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Abstract. The deformation of Schoen's gyroid one of the three examples of triply-periodic
minimal surfaces possessing cubic symmetry and genus 3 is discussed. Lower-symmetry
variants (similarly of genus 3) are shown to exist, and the one-variable family of rhombohedrally-
distorted gyroids is constructed and parametrised exactly via the Weierstrass representation.

Introduction.

We regard structure as the manifestation of the coupling of our two basic concepts of force and

geometry. Our scientific understanding relies upon the construction of model systems
facilitating a decoupling of the two concepts. By means of this decomposition we establish

separate sets of rules goveming each. These rules then permit assessment of the level of

interplay between the two in a particular structure the first step towards solution of the

problem as a whole. One may argue that, with increasing sophistication of computer

simulation techniques, a detailed knowledge of force laws alone may suffice, circumventing
this first step. However geometry will remain the ultimate means of classification and

unification of results, erecting the framework of intuition necessary in exploring progressively

more complicated problems. To this end we consider here a novel set of shapes representing
plausible equilibrium interfacial scenarios in a variety of multicomponent systems which are

generating great interest in the fields of science and engineering, but lie outside the range

presently accessible to accurate simulation.

We restrict attention to interfaces possessing
«

global uniformity », in the sense that the

entire surface is completely dictated by any (arbitrarily) small piece of it. For elliptic and

parabolic geometries the simplest representatives spheres and cylinders, respectively are

specified by a single radius value alone, and accordingly, the local environment is absolutely
identical throughout. The simplest representatives of the less-familiar situation of hyperbolic
geometry are minimal (I.e. zero mean curvature) surfaces. Any minimal surface may be
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expressed parametrically in the form [1]

w

(x, y, ?)
=

Re (i w'~, I(i +
w'~), 2 w')R(w') dw', (1)

and is thus specified solely by its particular complex analytic function R(w ). Consequently it

may be generated from any region via analytic continuation of this so-called Weierstrass

function. Note that multiplication of R (w by the constant e'~, for real-valued o, defines a one-

parameter family of isometric minimal surfaces, referred to as the Bonnet associates of the

original (o
=

0) surface [2].

One would anticipate these simplest examples (determined by the least amount of

mathematical input) to be favoured as equilibrium dividing surfaces in fluid partitioning
problems since -their construition offers the easiest routes for self-assembly. This is indeed the

case for mixtures of surfactant with water and/or oil [3], and for block copolymers (with or

without homopolymers) [4], in which the observed structures match these shapes (or
straightforward variants of them). While the observation of spheres and cylinders (including

planes as their common limiting state) conforms to our comfortable geometrical prejudices, the

interpretation of the bicontinuous phases presents a greater challenge. In contrast to the

spherical and cylindrical cases, the parametric representation (I cannot, in general, guarantee
that continuation givgs rise to a complete surface dividing space into two distinct regions (I.e.

sealing inside from outside). The global responsibilities of bicontinuity impose a selectivity,
admitting only particular forms of the Weierstrass function R(w). The ordered partitions
generated by these forms are referred to as intersection-free Infinite Periodic Minimal Surfaces

(IPMS). In this study we identify and parametrise a previously unknown family of such IPMS.

The origin of this family is the simplest (and first discovered) IPMS, reviewed briefly in the

following section.

The D, P and G minimal surfaces.

The D and P surfaces of Schwarz [5] mark the birthplace of IPMS parametrisation. The basic

element of the D surface is defined by the two linear edges (AB and BC) and the planar-curve
edge (AC) sketched in figure I, subject to the boundary conditions of twofold rotational

symmetry across these two straight segments and mirror reflectional symmetry over the curved

segment. Repeated application of these boundary operations yields the 96 such elements

comprising the fundamental unit of the D surface, I-e- the primitive unit cell of the oriented

c

Fig. I. The D surface element ABC, lying within the quadrirectanguiar tetrahedral subdivision of the

