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Rksumk. Les propridt6s topologiques et quelques propr16t6s m6triques des d6coupages adminis-

tratifs de la France continentale en ddpartements et en arrondissements ont dt6 6tudides. Elles ne

diffbrent pas des propridtds qui sont mesurdes habituellement dans les tissus biologiques. Ces

rdsultats confirment la variabilitd limitde des corrdlations topologiques des structures cellulaires 2D

d6sordonndes qui ont des valeurs comparables de p~, variance de la distribution du nombre de

c6tds des cellules. Les processus ponctuels planaires Pi et P2, constitu6s respectivement par les

chefs-lieux de ddpartements et d'arrondissements ont 6t6 compar6s h un processus de r6fdrence

forms par les valeurs propres de matrices a16atoires complexes et dissym6triques. Le processus P2

est correctement reprdsentd par le moddle tandis que l'interaction entre les points du processus Pl

est plus rdpulsive.

Abstract. The topological properties and some metric properties of the administrative divisions

of mainland France in departments and in districts have been investigated. They do not differ from

the properties which are usually measured in biological tissues. This confirms the restricted

variability of the topological correlations amongst disordered 2D cellular structures with

comparable values of p~, the variance of the distribution of the number of cell sides. The planar
point processes Pl and P2 constituted by the chief towns of departments and of districts

respectively have been compared to a reference process formed by the eigenvalues of asymmetric
complex random matrices, Process P2 is fairly accounted for by the latter model while the

interaction between the points of Pl is more repulsive.

1. Introduction.

Random 2D and 3D cellular structures occur frequently in Nature from the microscopic scale

to the astronomic scale [1, 2]. They involve all kinds of scientific fields, such as biology

(*) Associd au CNRS, URA 159,

(**) Associd au CNRS, URA 875.
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(epidermal tissues, roots, stems, etc., [3]), materials science (polycrystals (3D) and their cuts

(2D) [4-5], cellular solidification of alloys [6], foams, [7]), geology (crack networks in basalt

flows [8]), geography [9-10], astrophysics (large-scale structure of the universe [I Iii.

The characterization of 2D random space-filling cellular structures includes in general the

distributions of metric and of topological properties of single cells. The properties investigated

are typically : cell area, edge lengths, cell perimeter, angles, number n of edges of cells,

nj w n w n~, where nj =

3 in general. The two-cell correlations of metric or of topological

properties have been less investigated except for m (n), the mean number of edges of the first

neighbour cells of n-sided cells (called here n-cells). A semi-empirical law, the Aboav-Weaire

law [12-13], states that nm(n) is linearly related to n by

nm(n)
=

(6 al n + 6 a + p~ (1)

where p2 is the variance of the distribution P(n) of the number n of edges of cells :

H2 "

(n~) (n)~, with (n)
=

6 for infinite networks because of Euler's relation in 2D [1]

and (nm (n ))
= p 2 + 36 [13]. In many natural random cellular structures, the parameter « a »

is of the order of [12],

In a recent study, Peshkin et al, [14] have drawn again attention to an important two-cell

correlation : M~(n) which is the average number of k-sided neighbours of an n-cell. The

topological correlation functions A~~ (A~~ m 0) defined as [15]

Akn
"

Mk(n j/P (k)
=

Mn(k)/P (n
=

AnI (21

allow topological properties of tissues with different distributions P (n) to be compared. In

recent papers [16-17], we have compared the correlations A,,~ in topological models of 2D

random cellular structures with the correlations found in various natural or simulated cellular

structures, The latter structures include biological tissues with p~ < 1,5, polycrystal cuts with

p~a2, Voronoi froths and various simulated models. We have observed a restricted

variability of the topological correlations in different structures that have similar values of the

variance p~ whatever the scale and the field in which the structures occur. The correlations

further exhibit a regular and smooth change when p~ increases. The shapes of cells do not in

general depart too much from some kind of regularity. Additional conditions imposed by

space-filling [18, 19] strongly constrain 2D random cellular structures and restrict the

accessible ranges of these topological correlations.

As the latter point of view is not yet fully accepted, it is important to seek cellular structures

that may a priori show topological properties that deviate significantly from the previous
behaviour, Human activities have produced numerous «

artificial
»

but disordered cellular

structures, Such patterns, called cellular networ(s, have already been studied by geographers
[9, lo and references therein] with scopes which differ from ours. The aims of the present

paper are to characterize the detailed topological properties of some 2D
«

artificial
»

cellular

structures, namely the administrative division of mainland France in departments (Fig. I) and

its first division in districts (subunits called
«

arrondissements
»

in French) in order to compare

them with the properties of various natural structures. Metric properties of single cells have

also been investigated. Finally, the point processes which are associated with the chief towns

of departments and of districts are compared with the point process generated from the

eigenvalues of complex asymmetric random matrices as proposed previously by Le Ca6r [20-

2l] for Spanish towns [22-23].
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Fig. I.-A schematic representation of the main administrative division of mainland France in

departments. The number of sides of the department of C6te d'or and of its neighbours has also been

indicated. Every department is in tum divided into 3 districts which are not shown,

2. Data and methods.

2.I DATA. The administrative divisions of France (French administrative cellular struc-

tures, called here FACES) have mainly been inherited from the French Revolution, The

number of departments reached its maximum (130) in 1811 at the time of the Napoleonic

conquests and included departments in the present areas of various European countries [24].
The number of departments in mainland France is now 94 while the number of districts is 322

(1.N,S.E.E,), Some of the main French cities (Paris, Lyon, Marseille) are divided in

administrative units also called
«

arrondissements
».

