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R4sum4 Le modble de Hubbard h r6pulsion infinie est 6tud16 avec un seul trou en pr6sence
d'un champ magndtique externe orbital

sur des amas
finis de diidrentes g60mdtries. Des rdsultats

de diagonalisations exactes sont prdsentds pour l'dnergie, le spin total et plusieurs fonctions de

corrdlation de spin. Ils confirment l'idde que le flux appliqud est compensd par le flux fictif

provenant d'une configuration de spins non coplanaires. Ce phdnombne est aussi bien illustrd

par une dtude variationnelle.

Abstract. The infinite U Hubbard model with
a

single hole in the presence of
an

external

orbital magnetic field is studied on a
finite cluster for several geometries. Exact diagonalization

results for the energy, total spin and several spin correlation functions
are

presented. They
strongly support the idea of the compensation of the applied flux by a

flictitious flux induced by

a
non-coplanar spin background. A variational study also shows evidence of this phenomenon.

The physics of strongly correlated electronic systeius, in connectivity with high temperature
superconductivity, has been the focus of many recent theoretical investigations. Among these

models, the infinite U Hubbard iuodel is the simplest~ since it doesn't contain any energy scale

and depends only on the electron density. Until recently, the main result for this system was

the Nagaoka theorem iii which states that the ground state for
a

single hole
on a

bipartie lattice

has the maximum total spin. Iio».ever, the stability of ferromagnetism in two dimensions has

been further investigated by
means of exact diagonalizations

on
finite clusters [2-4], mean

field

approximation 16, 6], variational wave function with
one

spin flip [7-9] and high temperature
expansions [10]. For more than one

hole,
some

instabilities have been found
on

finite lattices

[2-5], but have been interpreted as
finite size effects ill]. It seems rather likely that the fully

polarized state is at least locally stable to,vards
a

single spin flip for a finite density
z

of holes

up to z =
0.29 [9]. But it is not clear that this remains valid at any finite temperature [10].

High temperature expansions suggest that many low lying excited states with arbitrary small

magnetization may dominate the magnetic properties at T # 0.
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Part of
our present understanding of strong correlations borrows from exact results in

one

dimension [12], where
a

decoupling between charge and spin degrees of freedom has been found.

In the infinite U limit for
a

closed ring, eigenstates are classified by the crystal momentum of

the associated squeezed spin chain and the k values for the holes [5]. More precisely,
a

finite

crystal momentum in the spin chain shifts the allowed k values and thus plays the role of
a

fictitious magnetic flux for the orbital motion of the holes. This idea has been the starting point
of

some mean
field approaches which

assume
that holes

move
in

a
twisted spin background [6].

Actually,
a

full dynamical treatment can
be formulated in terms of a gauge theory [13]. This

analogy between
a

spin field and
a

fictitious magnetic field suggests that the spin configuration
is very sensitive to an

external orbital field. Intuitively, the spins adjust
so

that the fictitious

field they generate compensates the applied field. This phenomenon has been studied by
exact diagonalization [14] and quantum Monte Carlo jib] simulation. The effect of the spin
background is,

as
expected from this picture, to reduce the energy dependence as a function

of the external flux. This result is quite interesting, since it suggests that fictitious fluxes
can

be generated without
a

significant reduction of the hopping amplitude. Another motivation to

study the infinite U Hubbard model for
a

single hole in
an

external field is that in the presence

of a finite density of holes, and zero external field, it is possible to represent these holes by
hard

core
bosons bound to singular flux tubes [16]. In a mean

field type of approximation,
the flux tubes

are
replaced by

a
uniform average orbital magnetic field. Since these holes

are

bosonic, their behavior is related to the low lying states of this elsective
one

hole model.

We should stress that for real systems, the external field couples also to the spins via the

usual Zeeman B-S term. For a
single hole, this Zeeman term scales with the system size by

contrast to the kinetic energy of the hole, which remains finite in the thermodynamical limit.

As a
result,

our
model is not realistic. However the main motivation is to study the interplay

between charge and spin degrees of freedom.

This paper is dedicated to a
numerical studv of t~his problem, using both exact diagonal-

izations on
finite clusters and variational

wave
functions. More specifically,

we
consider the

infinite U Hubbard model:

H
=

~j ~j e'~'? (I ni-,
c$cja(I

n j a) + h-c (I)

(ij) ?

where c$ is an
electron creation operat~or at site spin components c1. The I, j suiuiuation runs

over nearest neighbor bon(ls and the projection operator enforces the non-double-occupancy
constraint. The external field is iiuplemented by the phases Ii

j,
which

are
related to the flux

by:

~ Aij 2~
~ (2)

oriented
~°

p>aquett»

,vhere ~a
is the flux through the given plaquette and ~ao =

is the elementary flux quantum.
As usual, the spectrum and all gauge invariant obser;ables

are
periodic in

~a
wit-h period ~ao.

