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Abstract. I present a cluster Monte Carlo algorithm that gives direct access to the interface free

energy of Ising models. The basic idea is to simulate an ensemble that consists of both

configurations with periodic and with antiperiodic boundary conditions. A cluster algorithm is

provided that efficiently updates this joint ensemble. The interface tension is obtained from the

ratio of configurations with periodic and antiperiodic boundary conditions, respectively. The

method is tested for the 3-dimensional Ising model.

1. Introduction.

The interfaces of 2D and 3D Ising models at temperatures below the bulk critical

temperature T~ have been studied as models of interfaces separating coexisting phases of

fluids. There are also relations to lattice gauge theory : the surface tension of the 3D Ising
model is equal to the string tension of the 3D Z~ gauge model which is dual to the 3D Ising

modei.

While in the 2D case a number of exact results have been obtained, Monte Carlo simulations

play a major role in the study of 3D systems. Recently a number of simulations employing
various methods have been performed to determine the surface tension of 3D and 4D Ising
models [1-6], while in reference [7] the string tension of the 3D Z~ gauge model is studied.

As the temperature T increases towards the critical temperature T~, the reduced surface

tension
« =

rfl, where r
is the surface tension and fl

=

the inverse temperature,
k~ T

vanishes according to the scaling law

" " "0 t", (1)

where t
=

(T~ T)/T~, and «o is the critical amplitude of the reduced interface tension.

Widom's scaling law [8, 9]

w =

(D i v
(2)

(*) Present address Theory Division, CERN CH-1211 Geneva 23, Switzerland.
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relates the universal critical exponent p to the critical exponent of the correlation length

f
=

to t- ~ (3>

In a recent Monte Carlo Renormalization Group study of the 3D Ising model on a simple cubic

lattice [10] fl~
=

0.221652(4) and v =

0.624(2) have been obtained, while e-expansion

predicts v =

0.630(2) [11]. The experimental [12-15] value for p is p =

1.26(1), consistent

with Widom's scaling law. Ratios of critical amplitudes should also be universal due to the

scaling hypothesis [16, 17]. Experimental results for various binary systems are consistent

with

R
+ =

«o(f$ )2
=

o.386 (4)

[15], where f( is the critical correlation length amplitude in the high temperature phase.

An interesting question is the relation of the surface tension with the correlation length of a

system with cylindrical geometry, I-e- a system on a lattice with extension L x L x T, where

T » L. Recently, Borgs and Imbrie [18] gave an exact derivation of the finite size behaviour of

the correlation length of discrete spin systems in a cylindrical geometry. They claim that for

sufficiently large couplings the properties of the system are given by an effective lD model,

where the diagonal parts of the transfer matrix are given by the free energies of the pure phases,
while the off diagonal elements are determined by the surface tensions between the different

phases. For the 3D Ising model this leads to the relation

f~
=

jexp(«L~>. (5j

A semiclassical instantion calculation [19] however predicts

f~
= c

exp(«L~), (6)

where c depends on the temperature and is not equal to 1/2.

In order to understand this discrepancy I compared the correlation length of an ID Ising

model with a coupling fl~ii given by

2fl~~=F~, (7)

which is exact for a 13 Ising system, and where F~ is the reduced surface free energy of the 3D

s§stem, with the correlation length measured in reference [2] for 3D Ising cylinders.
The correlation length f of a lD Ising model is given by

~
" in ((i + v>/(i v »' ~~~

where v
=

exp(- 2 fl ). For large fl one gets approximately

f
=

~
(9)

This paper is organized as follows. First I explain the model with periodic and antiperiodic
boundary conditions. I discuss how one can get the surface tension from observables of a

system which includes the boundary conditions as dynamical variables. Then I present a

cluster algorithm which is suitable for the simulation of such a system. Finally the numerical

results will be given and compared with recent Monte Carlo studies employing other methods.
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2. The model.