unit cube. The numeral I indicates that A is a first-order flat point of the surface.
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surface. The topology and symmetry characterizing this fundamental unit are specified by the

genus of 3 and the space group-subgroup pair Pn3m-Fdlm, respectively [6].
In equation (I) w

is the point in the complex plane stereographically projected from the

Gauss map image of (x, y, z ), I-e- from the point on the unit sphere given by the direction of

the vector normal to the surface there. We derive the Weierstrass function R(w of a given
minimal surface by interpreting particular surface features via equation (I) as necessary

properties of the requisite R (w ). As a complex analytic function is dictated by its singularity
structure, we address the degeneracies of the surface the

«
flat

»
points at which the

Gaussian curvature vanishes. The degree of a flat point (x, y, z is the winding number of the

Gauss map about this site. Its projected norrnal vector w
is then a branch point of the

Weierstrass function, of order equal to the degree less one.

The genus of an IPMS fundamental unit is simply related to the total of its flat point degrees
[7]. In particular, a genus of 3 the lower limit of IPMS topology corresponds to exactly
eight flat points of degree two. An IPMS of genus 3 is then generated by a Weierstrass

function, possessing first order branch points at the set of eight projected normal vectors

w,
~

~,
of the form

8

R (W )
=

e'~ fl (W W, )~ ~~~

,

(2)

=1

w,*W

in which o is taken, without loss of generality, to be real (modulo ar), and the product is

restricted to the finite images [7]. Any such surface (e.g. the D surface discussed above) thus

amounts to a particular choice of (w,)~_ and o.

The second characteristic of an IPMS fundamental unit, its crystallographic symmetry, is

interpreted in the Gauss map as orientational symmetry, describing the pattem of the

distribution of flat point normal vectors on the unit sphere, or equivalently, their projected
distribution in the complex ~u-plane [7, 8]. The basis for classification of these pattems is the

list of regular geodesic triangulations of the sphere [9]. Thus, for IPMS of genus 3, we analyse

the possible pattems of a set of eight points (representing (w,)~
~) with respect to the

projections of these triangula# tilings ~

The most symmetric option is provided by the spherical triangle with edges given by the

three great circle arcs meeting at vertex angles ar/3, ar/2 and WM. On reflection, 48 of these

triangles perfectly tile the sphere, as shown in projection in figure 2. The set of eight

ar/3 vertices of the tiling are symmetrically equivalent under the group defined by these

operations. Choosing (w,)~ to coincide with their positions, I-e- (0, ct~,
~,

'" 2

e' ~ ~~~, e~' ~ "'~, /, / e'"~~, / e~'"~~
,

the resulting Weierstrass functional/ /
form is given from equation (2), on expansion, by

)

