (N.). — A percolation explanation for the $\pm J$ spin-glass critical temper-	
ature	2125
Razafindrakoto (E.). — See Rakotomahevitra (A.)	2299
Reichardt (W.). — See Debeau (M.)	1617
Reynaud (S.). — See Jaekel (MT.)	339
Reynaud (S.). — See Jaekel (MT.)	1093
Reynaud (S.). — See Jaekel (MT.)	1

1501

Rintoul (M.D.). — See Nakanishi (H.) .	733
Ritchey (I.). — See Chandra (P.)	591
Ritort (F.). — See Ciria (J.C.)	2207
Ritort (F.). — See Parisi (G.)	969
Robertson (M.C.). — See Nakanishi (H.) .	733
Rolley (E.). — See Balibar (S.)	1475
Romdhane (S.). — See Bouchriha (H.).	203
Roux (S.). — See Hansen (A.)	1569
Ruiz-Lorenzo (J.J.). — See Ciria (J.C.)	2207
Ruján (P.). — A fast method for calculating the perceptron with maximal stability .	277
Rullier-Albenque (F.). — See Legris (A.)	1605
Runge (K.) and Pannetier (B.). — Vortex decoration on superconducting networks	389

Sadoc (JF.). — See Oguey (C.).	839
Sahimi (M.). — See Nakanishi (H.) .	733
Šamaj (L.). — See Kolesík (M.)	93
Sammis (C.C.). — See Nakanishi (H.)	733
Sanquer (M.). — See Ladieu (F.).	2321
Sapoval (B.). — See Gutfraind (R.)	1801
Schiebel (P.), Hoser (A.), Prandl (W.), Heger (G.) and Schweiss (P.). — Orientational dis	
order in Ni(NH ₃) $_{6}$ I ₂ . Evidence for rotation-translation coupling	987
Schweiss (P.). — See Schiebel (P.)	987
Sebbah (P), Sornette (D.) and Vanneste (C.). — A "wave automaton" for wave propagation	
in the time domain: I. Periodic systems	1259
Sebbah (P.), Sornette (D.) and Vanneste (C.). — A "wave automaton" for wave propagation	
in the time domain: II. Random systems	
Semenov (S.A.) and Plakhov (A.Yu.). — Short-term memory in a sparse clock neural net-	
work	767
Sen (A.K.). — See Gupta (A.K.)	1671
Senet (P.). — See Cupta (A.K.) Senet (P.). — See Lambin (Ph.)	1417
Serva (M.). — See Crisanti (A.)	1993
Sherrington (D.), Wong (K.Y.M.) and Coolen (A.C.C.). — Noise and competition in neural networks	331
Siegert (M.) and Plischke (M.). — Scaling behavior of driven solid-on-solid models with	
	1371
diffusion	1043
Singer (J.M.). — See Morgenstern (I.)	1045
Singer (J.M.). — See Morgenstern (I.)	
Slevin (K.), Pichard (JL.) and Muttalib (K.A.) Maximum entropy ansatz for transmis-	
sion in quantum conductors: a quantitative study in two and three dimensions .	1387
Sornette (A.). — See Fraysse (N.)	1377
Sornette (D.). — Decay of long-range field fluctuations induced by random structures: a	
unified spectral approach	2161
Sornette (D.). — See Fraysse (N.) .	1377
Sornette (D.). — See Sebbah (P.).	1259
Sornette (D.). — See Sebbah (P.) \ldots \ldots \ldots \ldots	1281
Spohn (H.). — Surface dynamics below the roughening transition	69
Stamp (P.C.E.). — Some aspects of singular interactions in condensed Fermi systems .	625

Suchocki (A.). — See Grinberg (M.) .	1973
Sudbø(A.). — See Varma (C.M.).	585
Sulpice (A.). — See Beaugnon (E.) .	399

Tafreshi (M.A.), Csillag (S.), Yuan (Z.W.), Bohm (C.), Lefèvre (E.) and Colliex (C.)	-
Inelastic mean free path and phase-shift determinations in NiO, using EXELFS	1649
Tang (LH.). — Island formation in submonolayer epitaxy	935
Temkin (D.É.). — See Brener (E.A.)	2199
Terki (F.). — See Gandit (Ph.)	459
Thill (M.J.) and Hilhorst (H.J.). — Equilibrium scaling laws for layered spin glasses .	2041
Thirteenth Meeting on Statistical Physics .	1677
Tiseanu (C.). — See Lupei (V.)	1245
Titman (J.M.). — See Adnani (N.)	1643
Toudic (B.). — See Etrillard (J.)	2437
Toulouse (G.). — Brain study levels, and physical wisdom. (Text in French).	229
Toupry (N.). — See Krauzman (M.)	1007
Tournier (R.). — See Beaugnon (E.)	399
Trache (M.). — Fluctuation theory for an equilibrium superradiant model .	957
Traverse (A.). — See Nédellec (P.).	2285
Trebin (HR.). — See Kupke (T.)	1629
Treilleux (M.). — See Mélinon (P.)	1585
Tremblay (AM.S.). — See Albinet (G.) .	323
Tremblay (R.R.). — See Albinet (G.)	323
$Triboulet (R.) See Granger (R.) \dots \dots$	135
Turban (L.) and Berche (B.). — Surface geometry and local critical behaviour: the self-	925
avoiding-walk	
Twining (C.J.). — See Binder (PM.)	21

Uehara (M.) and Barbara (B.). — Field and temperature dependence of the mean penetration rate of fluxons in the mixed state of high-T_c superconductors 863

van Saarloos (W.), Caroli (B.) and Caroli (C.). — On the stability of low anisotropy den-	-
drites	741
van Tendeloo (G.). — See Milat (O.)	1219
Vangelisti (R.). — See El Hafidi (M.)	371
Vanneste (C.). — See Sebbah (P.)	1259
Vanneste (C.). — See Sebbah (P.)	1281
Varma (C.M.) and Sudbø(A.) Flux-quantization in one-dimensional copper-oxide	;
models	585
Varret (F.). — See Bousseksou (A.)	1463
Verheij (P.F.A.) and Wenckebach (W.Th.). — Nuclear magnetic ordening in fluorene .	2259
Viana (L.) and Coolen (A.C.C.). — Attraction domains in neural networks	777
Villain (J.). — See Pimpinelli (A.) .	447
Vinet (JY.). — See Hello (P.)	717
Virasoro (M.A.). — See Kurchan (J.)	1819

2480

Visinescu (A.). — See Grecu (D.)	1541
Vulpiani (A.). — See Crisanti (A.) .	1993

AUTHOR INDEX

Warren (P.B.). — A scaling correction in cluster-cluster aggregation	1509
Weiss (L.). — See Brückel (Th.)	1839
Wenckebach (W.Th.). — See Verheij (P.F.A.) .	2259
Woźniak (K.). – See Kushch (N.D.)	1987
Wolf (D.E.). — See Pimpinelli (A.)	447
Wong (K.Y.M.). — See Sherrington (D.)	331
Wzietek (P.), Creuzet (F.), Bourbonnais (C.), Jérome (D.), Bechgaard (K.) and Batail (P.)	•
- Nuclear relaxation and electronic correlations in quasi-one-dimensional organic	
conductors. II. Experiments	171
Wzietek (P.). — See Barthel (E.) .	1501

Xu (HJ.), Bergersen (B.) and Chen (K.) A plaquet representation of ruptures a	nd
models for earthquakes .	2029

Yuan (Z.W.). — See Tafreshi (M.A.) .

1649

2481