I consider a simple cubic lattice with extension L in x- and y-direction and with extension T in

z-direction. The uppermost layer of the lattice is regarded as the lower neighbor plane of the

loylermost plane. An analog identification is done for the other two lattice directions. The Ising
model is defined by the Hamiltonian

~~~' ~~~ i ~<ij> ~i ~J
(10)

When periodic (p) boundary conditions (bc) are employed, then J~;~~
=

l for all nearest

neighbor pairs. When antiperiodic (ap) boundary conditions are employed, then J~;j~
=

I

for bonds Ii j) connecting the lowermost and uppermost plane of the lattice, while all other

nearest neighbor pairs keep J~i~~
=

1.

3. The surface tension.

I consider a system that allows both periodic and antiperiodic boundary conditions. The

partition function of this system is given by

Z
=

z z exp(- flH(s, bc)). (ll)

bc s,=±i

The fractiin of configurations with antiperiodic boundary conditions is given by the ratio

Z~p/Z,

z exp(- flH(s, ap))

Z~~ s, ± i

Z Z

z z exp(- flH(s, bc)) &~
~~

bc s, =±1

Z

=

(&~ ~~) (12)

An analogous result can be found for periodic boundary conditions. Now we can express the

ratio Z~/Z~ as a ratio of observables in this system

Z~~) ~j,~~
~~~~

i

In the case of a surface with fixed position, the reduced surface free energy is given by

F~=F~~-F~=lnZ~-lnZ~~= -In~~~, (14)
~P

where F~ and F~~ are the reduced free energies of the systems with periodic and antiperiodic
boundary conditions, respectively. If we assume that there is no interface in the system with

periodic boundary conditions and exactly one in the case of antiperiodic boundary conditions,

we can take into account the entropy due to the free position of the interface in T direction by
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adding In T,

F~=F~~-F~+lnT. (15)

We get a more appropriate description for finite systems if we take into account the occurrence

of several interfaces, an even number for periodic and an odd number for antiperiodic
boundary conditions. If we furthermore assume that these interfaces do not interact we get an

improved expression

for the surface free energy. If we resolve this equation with respect to F~, we get

Ii I + Z~~/Z~F~
=

ln T In In (17)
2 ZaP~~P

4. The algorithm.

I shall now describe an efficient algorithm to update the above explained system, where the

type of boundary condition is a random variable. The simplest way to alter the boundary
conditions is to propose a change of the coupling J

~~~~
of sites in the uppermost plane with

sites in the lowermost plane from I to I or vice versa in a single Metropolis step. With high
probability most of the spins s, and

s~
have the same sign in the case of periodic boundary

conditions and different signs in the case of antiperiodic boundary conditions. Hence the

acceptance rate of such a Metropolis step will be extremely small. This simple algorithm does

not take into account the fact that the physical interface can be built anywhere in the system

and, what is even more important, that the interface wildly fluctuates close to the critical point.

The method to compute the interface free energy proposed in reference [20], where one has

to measure the exponential of the product of the magnetisation of neighboring layers of the

system with periodic boundary conditions, is closely related to such an update. Here one

recovers the problems as a very large variance of the observable. The authors of reference [20]

tried to overcome this drawback by introducing a number of Hamiltonians, which interpolate
between periodic and antiperiodic boundary conditions.

These problems can be resolved directly by using a cluster algorithm. Let us first consider

fixed boundary conditions where the spins at the bottom and the top layer of the lattice are

fixed to plus one (+ + ) or the spins at the bottom layer are fixed to plus one while spins at the

top layer are fixed to minus one (+ ). To update a system that contains (+ + ) and

(+ ) boundary conditions as random variables one can use a standard cluster algorithm [21,

22]. One has to freeze all the bonds within the top and bottom layer of the lattice to keep all

spins parallel within these layers. All other bonds are deleted with the standard probability [21,

22]

p~ =
exp(- ji (I + s~ sj)) (18)

or frozen else. In the case of the Swendsen-Wang algorithm one now flips all clusters with

probability 1/2, only the cluster that contains the bottom layer keeps its sign. (If we allow also

for (- and (- + boundary conditions we can skip this modification.) This means that, if

the bottom and top layer belong to different clusters, one switches from one type of the

boundary conditions to the other with probability 1/2. One should mention that, if we start with
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(+ ) boundary conditions the two boundary layers will always belong to two different

clusters, since the clusters of a standard cluster algorithm [21, 22] contain only spins of one

sign. The single cluster algorithm can also be used without any modification.

In order to handle with (ap) and (p) boundary conditions some modifications are needed.

First one has to give the delete probability also for a negative coupling J
~,~~ =

l

Pd ~
~~P(~ fl (I + J<ij> ~l § ))' ~~~~

After deleting or freezing the bonds of the system one searches for a sheet of deleted bonds that

completely cuts the lattice in z-direction. If there is such a sheet, the spins between the bottom

of the system and this sheet and the sign of the coupling J ~,~~ connecting top and bottom are

flipped. This is a valid update, since the bonds in the sheet are deleted and the value of

J
~~~