The latter divisions, which differ from

districts, are not taken into account in the present study. In the following, departments or their

districts will be called cells. In order to perforrn a meaningful comparison with natural or

model structures, we will distinguish the cells called frontier cells (F) from the others (called
NF). The NF cells are surrounded by cells (NF and F) which belong to the same family
(Fig. I). The boundaries of frontier cells are partly seaboards or partly frontiers with other

European countries, A cell which shares its border with n different neighbouring cells will be

called an n-cell. The part of a border which belongs to two cells will be called an edge (also

called a contact by Boots [10]) and the intersection of z (m 3) edges will be called a z-valent

vertex. An examination of a detailed administrative map [25] shows that the FACES are such

that two departments (or districts) share at most one edge (except two enclaves, see below) and

that all vertices are trivalent. The latter observation is usual in 2D random cellular structures as

all vertices with z~3 are structurally unstable, as their properties change by small

deformations.

To deterrnine the number of edges of every cell, the following simplifications have been

performed :
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An enclave of the department of Vaucluse in the department of Drbme and an enclave of

the department of Hautes-Pyrdndes in the department of Pyr£n£es Atlantiques have been

neglected ;

The two districts Metz-ville and Metz-campagne and the two districts Strasbourg-ville
and Strasbourg-campagne have been considered as forrning two districts: Metz and

Strasbourg ;

The number of edges of some districts, close to the estuaries of the rivers Seine, Loire

and Garonne, whose borders do not cross the corresponding river has been determined by
assuming that the two river banks only forrn one edge

The urban growth in the region that surrounds Paris has given rise in 1964 to a division of

the departments of Seine and of Seine-et-Oise into seven new departments as well as to new

districts. We have kept the previous department of Seine into account. We have neglected its

recent mitosis to study FACES which do not differ too much from the initial structures.

The previous simplifications have only negligible or even no consequences as some of the

previous departments or districts are frontier cells. The total number of departments and of

districts is consequently reduced to 91 and 310, respectively. Among the latter cells,

N
=

49 departments and N
=

222 districts share no frontier with the sea or with a European

country. In the following the FACES are considered as particular samples that belong to an

ensemble of networks which could have, under similar conditions, been inherited from the

French Revolution. In other words, we assume that the various properties are subject to

fluctuations. This point of view permits us to compare more fruitfully the FACES with

«
experimental

» structures.

2,2 METHODS.- We have studied the point processes formed by the chief towns of

departments and by the chief towns of districts that are located within a rectangle W

(sidelengths : a Mb
~

540 km x 640 km, Fig. 13) whose comers are close to the towns of

Saint-Lb (northwest), Thionville (northeast), Apt (southeast) and Mont-de-Marsan (south-
west). The previous processes are called Pl and P2 respectively. The chief towns of process Pl

also belong to P2. These processes have been analyzed considering that the distance D

between two towns is the distance as the crow flies. We have therefore not taken into account

the geographical differences between the various regions which are for instance due to the

presence of mountains, etc. If Q (D ) is the probability for having a point of the process inside

each of the two circles of areas Ml and dA2 whose centers are separated by D, the pair
correlation function g(D) is defined as [26, 27] :

Q (D )
= p

~
g (D ) dA I

di
2 (3)

where the density p is the number of chief towns per unit area (actually an estimator of pi. For a

Poisson point process, gp(D) is equal to I whatever D. The statistical determination of

g (D ) is performed through an edge~corrected kemel estimator [27-28]. Besides g (D ), we have

also calculated :

I) the cumulative distribution function NN(D) of the distance D from a point of

P, (I
=

1, 2) to its nearest neighbour
2) the cumulative distribution function NR(D) of the distance D from a point taken at

random to the nearest point of P,.

The function NN(D) has been estimated with the help of two asymptotically unbiased

estimators described by Stoyan et al. [26, Chapter 4]. The two estimators give close results

which have been averaged. For estimating the distribution NR (D ), 5 600 sample points are

chosen according to the stratified random sample scheme [29]. All the previous estimators

have been satisfactorily checked with the help of computer simulations of Poisson

(NN (D)
=

NR(D)
=

I exp(- 7rpD~) [9, 26, 29]) and of hard~disc processes,
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3. Topological properties.