R(w )
=

e'~ ~j
w

~
+

~ /
w

~ l
~~~

(3)
4

In this case the entire pattem is derived by (projected) reflection of the single triangle (the

region shaded in Fig. 2). On substitution of equation (3), the evaluation of equation (I within

this region of the ~u-plane yields the basic element of the surface. Reflection of the triangle then

defines the analytic continuation of the Weierstrass function to the adjoining region, and

accordingly, the extension of the surface element via equation (I). Repeating this procedure,
the 96 triangles comprising two identical copies of the tiling in figure 2 spanning the
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w

Fig. 2. The complex a-plane, decorated with the stereographically-projected tiling of the unit sphere
generated by the (ar/3, ar/2, arm) geodesic triangle (corresponding to the shaded region A'B'C'). The

eight «/3 vertex sites (implicity including the point at infinity), affixed with the numeral I, are the first-

order branch points of the Weierswass function in equation (3).

complete domain of single-valued definition of the dual-valued Weierstrass function in

equation (3) generate the 96 surface elements forming the fundamental unit.

As mentioned above, this approach imposes orientational order on the minimal surface, a

necessary but insufficient condition to guarantee translational order giving rise to an IPMS. To

ascertain this property one must further analyse the real space manifestation of the symmetries
of the image space tiling [7, 8J.

For the value o
=

0 the triangle edge reflection continuing the Weierstrass function in

equation (3) effects a pure crystallographic extension of the surface element. From equation (I)
the bounding segments AB and BC of the element, with images corresponding to the triangle
edges A'B' and B'C' in figure 2, must be straight lines defining axes of twofold rotation, while

the third segment AC (imaged to A'C') must lie in a plane defining mirror reflection. Hence,

on comparison with figure I, the case o
=

0 is precisely the Weierstrass function of the D

surface (given in a form different, but equivalent, to the usual equation [5] due to our choice of

coordinate orientation implicit in Fig. 2).
The property of pure crystallographic extension is shared by the o

=
ar/2 surface, termed the

«
adjoint

» to the o
=

0 surface. However now the roles are reversed, with the triangle edges
A'B' and B'C' giving rise to mirror plane curves AB and BC, and A'C' a twofold rotational

line AC, bounding the surface element. This element, inscribed in the quadrirectangular
tetrahedron in figure 3, is precisely that of the P surface. The familiar (genus 3) fundamental

unit, constructed from the 96 such elements, possesses the symmetry Im3m-Pm3m [6].
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I

c

Fig. 3. The P surface element, labelled analogously to figure 1. In both cases the projected Gauss map
image of the element is the shaded triangle in figure 2 (with the prime symbols denoting the

corresponding vertex images).

The crystallographic nature of the boundary conditions renders visualization of the D and P

surfaces straightforward. For example, one may view the surface patch bounded by the

shortest straight line circuit (obtained by mirror reflection(s) of the elements in Figs. I and 3)
by dipping a wire frame into soap solution. Similarly it permits immediate classification of the

symmetries of these two surfaces, and verification that both are free from self-intersections.

Now consider the intermediate range 0
<

o
<

ar/2 of the Bonnet associate family generated
by equation (3) (note that the surface for o is symmetrically equivalent to its countenlart for

o by virtue of the invariance of figure 2 under the operation
w ~

i3, I.e. reflection in the real

axis Im
w =

0). This range is more difficult to assess since the analytic continuation of the

Weierstrass function effected by the triangle reflection does not possess a simple geometric
interpretation in real space. The surface element is no longer bounded by straight lines and/or

planar curves, and its extension via equation (I) now represents a complicated hybrid of

twofold rotation and mirror reflection. The only point group symmetries retained from the

original surface are the perpendicular rotational symmetries (I.e. the invariances on rotation

about a surface normal, with or without inversion through the surface point) [7, 8].
Translational order can only result if the spatial distribution of these point group symmetries is

globally consistent with a three-dimensional space group. It is found that imposition of a single
constraint is necessary and sufficient to force this lock-in of sites, reducing the problem to the

solution of one equation in the one degree of freedom o. Schoen discovered that there exists