s, s~
for in the lowermost and j in the uppermost plane is not changed when we alter the

sign of J
~;, ~

and s,
For those who actually want to implement this update : you have to construct all clusters that

contain sites of the lowermost layer of the system. The easiest way to do this is to start growing
clusters in this layer as long as there are sites which are not contained in a cluster. In order to

get a notion of what is the part of the cluster below the boundary and above the boundary,
introduce an auxiliary variable p(I ) which can either take the value I or I depending on the

lattice site I. When you start the cluster at the lattice site io set p(io)
=

I. When you grow the

cluster, a new site I get its p(I ) from the site j which is already in the cluster and where it is

frozen to. When the corresponding bond ii j) connects bottom and top we set p(I
= p j )

and else p(I)
=

pQ). If now two sites which are already taken into the cluster are frozen

together and have an unconsistent p the cluster wraps around the lattice and the boundary
condition update is forbidden. When this is not the case for any of the clusters we can flip the

boundary conditions when we flip the spins of either the upper or lower part of all the clusters

that contain sites at the bottom layer.
In my simulations I altemate this boundary flip update with a standard single cluster

update [22].

5. Numerical results.

I simulated the 3D Ising model on a simple cubic lattice with boundary conditions as

dynamical variables at fl
=

0.223, 0.224, 0.2255, 0.2275, 0.2327 and 0.2391. For most of the

simulations lattices of size L x L x T with T
=

3 L were used. In order to check for the T-

dependence of the results at fl
=

0.2275 also simulations with T=L/2, L, 2L were

performed. The statistics of the simulations were 100 000 times one single cluster update [22]

plus one boundary flip update throughout. I measured the energy

~
"

i ~ <iJ> ~i ~J
,

(20)

the magnetization

m=~zs,
(21)

L XT,

and the type of boundary condition (bc) after each pair of single cluster plus boundary flip
update. These data are used to calculate the energy density of the system with periodic
boundary conditions
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Nz E
~, ~

E~
=

~ (°
,

(22)
~~

~ ~ z &~
~

n no

where n labels the measurements, and N is the number of measurements. The mean square

magnetization of the system with periodic boundary conditions is

NI 'll~ ~bc,
p

(lll~)
#

~~

~(
,

(23)

~j &b~
p

n= no

and the surface energy density
N N

I l~~bc,p I l~~bc,ap

E~
=

~ ~° ~ ~° (24)
~2 N NI ~bc,

p
I ~bc,

ap

n no n no

The results for these quantities are summarized in table I. For parameters where the fraction of

configurations with antiperiodic boundary conditions is large the value for the surface energy is

not reliable, since many of the configurations contain more than the minimal number of

interfaces. A strong dependence of E~, on L is visible.