3.I DEPARTMENTS. The number of non-frontier departments is N
=

49. Table I gives the
associated distribution P (n of the number of edges and compares it with various distributions

(see also Fig. 2). The average number of sides is (n)
=

5.94 and the second moment is

p~ =

0.91. The average correlation nm(n) (introduction), which can only be calculated for

n =

5 to 7, gives a slope of the Aboav-Weaire line (relation I) of1.2 ± 0,1, A trend for an

asymmetry of P (n) for
n =

5 and 7 is observed in table I. Table I also shows a strong increase
of P (n ) (n w 5 and a correlated decrease of P (6 ) when all departments are taken into account

(see also Tab. III. The number of sides of a border cell is indeed underestimated with respect to

the number of sides of the same cell which would be surrounded by cells in an enlarged tissue
(for instance France in 1811, section 2.I). The distribution P(n) for departments is quite
comparable to distributions P (n in biological tissues [3, 32]. The correlations A,~ (section I)
have not been determined as the number of NF departments is too small.

Table I. Distributions P (n) of the number of sides of : a) all departments N
=

91 (see

Sect. 2.2) b) non-JFontier (NF) departments (N
=

49, pi =

0.91) cl NF departments +

frontier departments which have their frontier much shorter than their other sides (sF,

N
=

56, p~ =

0.93) d) an epidermal epithelium of a loo mm cucumber (N =1000,

pi =

0.64, [3] e) a cellular tissue in a human amnion (N
=

000, p~ =
I.

,

Lewis 1931,

[3]) ; 0 a young soap froth (R. Delannay, unpublished) (N
=

381, pi =
0.93). Errors have

been calculated with the assumption that a sample of size N is drawn from an urn which

contains an infinite number of cells with a proportion P (n) of n-cells.

n P(n) All P(n) NF P(n) sF P(n) P(n) P(n)
Depts Depts Depts Cuc. Hum. young

Amnion soap

3 0.022 0 0 0 0.004 0.003

± 0.002 ± 0.003

4 0.165 0.041 0.036 0.020 0.054 0.050

± 0.028 ± 0.025 ± 0.004 ± 0.007 ± 0.011

5 0.308 0.286 0.250 0.251 0.248 0.247

± 0.064 ± 0.058 ± 0.014 ± 0.014 ± 0.022

6 0.275 0.429 0.429 0.474 0.397 0.444

± 0.071 ± 0.066 ± 0.016 ± 0.015 ± 0.025

7 0.176 0.204 0.232 0.224 0.241 0.202

± 0.058 ± 0.056 ± 0.013 ± 0.014 ± 0.021

8 0.022 0.020 0.036 0.030 0.049 0.047

± 0.020 ± 0.025 ± 0.005 ± 0.007 ± 0.011

9 0.011 0.020 0.018 0.001 0.007 0.008

± 0.020 ± 0.018 ± 0.001 ± 0.003 ± 0.005
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Fig. 2. -Distribution P(n) of number of sides for NF departments (full circles with errors bars,

p2 ~0.91), for an epidermal epithelium of a loo mm cucumber (Tab. I, full triangles, p~=

0,64, [3]), for 2D cellular arrays formed during the directional solidification of Pb-30 wt% Tl alloys with

a growth velocity V 0.85 cm/h (empty triangles, p~ 0.85, [6]) and for a young soap froth (empty

squares, p~ 0.93, Delannay, unpublished).

3.2 DisTRicTs. Table II and figure 3 give the distributions P (n of districts and of cellular

structures taken from different scientific fields. Other comparisons, for instance with the

computer simulation of a 2D froth [31], may be performed. The asymmetry P (5
~

P (7) is

clearly observed for all structures. The average number of sides is (n)
=

5.92 while

p~ =

1.41 ± 0.12. The error is estimated by the method explained in the caption of table I.

Table III and figure 4 prove that nm (n is well described by assuming a linear variation with n

(equation I with 6 replaced by (n)). The parameter a is calculated from a weighted least-

squares fit of nm(n) with weights w~ =
P (n) [15] :

a~ =

((n) (pi + (nm(n)) (n~m(n )))lpi (4)

which yields a~, =

1.07 which is typical of many natural cellular structures (a l. -1.2 ). The

P (n distribution for districts differs from the corresponding distribution in 2D soap froths in

their scaling state [7, 30, 33]. The latter froths are characterized by P (5) P (6). However

some disagreements remain about the detailed P(n) of soap froths and the values of

pi l.4 or 1.2) [30, 33] which are nevertheless close to p~ of districts. The parameter a is I

for the experimental study of 2D soap froths in the scaling state [34], while it is

1.2 ± 0. I in the simulations of a 2D foam by Herdtle and Aref [33]. No detailed correlations

(A,~ or related quantities) have been reported since.