one (and only one) value : o
=

0.66348 (= 38.015° ) giving rise to an ordered surface without

self-intersections, christened the gyroid [10]. The gyroid (or G, or Y*, surface) has genus 3

and symmetry Ia3d-14132 [6].

The D, P and G surfaces together serve as a spectacular illustration of the utility of the

Weierstrass representation (I). The existence of the D and P surfaces is apparent from the

initial statement of the boundary value problems defining their surface elements. The solutions

of these problems, then supplying the quantitative surface details, may be derived by ad hoc
methods based on assumptions of particular functional forms goveming their implicit
equations [I Ii. However the generality of the parametric equation (I) provides an economical

unification of their descriptions via the simple transformation relating the two surfaces.

Importantly this transformation also yields the G surface, inaccessible by any other means

owing to the inseparability of its existence problem and its solution.

The family of three Bonnet-related surfaces constitute the only intersection-free IPMS of

genus 3 and cubic symmetry. As such, they are the simplest bicontinuous partitions. One of the
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earliest examples in their rapidly expanding range of applications involved modelling the

shapes underlying
«

cubic phases
»

of lyotropic liquid crystalline assemblies [12J. Closer

inspection revealed that this compositional region of the phase diagram is often sheathed by so-

called
«

intermediate phase
»

regions. The available information suggests that these inter-

mediates are likewise described by hyperbolic geometry, but of lower (typically rhombohedral

or tetragonal) symmetry. In certain cases [13J the measured unit cell parameters, varying
smoothly through the intermediate region, pass (nearly) continuously across the phase
boundary to the cubic region, implying that the cubic structure is merely the maximal

symmetry endpoint of the intermediate structural family.
To geometrically model these transitions we consider lower-symmetry IPMS families

derived from cubic IPMS. In keeping with our limitation to the simplest such surfaces (D, P

and G), we restrict the analysis to the simplest of their generalizations, for which the topology
is preserved throughout. With the genus retaining its value of 3, the preliminary results

opening this section still apply specifically, the Weierstrass function retains the form given
in equation (2). The task is thus reduced to studying the effect of symmetry reduction on

(w,)~_ and o. The following section addresses one particular mode of degradation.

Rhombohedral generalizations.

The abovementioned nature of the bounding segments of the D and P surface elements

facilitates direct derivation of their lower-symmetry variants by crystallographic deformation

of a suitably chosen unit with boundary defined by symmetry operations common to both the

original and degraded space groups. For rhombohedral deformations the unit is taken in both

cases to be the ring-like piece (comprising 48 cubic surface elements) spanned by a pair of

equilateral triangles related by ar/3 screw rotation along their common axis [10, 14J. The one-

variable family is then generated by stretching along this axis. Since the D and P surfaces are

both special cases of this stretch, their rhombohedral generalizations are coincident (up to

reorientation) and are denoted the rPD family. The surface element ABDC of a typical family
member, delimited by the adjacent mirror planes slicing one-sixth of the ring,like piece, is

displayed in figure 4. Note that the element possesses an intemal twofold rotational symmetry

penlendicular to the surface (and to the stretch axis). The rPD fundamental unit, constituting

two ring-like pieces, has symmetry R3m-R3m(2c) [6J.

i

'

'

'

,

'

t

A

Fig, 4. An rPD surface element ABDC. Each of its four vertices is a first-order flat point (with the

pairs A and D, together with B and C, interchanged via the intemal twofold symmetry).
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In the projected Gauss map the rhombohedral deformation of the D and P surfaces

corresponds to systematic degradation of the group of reflection symmetries given by the tile

edges in figure 2 [8J. The six circles are removed, leaving the three straight line reflection axes

(Im (w ~)
=

0 ), together with the symmetry operations produced by composition of reflections

across the pairs of these circles intersecting penlendicularly at the six sites w~
=

I. The

reduced subdivision underlies figure 5, with the open circles marking these six sites. The

(genetic) set of two vertices and six edge points is (0, ct~, t, t
e'~"~~, te~~~"~~,

,

e~ "~~, e~ ' "~~

,

where t ~
0. Taking this one-variable pattem as w

,

