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Rdsum4. Consid4rant que toutes les grandeurs physiques utiles I la description d'un tel

systbme sont des tenseurs sph4riques, il est d4montr4 que )es hypothbses d'homog4n4it4 et d'isc-

tropie statistiques imposent £ leurs fonctions de corr41ation spatiales crois4es de telles contraintes

que ces demibres s'expriment I l'aide de quelques fonctions scalaires v4hiculant toute l'informa-

tion et de fonctions sph4riques standard. Les deux limites d'un systbme perturb4 par beaucoup
de d4fauts ind4pendants, entrainant une stat.istique de Gauss,

ou d'un assemblage de microcris-

taux, plus analogue k une distribution de Poisson, sont pr4sent4es.

Abstract, As all the physical quantities describing such a system are
spherical tensors, it is

shown that homogeneity and isotropy imply for the cross-correlation functions such conditions

that they can be written with only standard spherical functions and
a

few scalar functions in

which the whole physical information is included. The two limiting cases of a system with many

independent defects and of
a

polycrystal, Gauss and Poisson limits, are discussed.

1. Introduction.

There is
a strong analogy between the st,atistical description of a disordered system, even a

static one, and
a

random process. In the last case, one or
several variables are assumed to be

time dependent, and the way they vary with time changes from one experiment to another.

As one is interested in the permanent characteristic features of the processes, one takes mean

values, even mean values of fluctuations and, in the case of ergodicity, one can in principle
compute any physical quantity to be compared with measurements.

In the case of a
disordered system, one assumes the random event not to be the time of

the -experiment, but the choice of the sample, and one hopes enough reproducibility from one

sample to another for making
a

kind of space ergodicity hypothesis. But one has
no more a

random function but a random field and one must go to a new order of complexity. If the

(*) Laboratoire assoc14 h l'Universit4 Joseph Fourier
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field one is interested in is
a

tensorial one, one many even have difficulties in trying to imagine
simple pictures.

It is true that many situations are well described by uncorrelated fields, that is by assuming
that the parameters vary independently on each atomic site. This is enough to describe weak

localization ill, spin glasses [2], many magnetic properties [3], but the presence of correlations

between the values of the fields at different sites may alter phenomena,
or even change the

qualitative picture of them; this concerns every effect where a length characteristic of the

phenomenon is to be compared with the correlation length of the disorder itself. As examples,
let us mention quantum localization [4], depolarization of light in liquids [5], in solids [6], of

neutrons in disordered magnets [7] and even the magnetostatic behavior of those materials [8].
So one needs

a more complete formalism, which has been developed mainly for scalar fields [6].
There is nevertheless a case where one can go far enough, it is the situation where

one
has

both statistical homogeneity and statistical isotropy. Here, the mean values we shall have to

consider will be both translation and rotation invariant, and those properties will simplify their

expressions, exactly for the same reasons group theory is an important tool in atomic physics.
The purpose of this note is to present the main features of those simplifications, and after

having shown the effects of rotation invariance, then of translation homogeneity, to present

two limiting cases, similar in the case of disordered systems, to the Gauss and Poisson limits

for random time processes.

2. The effect of rotational invariance.

Let us assume that, in each point, the physics is described through several tensorial parameters
which can always be reduced to spherical tensors [10]. When the reference axis rotates, if R

denotes the rotation matrix

z(
=

~R;jzj,
I

the components of
a

spherical tensor are changed following the law

Tm(r)
=

~j (ml lRr)DLimlR) Ii)

where is the order of the tensor, m and m'
run over the (21+1) values from -I to I, and

D~(R) is the standard matrix of the l~~ representation of the rotation group.

The correlation between two different spherical tensors is given by

Giiimm, (p; TT')
=

(Tm jr + p)Tlmi jr)) 12)

where the brackets designate a
statistical mean, which is independent of r, due to the space

ergodicity hypothesis.
The Giimmi (p; TT') depend not only of p, but also of the axis orientation; the indices m

and m'
are

here to remind us that one has already chosen at least
a z

direction. There is

no loss of generality in writing the dependence
on p as a

function of p =( p multiplied by
Spherical harmonics YLM(P), where only the angles of the vector with the coordinate axis are

arguments of the spherical functions. This is

Gii'mm' PI TT')
=

~j Gii'mm'Lm (PI TT') YLJf (P) (3)

LJf
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One can now rotate the coordinate axis, and apply (2) and (3) on one side, the rotation

formula analogous to (I) for spherical harmonics to (3) on the other side. This gives