Figure 5 shows a comparison between the correlations A,~ (4 w n, k
w 8) for NF districts and

for a vegetable tissue (Anthurium: pi =1.10, a =1 [32, 35]). Moreover, the A,~ are

compared with the correlations expected for a linear dependence of A~.~ in k and in n [15] :

A~~
= n + k 6 (alp

i
)(n + k 6). (5)

An overall reasonable agreement holds between the experimental A,~ and relation 5 but the

number of cells is too small for asserting the significance of the observed deviations.

Moreover, we notice that relation 5 predicts here (Fig. 5) negative values for A,~ (k
w 4 ) [15].

Relation 5 is expected from the application of the maximum entropy principle with constraints



N° 8 THE 2D FRENCH ADMINISTRATIVE CELLULAR STRUCTURES 1783

Table II. Distributions P (n) (3 w n w lo of the number of sides of al all districts

(N =310, see Sect. 2.2); b) non-fi.oniiei (NF) districts (N =222, pi =1.41); c) a

biologic-al tissue in the stationary state fi.om a computer simulation M'hich includes mitosis and

growth [35] (average P (n ), P (2
=

0.014, pi =

1.71) ; d) a planar section ofa soap foam
after 30 h of giom'th (N

=

3 623, p~ =

1.30, Aboav 1980, [12]) e) the Voronoi fi.oth
generated from eigenvalues of asymmetric complex random matrices (p~ =1.23, [20]).
Bracketed errors in b) hat>e been calculated as e.<.plained in the legend of table I.

n P(n) All P(n) NF P(n) Sim. P(n) Soap P(n)

Districts Districts Biol. Tiss. Froth 30 h RMVF

(± 0.02)

3 0.023 0.009 0.014 0.011 0.0022

(± 0.005) (± 0.0002)

4 0.148 0.104 0.077 0.059 0.069

(± 0.017) (± 0.001)

5 0.284 0.252 0.245 0.265 0.2676

(± 0.025) (± 0.0016)

6 0.287 0.338 0.339 0.373 0.356

(± 0.027) (± 0.003)

7 0.174 0.203 0.214 0.198 0.217

(± 0.023) (± 0.001)

8 0.064 0.077 0.077 0.074 0.0715

(± 0.015) (± 0.0009)

9 0.019 0.018 0.020 0.018 0.0147

(± 0.018) (± 0.0007)

lo 0.019 0 0 0.001 0.0019

(± 0.0003)

imposed on the P (n ). The M,(n (Eq. (2)) are predicted to be linear in n in order to reduce the

number of independent constraints to 2 ((1) =1 and (n) =6) [14]. However, the

observation of linear A,~ does not necessarily imply that P(n) maximizes the entropy

S
=

3P(n) Log (P(n)/7r(n)) with a prior distribution 7r(n). This is not the case for

7r (n
=

I if P (n differs from 0.75 ~" ~ J/4 (n m
3 ).

3.3 DIscussioN. -Lemaitre et al. [36, 37] and Gervois et al. [38] have shown that the

second moment p~ of the distribution P (n) of the number of cell edges in random mosaics

varies quasi-universally with the fraction P (6) of six-sided cells. According to Lemaitre et al.

[37], the relation between p~ and P (6) is the equivalent of the virial equation of state in

statistical mechanics. An approximate relation, pi P(6)
=

3, has been recently discussed

[17]. It yields P (6) with a precision in general better than 5 9b

p( ~l~ P (6
=

0.389 if 0. I s P (6) s 0.7 (6)
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p~ =
,41), for

2D

with a growth velocity V = 0.75 cm/h (empty riangles, p~ = 1,58, [6]) and for an

egetable tissue

of nthurium (N = 1295, full triangles, p~ = I. lo, [32]),
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Fig. 4, -Average correlation nm(n) as a function of n for NF districts (Aboav-Weaire line, see

Tab, III), The statistical significance of 3 m (3 and 9 m (9) (full circles) is weak as there are only 2 and 4

districts with 3 and 9 edges respectively.

The sirrtilarities between the topological properties of districts and recently reported
experimental results and computer simulations (Tab. III and Fig. 5, [32, 35]) of biological
tissues are particularly impressive. All the previous comparisons prove that the topological
properties of NF departments and NF districts do not differ from those of natural structures.

These results agree with the observation of a restricted variability of the topological
correlations for a given pi or a limited range of pi [17]. This does not explain why the

topological properties of NF departments and of NF districts are typical of the class of

biological tissues (see however section 6) although those of districts are close to the boundary
region between biological tissues and soap froths. All geographical cellular networks do not

belong to the same class of natural structures.