Table I. Data for 3-D Ising cylinders of size L~
x T at fl

=

0.223, 0.224, 0.2255, 0.2275,

0.2327 and 0.2391. E~ denotes the energy density of the system with periodic boundary
conditions, (m~) is the expectation value of the square magnetization of the system with

periodic boundary conditions. E~ is the difference of the energy with periodic and the energy

with antiperiodic boundary conditions divided by the area
L~. (&~

~_, ~_~
gives the fraction of

configurations with antiperiodic boundary conditions.

L T E, < m' > E, < b>
<,«.,.

>

fl=0.2391

4 12 0.5219(9) 0.3586(14) 1.364(41) 0.4388(8)

6 18 0.5435(5) 0A187(9) 2.607(40) 0.2948(12)

8 24 0.5524(3) 0.4432(5) 3.247(41) 0.1075(10)

10 10 0.5541(4) 0.4497(6) 3.378(57) 0.0066(3)

10 30 0.5536(2) 0.4460(3) 3.433(66) 0.0192(5)

fl=0.2327

8 24 0.4861(4) 0.3310(8) 2.498(42) 0.2833(13)

10 30 0.4905(3) 0.3459(5) 2.986(44) 0.1359(13)

12 36 0.4917(2) 0.3487(4) 3.166(55) 0.0445(7)

14 42 0.4921(2) 0.3493(3) 3.223(81) 0.0100(3)
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Table I (continued).

fl=0.2275

10 5 0.4219(8) 0.2381(13) 1.742(15) 0.0782(11)

lo lo 0.4284(6) 0.2518(10) 2.167(24) 0.1775(16)

10 20 0.4250(5) 0.2334(9) 2.021(39) 0.2908(15)

lo 30 0A231(4) 0.2176(9) 1.810(50) 0.3633(13)

12 6 0.4227(7) 0.2325(12) 1.877(17) 0.0551(10)

12 12 0.4288(5) 0.2472(9) 2.383(29) 0.l179(16)

12 24 0.4272(4) 0.2377(7) 2.360(39) 0.2061(17)

12 36 0.4268(3) 0.2301(7) 2.269(49) 0.2741(16)

14 14 0.4296(4) 0.2461(8) 2.604(30) 0.0683(13)

14 28 0.4294(3) 0.2415(6) 2.590(40) 0.1232(15)

14 42 0.4293(3) 0.2388(5) 2.605(47) 0.1698(16)

16 48 0.4301(2) 0.2418(4) 2.706(48) 0.0860(12)

18 54 0.4302(2) 0.2422(3) 2.836(62) 0.0378(8)

fl=0.2255

14 42 0.3982(3) 0.1734(7) 1.805(53) .3281(16)

16 48 0.4001(3) 0.1808(6) 2.121(51) 0.2540(18)

18 54 0.4012(2) 0.1852(5) 2.310(46) 0.1752(16)

20 60 0.4018(2) 0.1872(4) 2.426(47) 0.1076(14)

24 72 0.4022(1) 0.1885(3) 2.490(68) 0.0284(7)

fl=0.224

14 42 0.3731(3) 0.l167(8) 1.014(56) 0.4252(12)

18 54 0.3750(3) 0.1247(7) 1.467(56) 0.3553(17)

24 72 0.3778(2) 0.1362(4) 1.982(50) 0.1884(20)

30 90 0.3788(1) 0.1395(3) 2.312(65) 0.0575(12)

fl=0.223

8 24 0.3648(5) 0.1077(9) 0.380(52) 0.4821(5)

12 36 0.3588(4) 0.0879(8) 0.469(58) 0.4720(6)

18 54 0.3572(3) 0.0812(8) 0.744(72) 0.4423(13)

24 72 0.3586(2) 0.0867(6) 1,186(59) 0.3754(19)

30 90 0.3600(2) 0.0938(4) 1.605(58) 0.2677(23)

36 108 0.3608(1) 0.0975(3) 1.845(56) 0.1437(21)
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Starting from the fraction of configuration with antiperiodic boundary conditions

(&~, ~~) the reduced surface free energies F~ and F~, are determined following equation (15)

and (17), respectively. The results are summarized in table II. For F~ m 6 the difference

between the two definitions F~ and F~, of the surface energy is smaller than the statistical

errors. At fl
=

0.2275 investigated the dependence of the surface free energy on T. One can

Table II. Results for the su~fiace tension and the inverse of the correlation length

fj~~ of an effective Ising model with 2 fl~ii
=

F~ are given. F~ and F~ are explained in the

text.