Gll'mim( (Pi l~l~')
"

~j~~ ~ll'mim(LM (Pi l~l~') ~LM (~P)i~ji'M(~)

=

~ Giim~mjL~m~ (p; TT') YL~M~ (Rp)vL~mi (R)D$jmj (R)
~~~

m~mjL~m~

Here the isotropy hypotheses have already been made, when the same G function of p and

of six indices has been used in the two lines. As the angular dependence of (4) is only in the

YLM which form
a

complete basis over the p or
the Rp directions, (4) can be written

~Gii,~~~,
LM,

(p; TT') D(~,~(R)
=

1

"

,

(5)

"

~j Gll'm2m[LM (Pi l~l~~) i~~2mi (~)i~~[m[ (~)

m2m[

In the theory ofrotation group representations, one shows that

DL~m, (R)D[jmj (R)
=

~ flm2fml 1a'>~21D~~2~i(R) fli'>~i imii'ml) (6)

>»~pi

where the summations over ~i and ~2 are
virtual due to the Em conserving properties of the

Clebsch-Gordan coefficients.

Introducing (6) into (5) and using the orthogonality properties of the D~ matrix elements

over the Euler angles describing the rotations, one gets

~ ynyn')llimim'Lm P~ "

=

~j Giim~mjLmi (Pi TT') (lm21'm[ ll'LM') (ll'LM lmil'm[) (~)

m~mj

The only M dependence of the right member is through the second vector coupling coef-

ficient, the M' dependence of the right hand side G and of the first coupling coefficient is a

fallacious one, as M' must be equal to m2 + m[. So one can write

GiimmiLm (P; TT')
=

tint (P; TT') (ll'LM lml'm') j8)

and
so one has shown that

(Tim(r + p)7j',~,(r))
=

~j (lml'm' ll'LM) rii'L (pi TT') YLM(P) (9)

L

It is easy to bring (9) into (7) and to check the coherence of this result, due to the unitary
properties of the vector coupling Clebsch-Gordan coefficients.
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3. The translational invariance.

A lot of simple properties of the r can be deduced. First of all, let us consider p as small and

develop Gii'mm' (Pi TT') in series of the components pi, p2, p3. The terms of each order
can

be regrouped in spherical tensors and it is clear that YLM cannot appear before order L. So

for small p
rii'L (P; TT')

=
AWL (TT') p~ + (10)

The addition rule for angular momenta fixes L to vary from I' to + I'. The I
=

I'

term is the only finite term for p =
0, so one has

iTm (r)r~, (r)i
=

Auto (TT') ilml'm' ll'001 Yoo, II

and

j~ ~)my~I-m lm*

it is better to write the local correlation fiinct,ion as

al (TT')
(I I(Tm(r)7$m'~(~))

"
~~~'~~'~''

21+1

One
can

define the correlation length pc(T) of
a tensor field T, by writing T'

=
T and

fdP Inm(r + P)nm*(r))
=

pc(T)allT) (12)

while other definitions are possible.
One

can
also Fourier transform the Gs to get

Gll'mm'(P, l~l~~)
/ ~~~~~~'~

~~~~~'~'~" ~'~' ~~'~ ~~~~

The function G(~c) can be analy2ed as a sum of products of functions of
K

=(
~c by YL~(~c),

as was done in p space by (3).
Introducing

m

exp(i~c p)
=

4~ ~j ~j
i~ ji(Kp)hm*(~c)hm(P)

i=o m

into (13), one gets

GiimmiL(m+mi) lK; TT')
=

4~i~~ limi'm' ii'L
m + m')I / p~dpjLiKp)nit ip; TT')

~

(14)
where the jL are

spherical Bessel functions.

This Fourier transform can
be done directly over the random variables Tim (r)

Tm(r)
=

/
~~~exp(ik r)fm(k) (IS)
8~
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and one can see immediately that

lfm(k)ijl~, (k'))
=

d~rd~r
exp (-I (k r + k' r')) (Tm(r)7j',~~(r))

/

=

/ d~rd~r exp(-ik p)Gii'mm' (Pi TT') exp (-I (k +k') r)

=

8~3b (k + k') Giimm, (k; TT') (16)

where

p = r
r'

One sees that the translational invariance has imposed the statistical independence of the

components of the T belonging to different k vectors. If the second random field introduced in

(IS) had been written as a conjugate one, one condition would have had a factor b (k k').
This independence of random variables in reciprocal space is known for scalar random fields

and T called
a

field with orthogonal increments [9]. It has
a

simple consequence for the

correlation function. Let us now write Gii'mm' (PI as a function of the Tm(k) by introducing
(IS) into (2).