Boots (1980, [10]) has investigated the topological properties (P (n ), m (n ii of three cellular

networks which represent the civil parishes for the English counties of Wiltshire (p1
=

2.91),

Somerset (pi
=

3.62) and Devon (pi
=

4.62). The quasi-universal relation pi =

f(P (6))
predicts P (6)

=
0.225 ± 0.010, 0.20 ± 0.01 and 0.18 ± 0.01 for the latter counties respec-

tively. The predicted values are in good agreement with the observed values (0.225, 0.219,

0.192), in spite of the existence of some parishes with I and 2 sides [10]. The distributions

P(n) are characteristic of polycrystal cuts. The topological and the metric properties of a

planar cut of an alumina polycrystal with 7 000 grains (pi
=

2.585 ), have been recently
characterized by Righetti et al. [39]. Figure 6 compares P (n and m (n of the alumina cut with

the corresponding quantities for Wiltshire ( pi =

2.6 if we omit the parishes with 2 sides). Even

the very revealing representation m (n )
=

f(n ), instead of the usual nm (n plot, is convincing.
Figure 7 further shows the distributions P (n ) and the correlations m (n for Devon, Somerset,

for zone-refined iron isothermally annealed at 650 °C during 125 min [40] and for a topological
model associated with a tiling by triangles (12-6-4, pi =

3.12637 [16]). Hu [40] gives the

result of a fit m(n)=5 +7.6/n but not the actual values (deviations take place for

n=3 and for large values of n). The average m(n) for Somerset and Devon is

m(n)
=

5 + 8.73/n for 3 w n w I I. In France, the typical size of parishes (« communes »
in

French) is an order of magnitude less than the typical size of districts. The magnitude of

pi, which reflects the topological disorder, seems to increase when the scale of the

investigated cellular network decreases (sections 3,I and 3.2). The characterization of the

division of France in cantons and its subdivision in parishes would be worthwhile in order to
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Fig. 5, Correlations A~~ (4
w n, km 8 for NF districts (full circles, p~ 1,41) and for a tissue of

Anthurium (open circles, pi
=

I-lo- Mombach etal., [32, 35]) (straight lines: Eq.(5) with

a/p~ 0.755).

know if the successive networks shift progressively towards the class of polycrystal cuts.

Preliminary investigations of parishes in the region of Lorraine agree completely with the latter

assumption.
In conclusion, the topological properties of the various geographical cellular networks

discussed here are similar to the properties of natural structures which have comparable values

of p~.
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polycrystals are well fitted by a gamma distribution [37, 43, 44] with a density probability :

f(A
=

(«/ jA j )" Aa '
exp j- «Al jA j j /r(« (8)

where a is
m

3.6 for the random Voronoi froth. Some geographical networks do not differ so

much from Voronoi tessellations [45, 46]. Figure 9 shows a plot of f (A for all districts and the

calculated gamma distribution with
a

=4.38 calculated from the average area

IA )
=

722.7 km~ and the standard deviation «~ =

823 km~ (a
=

IA )/«~)~). The agree-

ment is statistically significant as shown by a
x~ test (x~

=
I I with 16 degrees of freedom.

The area distribution of departments is more concentrated and symmetric than the previous
distribution. It is not satisfactorily accounted for by equation (8) (a =12.57). A normal

distribution would better account for the observed area distribution. The radius

R
=

((A)tar)"~ =43.2 km for the departments is favorably compared with the late rule

prescribed by the deputies : 30-40 km [24]. Although the political discussion was mainly
focussed on the problems of boundaries and of division modes [47], the problem of chief towns

is also important. We have therefore investigated the point processes formed by these towns.

we have compared them to a point process derived from statistical physics [20, 21]. The fact



N° 8 THE 2D FRENCH ADMINISTRATIVE CELLULAR STRUCTURES 1791

q 50

%
.

40

30

20

ikm2

0 1000 2000 3000 4000

Fig. 9.-Distribution of the areas of all districts (full circles). The full curve (Eq.(8),
a =

4.38) passes through the midpoints of the calculated bins.

that a central power played a major role in the final decision (1 790 for departments, 800 for

districts) may justify that we consider distances in straight line and that we neglect the role of

geography. The first project proposed in September 1789 by Thouret (S16yks-Thouret project
[47]) consisted of a chessboard division of France. This proves indeed that it was possible at

that time to ignore geography for political reasons.

5. 2D Point Processes.

S-I RANDOM MATRICES. -Many mathematical models have been developed to analyze
random point patterns [9, 23, 26, 29, 45]. The interaction between N points of a spatial pattem

in a finite planar region may be evaluated with the assumption that the points are distributed

according to a Gibbs canonical distribution [23, 29, 45]. Ogata and Tanemura [23] describe for

instance a statistical method for estimating a pair interaction potential 4~(D) which is a

function of the distance D between points of a given process. To investigate the softness of the

repulsive interaction between points, they have chosen models of very-soft-core, soft-core and

hard-core pair potentials. The point process associated with the eigenvalues of asymmetric
complex random matrices (PPRM) is, among other things, characterized by a very soft

repulsion effect between eigenvalues. The distribution of nearest-neighbor spacings goes like

D~ (like D for a Poisson point process) when the distance D between two eigenvalues goes to

zero [48-50].