(represented
t t t

by the filled pircles affixed with the numeral I in Fig. 5), substitution into equation (2),

followed by expansion, gives

-1/2

R(w )
=

e'~
w w

~
+ t~

w
~ l (4)

t~

The pattem is generated by reflection alone from the shaded region A'B'D'C' in figure 5, the

region of integration in equation (I) giving rise to the surface element.

D'

o

o

Re6J

o o

o

Fig. 5. Degradation of figure 2, preserving only the straight-line reflection axes at angles «/3 and the

twofold rotational symmetries at the open-circle sites. The shaded region now defines the smallest

reflectional unit of the reduced tiling. The eight points labelled I are the symmetry images of the origin
A' and the variable edge point B' (w =t), e.g. the point at infinity D' and the edge point
C' (w

=
I/t e'"'~)

are their respective images under the twofold operation at w =

e'"'~ These eight sites

constitute the first-order branch points in equation (4).

For o
=

0 (respectively o
=

ar/2) the segments A'B' and D'C' (respectively A'C' and

D'B') become twofold rotational lines on the element boundary, closed by the mirror plane

curves from the segments A'C' and D'B' (respectively A'B' and D'C'). By comparison with

the discussion in the preceding section, this pair of one-parameter families defines exactly the

rhombohedral deformations of the D and P surfaces, respectively, restoring the cubic IPMS as

the special case t
=

Further, combination of equations (I) and (4) verifies that the two are/

the same, mapping onto each other by the reorientational transformation
w ~

(and
w
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t ~
). Hence the rPD family is defined continuously and uniquely via equation (4) by the

t

juxtaposition of 9
=

0 for 0
< t « I and o

=
ar/2 for I m t ~

0, or equivalently by

o
=

0 only (say) for all t ~
0 (the latter now giving the D and P surfaces at t

=
and/

t
=

/, respectively).
In precise analogy with the cubic case, the in-surface twofold lines and the mirror planes of

these two Bonnet endpoints are non-existent in the bridging range 0
<

em ar/2 (with the

surface for o again equivalent to that for o since reflection symmetry in Im
w =

0 is

preserved in Fig. 5), necessitating a more detailed consideration of global surface properties. It

is now found that the requirement of translational order imposes a pair of extemal constraints,

I-e- a system of two coupled equations in the two free variables t and o. However the sole

solution in the range 0~t «1, 0~ o
~

ar/2 which further satisfies the intersection-free

criterion is t
=

,

o
=

0.66348, recovering the cubic G surface of Schoen./
Thus the generalization of the cubic surfaces D and P to the rPD family does not support a

corresponding generalization of their associate surface G. (This corrects an earlier assertion by

one of the authors [14J.) The gyroid cannot be reduced in symmetry rhombohedrally by
composition of this deformation of the parent D (or P) surface with Bonnet transformation,

replicating Schoen's conclusion regarding orthorhombic deformations [10J. Hence this

particular route cannot lead to any additional freedom.

Schoen extends his conclusion with the proposition that
«

there does not exist any body-
centred orthorhombic version of G, however it is obtained », as evidence for his belief in the

likelihood that
«

G may not have any variant forms of lower symmetry »
ii 0]. Accordingly it is

widely assumed in the literature that the gyroid is rigid within the class of intersection-free

IPMS. Assessment of the validity of this assumption is complicated by the earlier-mentioned

inseparability of existence and solution for IPMS devoid of both in-surface twofold rotation

and mirror reflection operations. In the remainder of this study we resolve this open question
via explicit construction of the family of rhombohedral variants.

The above observations regarding the Weierstrass functional form (4) indicate that the

present rhombohedral deformation is an insufficiently general basis for the associate family. It

is necessary to consider further generalization, corresponding to degradation of the group of

symmetry operations in figure 5, admitting a symmetry reduction within its generic set of eight
points. The obvious step is removal of the three straight line reflection axes, retaining however

the threefold symmetry induced by composition at their two intersection sites (the origin and

the point at infinity). This reduced pattem, underlying figure 6, fumishes the (generic) set of

~jgh~p~j~~~ jo ~ ~ ~
~12w/3

~
~-,2w/3 ~l 1~,w/3 ~_;w/3)

~h~~~ ~ ~~ ~~~~
, ,

0, 0 , 0 , ,
~

, ,
0

W0 0 W0

complex number. Identifying this two-variable set as w, ) ~ (represented by the distribution

of filled circles bearing the numeral I in Fig. 6), equation (2) now yields

(w)=e'~lw
w~+ ~~-w/ w~-1