One gets
~

Giimmi (p; TT')
=

/ ()exp(ik p) (tm(k)timi(-k)) (17)

that is

Giimm, (k; TT')
= (ijm(k)rim, I-k))

which is generalization of the Wiener-Khinchin theorem ill].

4. Two limiting
cases.

When one considers
a

random process, that is a random funct,ion of the time, two limiting

cases are
physically important. Let us

speak of the field seen by
an atom as a

function of time.

If there are many independent sources, such as the effects of otlier atoms, one has a Gaussian

process, with the central-limit theorem. The other extreme case is the
one

of
an atom in a gas,

suffering scarcely random strong collisions, which gives a Poisson statistics.

Here we have analogous cases.
Either the field is creat.ed by numerous sources, say defects,

dispersed in
a

crystal and what is seen is the linear superposition of their effects; this is the

Gaussian process. The other possibility is the case of a
polycrystal: if one travels along any

straight liiie, the situation does not vary except »,lien meeting a grain boundary. We shall show

that the correlation fiinctions of spherical tensor fields may have different behavior in the two

cases, and tfiat it is not necessary to go to the cliaracteristic functions, or to the characteristic

functionals, to see the difference.

In the case of
a

Gaussian random field, one may imagine that the positions ri of the sources

and their orientations ll~ are random independent variables. If the field one is interested in is

of spherical order I, it is reasonable to assume the sources to be of order (I I) to take into

account the effect
or

the direction I ri. This gives

Tm(r)
=

T-i,
mo,

~ (l I, m', I, m
m' (1- 1, 1, 1, m) ~j D$~~

~,
(Ri)

ml I
' (18)

Yi m-mi(r-ri)f(lr-ri1),
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where Iii
r r; () describes the effect of the distance between source and observation point.

As ri and Ri are random, one has, using the properties of the spherical harmonics

(Tm(r + p)Tm(r)*)
=

T-i
mo, (~

~ ~
cos

[(r + p r; jr r; )]
' 4~

iiir+p-r; i)iiir-r;1)

Changing the variables and taking the mean values over a
uniform repartition of the sources

r;, neglecting their hard
core

interactions, one gets a
behavior like

Gii,~~, jp; TT*) «

f d3rjr + 1/2p) jr 1/2p) fill
r + 1/2p j) fill

r
1/2p j) jig)

where

iiir)
=

r-iiir) 120)

One sees that G decreases with distance following
a power law, if the interaction function is

such, that is if the interaction is mediated by
a zero mass particle. In the case of an insulator

with virtual excitation through the band gap, one will have an exponential decay with distance.

In the other case, a polycrystal,
a

possible model would be to take ri for the centers of

the grains, R; for their orientations and to decide that the i~~ grain is the region nearer r;

compared to every other rj this gives

Am (r)
=

T,
mo

fl
n [(2r + p r, rj (ri rj )] q [(2r p ri rj jr; rj )]1(21)

J#I

and it is clear that before taking the mean values over the position ri one single term is not

zero, describing the fact that from
one

grain to another there is
no

correlation of orientation at

all. Expression (21) can be evaluated in two ways, the first one by remarking that the condition

that both points r +1/2p,
r

1/2p
are on

the
sanie

side of the mediatrix of the segment ri, rj
gives a

factor

~_lp.(ri-rj)I
j~ ,r~-r~

and that for p small compared to ri rj (, the product of many such factors gives
an

exponential. But it is simpler to remark that when going along
a

straight line, the probability
of having not yet met a

boundary is proportional to

~~P ljj
jj

~

where
~Y

is a numerical factor of the order of unity.

So one sees that in the case of the polycrystal the correlation function decreases exponentially
with length, while in the Gaussian case the power law behavior is favorized.
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5 Conclusions.

We have shown that a
generalization of the theory of random functions, a theory built for ran-

dom time events, can be established to describe disordered solids, glasses
or even fluctuations

in liquids if one adds
a time dependence. The fractal nature of the sets, where the modulus of

such a random function here a
tensorial one is larger than

a
given number, is also

a simple

property of the model, at least in the Gaussian limit; this property, which has been shown to

be valid for scalar space functions [7] as
well as for random noise [13], wa~

pointed out to me

by R. Ramrnal.
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