The distribution of eigenvalues of asymmetric N x N complex random matrices M~ has

been theoretically investigated by Ginibre [48] and Mehta [49]. The real and imaginary parts of

the matrix elements are independently and identically distributed (I.I.D.) according to a

Gaussian distribution with mean 0 and variance «~/2. When N
- cxJ, the eigenvalues of

M~/N"~
are distributed uniformly over a disc of radius «. For finite N,'the density p is

isotropic, nearly constant and equal to the asymptotic value :

P =

1/(ar~r2) (9)

for D « «N "~. The density goes to zero in an interval of order
«

around «N '/~ [48]. In the tail

of the distribution, there are of the order of (N/2 ar)"~ (N » I ) eigenvalues [48]. These

properties are particularly convenient for numerical simulations. They give, for a finite N, a
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very good approximation of the point pattern for an infinite N. The process is isotropic
whatever N and homogeneous when N

- cxJ with uncorrelated eigenvalues for large distances

[48, 49]. Due to the repulsion effect, this process is more regular than a 2D Poisson point

process [20]. The mean distance (D) between a point and its nearest neighbour is given by
0.5p~"~ and 0.644829p~'~~ for the 2D Poisson point process and the PPRM [50]

respectively. It is 1.07457 p~"~ for the vertices of a triangular lattice. The eigenvalue
distribution is identical with the distribution of the equilibrium positions of charges of a 2D

Coulomb gas in a harmonic oscillator potential at a temperature kT
=

0.5 [48].

The latter 2D eigenvalue distribution is universal. It is obtained for a very broad class of

distributions of the matrix elements as shown numerically [20] and theoretically in the frame of

quantum chaos [50]. It has been conjectured [20, 49] that only the mere existence of the mean

and of the variance of the distribution for I-I-D- matrix elements yields the universal

distribution in the limit N
- cxJ. A unique point process is therefore associated with the

eigenvalues of fully asymmetric complex matrices with I-I-D- matrix elements. The

cumulative distribution function of the distance D from a point chosen at random to the nearest

eigenvalue NR(D) is [49, 5 II

N

NR (D )
=

I lim fl (exp (- D~/« ~) e, (D )) ( lo)

N a~ j o

with

ej. (D )
=

jj (D~/
~r

~l'Ii ( I 1)

, o

The existence of a limit in equation (10) has been proved by Mehta [49]. The cumulative

distribution function of the distance D from an eigenvalue to the nearest eigenvalue
NN (D) is [50, 5 II

N i

NN (D )
=

I lim fl (exp (- D~/« ~) e, (D )) (12)
N a~ j

The products in equations (10) and (12) converge very rapidly [20, 50]. Finally, the pair
correlation function g(D ) is [48, 49]

g (D
=

I exp (- D~/«~) (13)

Besides its application to various fields, the PPRM represents our psychological intuition

about a homogeneous
«

disordered
»

distribution of points in a plane better than a Poisson

point process does. If somebody is asked to put N points in a planar domain
« at random »,

without any further specification, he will avoid the clumps which often occur in a Poisson point

process. As shown by preliminary experiments, the resulting processes show a very soft to soft

repulsion between points. This discussion may not be irrelevant in the context of the present

paper (end of section 4, section 6).
New processes (Le Caer, unpublished) may be obtained by applying to the 2D-PPRM the

basic thinning, clustering or superposition operations [26, 29, 45]. Slightly stratified and

anisotropic point patterns are obtained from quatemion matrices [48, 49]. Universality of the

resulting point pattem also holds for the latter matrices (Le Caer, unpublished). In conclusion,

the use of the 2D-PPRM as a reference point process for very soft interaction between points is

justified by

I) the universality of the eigenvalue pattern (with a
D~ repulsion for D

-
0)
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2) the ability to perform exact calculations of NN (D ), NR (D and g (D ) without the need of

computer simulations.

5.2 SPANISH TowNs.- The very soft-core pair potential of Ogata and Tanemura [23]
4~vsc

"
Ln [I exp(- D~/«~)]

accounts satisfactorily for the distribution of towns of a

Spanish plateau (69 towns in a homogeneous 40 x
40-miles~

area, 4144 km~ [22]). The

parameter « =

2.653 miles (~ 4.27 km) and the pair correlation g (D are obtained from Monte

Carlo simulations [23]. From the actual density, p =

1.665 10~ ~ km~ ~, we derive (Eq. (9)) the

sole parameter of the PPRM model
« =

(arp )~ ~/~
=

2.717 miles (~ 4.37 km). The calculated

and
«

experimental
»

pair correlation functions, distributions NN and NR are compared in

figure lo. The average distance ID ) between nearest neighbours is 4.96 km while 5 km is

calculated for the PPRM with density p. As shown in figure11, the fluctuations of

g(D) are accounted for by the sample size. The agreement with the PPRM is statistically
significant. The PPRM model is simpler than the models proposed until now for the spatial
repartition of these Spanish towns.