L T F, F,/L' F,,, fl,,/L' ill

fl=0.2391

4 12 2.731(3) 0.1707(2) 2.436(6) 0.1523(4) 0.1755(10)

6 18 3.763(6) 0.1045(2) 3.699(7) 0.1028(2) 0.0495(3)

8 24 5.294(11) 0.0827(2) 5.289(11) 0.0827(2) 0.01010(11)

10 10 7.311(40) 0.0731(4) 7.311(40) 0.0731(4) 0.00134(5)

lo 30 7.335(24) 0.0734(3) 7.335(24) 0.0734(3) 0.00130(3)

fl=0.2327

8 24 4.106(7) 0.06416(10) 4.050(7) 0.06328(12) 0.0348(2)

lo 30 5.251(11) 0.05251(11) 5.243(11) 0.05243(11) 0.01057(12)

12 36 6.649(17) 0.04618(12) 6.649(17) 0.04617(12) 0.00259(4)

14 42 8.330(33) 0.04250(17) 8.330(33) 0.04250(17) 0.00048(2)

fl=0.2275

10 5 4.076(15) 0.04076(15) 4.074(15) 0.04074(15) 0.0340(5)

10 lo 3.836(11) 0.03836(11) 3.820(11) 0.03820(11) 0.0439(5)

lo 20 3.887(7) 0.03887(7) 3.827(8) 0.03827(8) 0.0436(4)

10 30 3.962(6) 0.03962(6) 3.834(8) 0.03834(7) 0.0433(4)

12 6 4.634(19) 0.03218(13) 4.633(19) 0.03217(13) 0.0195(4)

12 12 4.497(15) 0.03123(10) 4.491(15) 0.03119(10) 0.0224(3)

12 24 4.527(10) 0.03144(7) 4.504(11) 0.03128(7) 0.0221(2)

12 36 4.557(8) 0.03165(6) 4.507(9) 0.03130(6) 0.0221(2)

14 14 5.252(20) 0.02679(10) 5.250(20) 0.02679(10) 0.0105(2)

14 28 5.294(13) 0.02701(7) 5.288(14) 0.02698(7) 0.01010(14)

14 42 5.325(11) 0.02717(6) 5.311(11) 0.02710(6) 0.00987(11)

16 48 6.234(15) 0.02435(6) 6.231(15) 0.02434(6) 0.00393(6)

18 54 I.225(21) 0.02230(6) 7.225(21) 0.02230(6) 0.00146(3)
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Table II (continued~.

fl=0.2255

14 42 4.455(7) 0.02273(4) 4.365(9) 0.02227(5) 0.0254(2)

16 48 4.949(9) 0.01933(4) 4.908(10) 0.01917(4) 0.0148(1)

18 54 5.537(11) 0.01709(4) 5.522(11) 0.01704(4) 0.00800(9)

20 60 6.210(15) 0.01552(4) 6.205(15) 0.01551(4) 0.00404(6)

24 72 7.808(25) 0.01356(4) 7.807(25) 0.01355(4) 0.00081(2)

fl=0.224

14 42 4.039(5) 0.02061(2) 3.789(8) 0.01933(4) 0.0452(3)

18 54 4.585(7) 0.01415(2) 4.467(9) 0.01379(3) 0.0230(2)

24 72 5.737(13) 0.00996(2) 5.719(13) 0.00993(2) 0.00657(8)

30 90 7.298(22) 0.00811(2) 7.296(22) 0.00811(2) 0.00136(3)

fl=0.223

8 24 3.250(2) 0.05078(3) 2.669(9) 0.04170(13) 0.139(1)