~~~

(5)
wo

Without loss of generality we may restrict wo =

te'4 to lie in the region defined by

t
= wo ~

0 ar/6
<

4
= arg w~ w

I For an arbitrary such value, the smallest symmetry
' 6

unit (taken for example as this region arg w w
I shaded in Fig. 6) is no longer delimited

' ' 6
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Fig. 6. Degradation of figure 5, replacing the reflection axes by threefold symmetry sites (triangle
symbol) at the origin and at infinity. The shaded region represents a basic unit of the scheme, and

contains the point wo =
i e". The rotational operations give rise to the set of six related points which,

together with the threefold sites, define the eight branch points (marked I) of the Weierstrass function in

equation (5).

by edges of reflection it now generates the entire pattem via the twofold (open circle

symbol)- and threefold (triangle symbol)- composite operations alone. Consequently the basic

surface element, obtained by integration of equation (5) in the representation (I) over this

region, cannot be extended by a «
boundary segment-fixing

»
crystallographic mechanism for

any o value. Instead the element is swivelled around its boundary by the perpendicular
rotational symmetries 2 and 3 effected by these composite operations, for all o.

Note that the Weierstrass function in equation (5) embraces all previously known examples
of genus 3, intersection-free IPMS with (at least) trigonal symmetry. Clearly it degenerates
into the two-variable form (4) for the special case 4

=

0. At the other extreme, the limit

4
=

ar/6 gives the two-variable family

-1/2

R(w )
=

e'~
w

w~ I j + t~
w

~ l
,

(6)
t

which likewise restores reflection axes in figure 6, now delimiting the region [arg
w w

"

,6

w w I as the smallest symmetry unit. For this orientation the values o
=

±
I correspond to
4

the pair of cases for which these reflection axes are realised as twofold rotational lines and

mirror plane curves bounding the surface element. Specifically, o
=

fi defines the one-
4

variable family of H surfaces discovered by Schwarz [5J, while the o
=

" (adjoint H) surfaces
4

are (crystallographically) self-intersecting. The bridging range
"

<
o

<

" (with the surface
4 4

for o now symmetrically equivalent to that for ar/2- o by virtue of the symmetry

W ~

e'"'~ &, i-e- the reflection axis Im (e~'"'w
=

o) was investigated in a previous study by
one of the authors [15J. The two conditions in t and o necessary for translational order were

found to yield an intersection-free IPMS for the solutions t=o.5361 and o
=

o.3353

(= 19.21°). This IPMS, denoted here the HG surface, possesses fundamental unit of symmetry
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R3c-R32 [16J. Significantly, it represents a simple counterexample to Schoen's claim,

regarding his G surface, that
«

it is considered highly unlikely that any other intersection-free

IPMS containing neither straight lines nor plane lines of curvature will be found
»

[10J.
While the G and HG surfaces are unique within the Bonnet associates of the one-variable

rPD and H surface families, respectively, equation (5) supplies the extra degree of freedom, 4,

necessary to relax their rigidity. The original states ((t,4)=
~,0

and/

(t, 4 )
m (0.5361,

" ), respectively) may now be perturbed two-dimensionally throughout
6

their generic neighbourhood in the complex wo-plane. This will open up a one-dimensional

continuum of solutions (corresponding to intersection-free IPMS) emanating from the two

sources. Further, the unifying nature of equation (5) dictates that these two solution curves may
be smoothly continued into each other. This single curve will then be the required one-variable

generalization connecting the previously isolated G and HG surfaces. By establishing the link,
this new family, denoted rG, thus provides the simplest path of continuous, zero mean

cun~ature-preserving access between the rPD and H families. The stretched rPD family is

relaxed to restore the cubic special case (either D or P), which is first bent (via the Bonnet

transform) into G, distorted into HG, and then bent back to the H surface to regain its generic
degree of stretching freedom.

The quantitative features of the numerically generated rG family are presented in the

following section.

Results.

The one-variable rG family is defined by the two equations in the set of three variables, 4, t, o

imposing translational order. The family is conveniently indexed by 4 such that, for a

particular member I-e- 4 value, the system is solved for the corresponding t and o values fixing
the branch point position and the Bonnet angle. The pair of equations, obtained via substitution

of equation (5) into the representation (I), enforce the lock-in of parallel threefold axis sites.