5.3 CHIEF TowNs oF DEPARTMENTS PRocEss Pi. Sixty-four chief towns are located in the

rectangle W (section 2.2 and Fig. 13). The average distance between nearest neighbours of Pl

is ID )
=

55 km while 48. 2 km would be expected for the PPRM from the estimated density.
Figure I I compares the pair correlation function of Pl to g (D of a sample of a PPRM process
with 66 points. The latter points are included in a rectangle W' (W' and W are homothetic)
which is thrown in the central pan of a pattern which consists of the eigenvalues of a 600 x 600

asymmetric complex random matrix. The real and imaginary parts of the matrix elements are

independently distributed according to a Gaussian distribution with mean 0. The fluctuations

of the correlation function in the case of the random matrix sample give an idea of the

variations which are due to the sample size and which are still consistent with the PPRM

model. The distance ID) measured for the PPRM sample is about 7 fb larger than the value

expected from the exact density. Before being able to conclude in favor of the PPRM model,

we must also calculate NN(D) and NR(D). From the significant deviations observed in

figure 12, we deduce that the mutual interaction between the points of Pl is more repulsive
than predicted by the PPRM model. This result is consistent with the historical analysis [47]
which indicates that the chief towns are geometric centers, whose choice has mainly been

subordinated to the division of the territory in departments.

5.4 CHIEF TOWNS OF DISTRICTS PROCESS P2. The rectangle W (East-West side
w

544 km,

North-South side
m

636 km, Fig. 13) includes 188 chief towns of districts

(p
=

5.43 10~~ km~ ~). Figure 13 also shows 184 and 187 points distributed according to the

PPRM model (section 5.3) and to a Poisson point process respectively. Except for the recent

cluster which includes Paris and the nearby chief towns, the chief-town and the PPRM

processes look quite similar. Process P2 shows apparently a slightly smaller number of pairs
with very close points than the PPRM does. The pair correlation functions of P2 and of the

random matrix sample (Fig. 14) are well accounted for by relation 13, using « values derived

from the estimated density p. Clearly, g (D
=

I cannot be obtained from a finite size sample of

a Poisson point process. The pair correlation function of the Poisson sample also looks like the

g(D) of the P2 and PPRM processes. However, the parameter «
which is fitted from

relation 13 is four times smaller than the parameter (arp )~ '/~ which is expected for a PPRM

model. The average distance between nearest neighbours of P2 is ID )
=

29.6 km while the

theoretical value ID )
~~~~

is 27. 7 km. For the random matrix sample, ID )
=

28.4 km agrees

very well with ID )
~~~~ =

28 km. Finally NR (D (Fig. 15) is quite consistent with the PPRM

model. A more detailed study would be necessary to know whether the deviations between the
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Fig. 14. Pair correlation functions g (D for the point processes of figure 13 (bold lines Ret. (13),
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is calculated from Rel. (9) except for the Poisson point process).

Dr. N. Rivier (Imperial College) for useful preprints, Prof. D. Bideau (Universit6 de Rennes)
and Dr. A. Gervois (Saclay) for useful discussions. We also thank Prof. A. Mocellin (Ecole
des Mines de Nancy), Prof. T.Liebling, Dr. F.Righetti (E.P.F.L., Lausanne) for the

communication of experimental data about the alumina cuts.



N° 8 THE 2D FRENCH ADMINISTRATIVE CELLULAR STRUCTURES 1799

I
if
z R G

P
F

0,4

D (km)

0 lo 20 30 40 50

~

°
z

Z
R

G

F

0 lo

Fig, 15. The distributions NN (D ) and NR (D) measured for 188 chief towns of districts (crosses and

F) and for a sample of 184 eigenvalues of a complex random matrix (bold lines indicated by G), Bold

lines with a mark R are calculated from equations (12) and (10) respectively while the bold lines with a

mark P are calculated for a Poisson point process.

References

[1] Weaire D., Rivier N., Contemp, Phys. 25 (1984) 59.

[2] Rivier N., Disorder and Granular Media, D. Bideau, A. Hansen Eds. (North-Holland, 1993) in

press,

[3] Lewis F. T., Anat. Re<.. 38 (1928) 341; 50 (1931) 235.

[4] Meijering J. L., Philips Res. Rep. 8 (1953) 270.

[5] Atkinson H. V., A<.ta Metall. 36 (1988) 469.

[6] Billia B., Jamgotchian H., Nguyen Thi H., Metall. Trans. A 22 (1991) 3041.

[7] Glazier J. A., Anderson M. P., Grest J. S., Philos. Mag. B 62 (1990) 615.

[8] Smalley I. J., Geol. Mag. 103 (1966) l10.

[9] Getis A., Boots B., Models of Spatial Processes (Cambridge University Press, Cambridge, 1978).

[10] Boots B. N., Can. Geogr. t9 (1975) 107 24 (1980) 406 ; Geogr. Anal. 9 (1977) 379.