12 36 3.696(3) 0.02566(2) 3.218(8) 0.02235(6) 0.0801(6)

18 54 4.221(6) .01303(2) 3.912(11) 0.01207(3) 0.0400(4)

24 72 4.786(8) 0.00831(1) 4.641(11) 0.00806(2) 0.0193(2)

30 90 5.506(12) 0.00612(1) 5.459(13) 0.00607(1) 0.00852(10)

36 108 6.467(17) 0.00500(1) 6.457(17) 0.00498(1) 0.00314(5)

observe that F~,~ remains constant within error bars for L =10, 12 and 14 starting from

T
=

L. T
=

3 L seems to be safe not to spoil the results.

Using F~,~ I calculated the inverse correlation length of a lD Ising model with

2 fl~ii
=

F~, following equation (8). The results which are given in table II can be compared
with the direct measurement of the mass of a 3D Ising model on a cylindrical lattice at

fl
=

0.2275, 0.2327 and 0.2391 of reference [2]. The numbers they give for Eo
~

in their table I

are consistent with my results for the inverse correlation length of the effective lD Ising model

within error bars.

Similar to the surface energy the values of F~/L~ and F~,,/L~ which I give in table II display a

strong dependence on the lattice size. It seems difficult to extract the infinite L limit of the

surface tension from these numbers. Motivated by free field theory (in Ref. [5] we demonstrate

that the long range properties of an interface in the rough phase of a 3D Ising model are well

described by a massless free field theory), I tried to fit the reduced surface free energy
according to the Ansatz

F~,
=

C +
«L~ (25)

It tumed out that the data fit very well to this Ansatz. The results of the fits are given in

table III.
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Table III. Results of fits of the form F~,
=

C +
«L~

are given. Only values Jkom the largest
T are included in the fits. X~/d.o,f, denotes the square deviation per degrees of Jkeedom.

fl L'S Used C
a

x'/d.o.I.

0.2391 6,8,10 1.65(2) 0.0568(3) 0.002

0.2327 8,10,12,14 1.97(2) 0.0325(2) 1.74

0.2275 12,14,16,18 2.32(2) 0.01521(11) 1.69

0.2255 14,16,18,20,24 2.59(2) 0.00904(6) 0.08

0.224 18,24,30 2.87(2) 0.00492(4) 0.63

0.223 24,30,36 3.19(2) 0.00252(3) 0.002

Starting from the as given in table III I did several fits to test the scaling law

« = «o t". I used two different definitions for the reduced temperature, ti
=

(fl fl~ )/fl~ and

t~
=

(T~ T)/T~. In both cases I used fl~
=

0.221652 given in reference [10]. Remember that

ti and t~ are equivalent in the first order of a Taylor series around T~. The results are given in

table IV and table V. One can observe that it is necessary to go even closer to the critical

temperature to overcome the ambiguity in the definition of the reduced temperature t. Taking
into account this systematic errors I get p =

1.24 (3) as an estimate for the critical exponent.
In order to get a better estimate for the critical amplitude of the surface tension

«oI used the results of references [10, 11] for v combined with the scaling relation

p =

2
v

and determined

«o =
«t~ ~ (26)

from single measurements of «. The results are given in table VI. Taking into account the

uncertainty in the value of
v a final estimate «o

=

1.5 ± 0, I seems to be reasonable. Using the

estimate f(
=

0.4783 ± 0.0004 of reference [23] 1 get R~
=

0.34 (2). Taking into account the

deviation from the mean value of the results for the various binary alloys quoted in reference

[15] my result is well consistent with experiments and most of the recent Monte Carlo

Table IV. Fits ofthe form « = «o t(, where ti
=

(fl fl~)/fl~. The labels1, 2, 3, 4, 5 and

6 correspond to fl
=

0.2391, 0.2327, 0.2275, 0.2255, 0.224 and 0.223, respectively.

input p ao X'/d.o.f.