As they are identical to the constraints applied previously to the HG surface [15J, the solution

procedure is not detailed here. It is computationally well-behaved since the coupling between

the two variables t and o is only slight.
Note that the absence of edges of reflection symmetry in figure 6 (in particular, the axis

Im
w

=0 for the rPD family and Im (e~'"~~w) =0 for the H family) removes any
symmetrical degeneracies within the full range of o (modulo ar). Thus, in the interval

OS 4 w ar/6 there exist distinct pairs of solution families diverging in 4 m 0 from the two

symmetrically equivalent 4
=

0 values (o
m

0.66348 and o
m

0.66348) for the G surface

and similarly in 4 w ar/6 from the 4
=

ar/6 altematives (o
m

0.3353 and o
m

I 0.3353) for
2

the HG surface. It is found that the families corresponding to the first-mentioned o option in

these two cases merge continuously into the connecting solution. The solution thus derived,
I.e. the polar coordinate curve t

=

t(4 and the association parameter curve o
=

o (4 ) for

OS 4 w
ar/6, is plotted in figure 7.

The simple nature of the trends in these variables is likewise manifested in the appearance of

the rG surface family itself. In figure 8 the scan of the range displays surface pieces of this

solution family for three different 4 values. In each case the pieces are generated from identical

regions of the complex w~plane and are viewed down the common threefold axis direction. The

intermediate member ~b =
ar/9 in figure 8b confirms the monotonic transition reducing the

tunnels in this direction from their largest width in the G surface case 4
=

0 (Fig. 8a) to their

smallest at the HG case 4
=

gr/6 (Fig. 8c).
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zf4

# (tad.)

0.3353

0

II Q5

0.5361 -~

0 '

«/6

4 (rad.)

Fig. 7. The solution defining the entire family of rG surfaces in terms of the single parameter ~b. The

corresponding radial ordinate i (left axis) and Bonnet angle (fight axis) are plotted for each ~b. The special
values ~b =

0 and ~b =

«/6 represent the known cases of the G and HG surfaces, respectively.

Further, recall that there also exist solution families emanating from the two special cases

~b =

0 and 4
=

ar/6 corresponding to their second-mentioned o options above. These two

extra families, on reflection in their bounding axes (I.e. in Imw =0 so w ~
& and

4
~

4, taking o to o, and in Im (e~'"/~
w

)
=

0 so w ~

e'"~~ & and 4
~

ar/3 4, taking
o to ar/2-o, respectively) are smooth continuations of the connecting solution in

OS 4 w
" (given by the first-mentioned values) to the ranges 4 w0 and 4 m ar/6,
6

respectively. The associated solution curves t
=

t(4) and o
=

o(4) in these supporting

ranges are likewise graphed in figure 7. The existence of these extensions is apparent from

extrapolation of the trend illustrated in figure 8. The 4 So family, for which the threefold

tunnels continue to increase in size beyond the G surface value (Fig. 8a), terminates

asymptotically with the case 4
=

ar/6, o
=

arm (symmetrically equivalent to 4
=

ar/6,

o
=

arm), corresponding to the H surface, in the limit t
=

I of infinitely-wide tunnels (so
the periodic surface becomes a single saddle tower). Similarly the ~mar/6 family,
representing a decrease in tunnel width below that of the HG surface (Fig. 8c), ends by
approaching ~

=

ar/3, o
=

0 (symmetrically equivalent to ~
=

0, o
=

ar/2), I.e. the rPD

surface, in its vanishing limit t
=

0.