[I Ii Coles P., Nature 346 (1990) 446.



1800 JOURNAL DE PHYSIQUE I N° 8

[12] Aboav D. A., Metallography 3 (1970) 383 13 (1980) 43.

[13] Weaire D., Metallography 7 (1974) 157.

[14] Peshkin M. A., Strandburg K. J., Rivier N., Phys. Rev. Lett. 67 (1991) 1803.

[15] Delannay R., Le Cadr G., Khatun M., J. Phys. A : Math. Gen 25 (1992) 6193.

[16] Le Cadr G., J. Phys. A Math. Gen. 24 (1991) 1307 24 (1991) 4655.

[17] Le Caer G., Delannay R., J. Phys. A Math. Gen. (1993) in press.

[18] Smith C. S., SC-I- Am. 190 (1954) 58.

[19] Rivier N., Philos. Mag. B 52 (1985) 795 Physic-a D 23 (1986) 129.

[20] Le Caer G., Ho J. S., J. Phys. A : Math. Gen. 23 (1990) 3279.

[21] Le Caer G., Do swedish pines diagonalize random matrices ? Internal Report, LSG2M (Nancy,

1990) unpublished.
[22] Glass L., Tobler W. R., Nature 233 (1971) 67.

[23] Ogata Y., Tanemura M., J-R- Stat. So<.. B 46 (1984) 496.

[24] Duby G., Atlas Historique (Larousse, Paris, 1987) map p. 130 Fremy D., Fremy E., Quid 1993

(Robert Laffont, Paris, 1992).

[25] Carte I-G-N-, Carte administrative de la France (RI, Echelle III 400 000, 1-G-N- (Paris).

[26] Stoyan D., Kendall W. S., Mecke J., Stochastic Geometry and Its Applications (Wiley, New York,

1987).

[27] Stoyan D., Schnabel H. D., Ceram. Int. t6 (1990) II.

[28] Fiksel T., Statistics t9 (1988) 67.

[29] Ripley B. D., Spatial Statistics (Wiley, New York, 1981).

[30] Glazier J. A., Weaire D., J. Phys.. Condens. Matter. 4 (1992) 1867.

[31] Weaire D., Kermode J. P., Philos. Mag. B 48 (1983) 245.

[32] Mombach J. C. M., Vasconcellos M. A. Z., de Almeida R. M. C., J. Phys. D Appl. Phys. 23

(1990) 600.

[33] Herdtle T., Aref H., J. Fluid Me<.h. 24t (1992) 233.

[34] Stavans J., Glazier J. A., Phys. Rev. Lett. 62 (1989) 1318.

[35] Mombach J. C. M., de Almeida R. M. C., iglesias J. R., Phys. Rev. Lett. : Phys. Rev. A

(submitted).

[36] Lemaitre J., Gervois A., Bideau D., Troadec J. P., Ammi M., C-R- AC-ad- Sci. Paris 3t5 (1992) 35.

[37] Lemaitre J., Gervois A., Troadec J. P., Rivier N., Ammi M., Oger L., Bideau D., Philos. Mag.

B 67 (1993) 347.

[38] Gervois A., Troadec J. P., Lemaitre J., J. Phys. A Math. Gen. 25 (1992) 6169.

[39] Righetti F., Liebling T. M., Le CaEr G., Mocellin A., Mater. SC-I- Foium 94/96 (1992) 791 ; 1993,

to be submitted.

[40] Hu H., Can. Metall. Quart. t3 (1974) 275.

[41] Rivier N., Philos. Mag. B 52 (1985) 795.

[42] Stine K. J., Rauseo S. A., Moore B. G., Wise J. A., Knobler C. M., Phys. Rev. A 4t (1990) 6884.

[43] Weaire D., Kermode J. P., Wejchert J., Philos. Mag. B 53 (1986) L 101.

[44] Fatima Vaz M., Fortes M. A., SC-r- Metall. 22 (1988) 35.

[45] Stoyan D., Stoyan H., Fraktale Forrnen Punktfelder Methoden der Geometrie-Statistik (Akademie

Verlag, Berlin, 1992).
[46] Boots B. N., Econ. Geogi. 56 (1980) 248.

[47] Ozouf-Marignier M. V., La Formation des Ddpartements (Editions de l'Ecole des Hautes Etudes en

Sciences Sociales, Paris, 1989).

[48] Ginibre J., J. Math. Phys. 6 (1965) 440.

[49] Mehta M. L., Random Matrices Revised and Enlarged Second Edition (Academic Press, San

Diego, 1990).

[50] Grobe R., Haake F., Sommers H. J., Phys. Ret>. Lett. 6t (1988) 1899.

[51] Forrester P. J., Phys. Lett. A t69 (1992) 21.

j52] Gimeno R., Guillou O., Loudenot C., Gdographie Cycle d'Approfondissement 2e et 3e Anndes.

CM (Magnard Ecoles, Paris, 1992).