1,2,3,4,5,6 1.217(4) 1.25(2) 0.89

2,3,4,5,6 1.218(5) 1.26(3) 1.15

3,4,5,6 1.228(8) 1.32(4) 0.58

4,5,6 1.220(12) 1.27(7) 0.42

1,2,3,4,5 1.217(4) 1.25(2) 0.89

2,3,4,5 1.218(6) 1.26(3) 1-IS

3,4,5 1.237(12) 1.36(7) 0.09
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Table V. Fits ofthe form
« = «o t(, where t~

=
(T~ TYT~. The labels 1, 2, 3, 4, 5 and 6

correspond to fl
=

0.2391, 0.2327, 0.2275, 0.2255, 0.224 and 0.223, respectively.

input p «o X'/d.o.f.

1,2,3,4,5,6 1.256(4) 1.51(2) 2.5

2,3,4,5,6 1.246(5) 1.45(3) 0.8

3,4,5,6 1.246(9) 1.45(5) 1.2

4,5,6 1.234(13) 1.37(8) 0.7

1,2,3,4,5 1.260(4) 1.53(2) 1.6

2,3,4,5 1.250(6) 1.47(3) 0A

3,4,5 1.258(12) 1.52(8) 0.3

Table VI. Results of «~
=

«tj ~ and «o =
«ti ~ using the value of single measurements for

wand given p =
1.248 and 1.26.

fl ao> t> ao> ti

p=1.248

0.2391 1.355(7) 1.490(8)

0.2327 1.372(8) 1.458(9)

0.2275 1.420(10) 1.467(11)

0.2255 1.423(9) 1.454(10)

0.2240 1.435(12) 1.454(12)

0.2230 1.469(18) 1.480(18)

p=1.26

0.2391 1.397(7) 1.537(8)

0.2327 1.422(9) 1.512(9)

0.2275 1.483(11) 1.533(11)

0.2255 1.494(10) 1.527(10)

0.2240 1.515(12) 1.535(13)

0.2230 1.562(19) 1.574(19)

simulations [26, 2, 3, 7]. Since I have surface tensions for more fl values and fl's closer to the

phase transition as the references quoted above I improved the control on finite t effects. One

should mention that earlier results of Monte Carlo simulations [24] and analytic calculations

[25] were about 30 9b below the experimental value.
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Let me finally comment on the performance of the algorithm. The autocorrelation times

were of order I in units of the combined single cluster plus boundary flip update for all

simulations quoted above. The simulation of the largest system (36 x 36 x 108 ) took 84 h on

an IBM risc station 6000. The drawback of the method is its limitation to small surface free

energies. For F~
>

9 the fraction of configurations with antiperiodic boundary conditions

becomes smaller than 9b and hence it is hard to get a sufficient statistic of configurations with

antiperiodic boundary conditions. A solution of this problem might be found in a combination

with multicanonical methods. But the most naive proposal of this kind, just to introduce a

chemical potential that makes the antiperiodic boundary conditions more probable, fails. The

flip from periodic boundary conditions to antiperiodic boundary conditions is allowed only if

there is a sheet of deleted bonds in the system that cuts the lattice. The chemical potential just
forces the system to stay longer with antiperiodic boundary conditions after such a flip. Hence

the statistics of boundary flips are even reduced.

6. Conclusion.

I presented an effective method to determine the surface tension of Ising systems. It should also

be applicable to other discrete spin models. The method allowed to obtain the surface tension

very close (T
=

0.994 T~) to the critical temperature with a high accuracy. The correlation

length of the cylindrical 3D Ising system in the low temperature phase tumed out to be given to

a very good accuracy by the mass of a lD Ising model with 2 fl~ii
=

reduced surface free

energy, which is consistent with the prediction of ref. [18]. But the finite size behavior of the

reduced surface free energy of the rough interface is well described by F~
=

C +
«L~ leading

to the prefactor predicted in reference [19].
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