Taken together, the continuous solution spanning the full range
I

w ~ w
" in figure 7

6 3

defines the entire rG surface family. The symmetry of the (fundamental unit of the) generic rG

surface, classifying the degradation of the cubic G surface, is precisely that of the HG case

quoted above, namely space group-subgroup R3c-R32. The dependence of the ratio

cla of the rhombohedral cell dimenions, together with the surface-to-volume ratio S~/V~, on the

parameter ~ may be readily extracted from the information in figure 7.
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a)

b)

Fig. 8. Computer-generated views of the same piece of the rG surface at (a) 4 0 (the G surface),

(b) ~b =
«/9 and (c) ~b =

«/6 (the HG surface).
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i

C)

Extensions and conclusions.

Although the preceding sections focussed on rhombohedral variants of Schoen's gyroid, the

underlying principles are not limited to this specific distortion. More generally there exists

lower symmetry derivatives of the surface corresponding to systematic degradation of the tiling

pattem projected in figure 2 which preserve (at most) rotational symmetries only and admit of a

generic order-eight set.

Performing a coordinate reorientation, the original tiling is equally well represented in

projection in figure 9. With the ar/3 vertices now residing at the eight positions
~

*

,/

i

~
* ),

~
* ), i

'~
~

), substitution into equation (2) yields
/ / /

R (w
=

e'~ (w ~ 14
w

~
+ l )~ '~~ (7)

While this more familiar form [5] is precisely equivalent to that in equation (3) on application

of the same coordinate transformation to the representation (I), it now facilitates a tetragonal

mode of distortion. Retaining fourfold symmetry at the origin and the point at infinity I.e.

w =

0, ct~ and twofold symmetry at the eight sites
w

~
=

l on the unit circle, the generalised

group (wo, iwo, wo, iwo,
, ,

~, then gives
Ma ma ~°o ma

R(w)=e'~ w~- ~~+w( w~+ll~~~ (8)
ma
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Im4J

Rew

Fig. 9. The projected tiling of the complex plane in figure 2, after a rotation mapping the arm vertex of

the basic dangle (shaded) to the origin and the «/4-«/3 edge along the real axis. The new positions of the

eight «/3 vertices are now the first-order branch points of the function in equation (7).

Here the complex number w~ =

te'4 may be assumed to lie within the region t~0,

OS ~< ". The special case ~ =0, reinstating the reflection axes Im (w~)=0 and
4

w =
I, defines the Bonnet associates of the one-variable family, denoted tD, of tetragonally

distorted D surfaces [8]. As with the rhombohedral rPD case, the pair of equations in t, o retum

the cubic gyroid t
=

~
,

o
m

0.66348 as the only intersection-free IPMS within the/

range 0
<

o
<

ar/2 bridging the tD and tP surfaces. However the presence of the additional

parameter ~b in equation (8) liberates a one-variable family of non-trivial solutions tkom this

source point. These constitute the tetragonal variants tG of the gyroid.
The results of this study, revealing the robust nature of the gyroid, hopefully serve to

demystify this surface. They illustrate that lower-symmetry variants of the gyroid follow from

degradation of the spherical tiling pattem in a manner precisely analogous to that previously
established for its

«
conventional

»
associates, the D and P surfaces [8J.

This observation applies to all IPMS, independent of the intersection-free condition. If the

o A 0 (and hence o
=

ar/2) IPMS possesses an intermediate (0
<

o
<

ar/2 ) Bonnet associate

which is likewise translationally ord£ed (but lacking in-surface, twofold rotation and mirror

reflection symmetries) then both exhibit the same range of order-preserving, deformation

freedom. The D surface only appears special in the sense that this intermediate member is also

free from self-intersections. It is of interest to determine whether any of the (higher genus)

cubic IPMS share this property. A previous investigation retumed a negative answer regarding

the I-WP surface of genus 4 [17]. We have subsequently analysed the simplest two members

jl 8, 19] remaining in the known set [6, 10] of cubic IPMS the F-RD and C (P ) surfaces (of
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genus 6 and 9, respectively). Again no intersection-free associates were revealed. It is

tempting to generalise this trend, since it appears unlikely that a topologically-complicated
IPMS may be bent to the required extent without being forced to pass through itself.
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