Two types of geometries have been cqnsidered. First
a 4 x 4 square lattice with free boundary

condition and second a
closed strip of,vidth 2 and legnth 8. These

are
shown in figure I. In

the case
of the internal annulus is identical to the flux

~a~
in the external plaquettes~ and

one

for which ~aj =
0. For the square geometry, we

have chosen a uniform flux ~a.

We first discuss the result froiu the exact diagonalizations. The ground energy and first

two excited states are sho,vn in figure 2a for the square cluster. As in previous studies~ the

energy variation is strongly reduced in comparison to the free particle
case. We also observe

a
coincidence between the maxima of dE/d~a and the minima of level separation for these low
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Fig. i. Different geometries studied in this work. a) The 4 x 4 square lattice with open boundary
conditions. Numbers

on
different plaquettes label them according to the symmetries of the cluster.

They will be used for figure 5. b) Labels for the different types of sites for the square cluster. They
will be used in figure 3. c) The 4 x 2 strip, with the flux ~j for the unique internal plaquette and ~e

for the 8 external plaquettes.

lying states. The same trends
are observed for the two ring geometries, suggesting that they are

quite general. The total energy variation for the ground state is of the order of 0.02 by contrast

to 4 2v5
ci 1.18 for the infinite square lattice and

a
single spinless particle. This confirms the

picture where spins screen at least partially the applied field by their induced fictitious field.

This is strongly supported by further analysis of the ground state wave
function. For instance,

the probability to find the hole on a given site is depicted in figure 3. As
a consequence of the

free boundary condition, this probability is reduced for smaller coordination points (ie edges
and corners) for the square cluster. For a

single spinless particle, it exhibits relatively large
fluctuations

as a
function of the external magnetic field and the discontinuities

are due to

level crossings. These variations are again reduced by roughly
a

factor 10 when spin degrees
of freedom

are
included. We note that the characteristic field scale for the oscillations

are

smaller in the ring geometry that in the square cluster. This is simply
a consequence of

a

larger discretization step for the square cluster. The probability for a spinless particle
on a

strip to be on
the internal annulus ranges from 0.I to 0.9 when the flux ~a is varied. Moreover

this probability presents also several discontinuities which are again due to level crossings. The

corresponding curves are not shown in figures 3c and 3d because they are ols scale.

Another interesting quaiitity is the total spin versus ~a. This is plotted in figure 4. We observe

that it decreases rather rapidly with
~a

and reaches its minimum value around ~a/~ao =
0.21 on

the square cluster. This critical ~a/~ao is 0. II for the ladder with
~aj =

0 and 0.10 for ~aj = ~ae.

Note however that in the latter case, the total spin is not a monotonous function of ~a. This

scale is in quite good agreement with the results of reference [14] and again seems not to depend
much

on the geometry.
In order to present a more

quantitative description of the induced fictitious flux,
a

good
quantity to measure is the expectation value of permutation operators for spins along given
closed paths on

the lattice. This is related to the fact that when the hole
moves

along such a

closed path, it induces
a

cyclic permutation of the remaining spins along this path. As usual,

the amplitude for such
a process has

an
additional Aharanov-Bohm phase factor 2~ ~apath/~'o

where ~apath is the enclosed flux. Perfect screening occurs if spins along the path are in an

eigenstate of the associated permutation operator with the eigenvalue exp (-12~ ~apath/~'o)
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Fig. 2. Ground state arid first excited state energies from exact diagonalization. a) Square cluster

with
a

uniform flux ~ per plaquette. The dashed curve is the exact result for
a

spinless particle (I.e.
state with maximal total spin). b) 2 x 8 strip with ~j =

0, and
~a = ~e. c) 2 x 8 strip with ~aj = ~ae " i2.

Of course, this cannot be achieved simultaneously for all the paths present in the system.
However, on

the average, spins may twist in
a way which tends to reduce the total phase

accumalated by the hole along closed paths. Figure 5 shows the phase of the expectation value

of cyclic permutation operators. In figure 5a, the wave function is projected
on

the subspace
where the hole occupies

one of the sites of
a

given plaquette. A cyclic permutation of the three

spins
on

the plaquette is then performed, and the overlap of the final state with the ground
state is calculated. The phase of this overlap is denoted by 2~~afic/~ao. Figure 5b corresponds to

projecting the wave function on the subspace where the hole is absent from the given plaquette.
In this case, we

apply
a

corresponding four spins cyclic permutation and calculate the overlap
with the ground state. As expected, ~aefr is zero for the fully polarized ferromagnetic state.

When the total spin reaches its nfinimal value S
=

1/2, the spins twist in
a way which provides

a
rather good cancellation of the external flux. However, this matching is not as good when

the hole is not on
the given plaquette and when ~a/~ao is large. While the three and four site

paths are note exactly the same, such
a trend is sensible, since

we expect the constraint on
the

spin
wave

function to be the strongest in the vicinity of the hole. We should also emphasize
that these expectation values of spin permutation operators are related to the spin chirality

in the following way. Let us consider
a 4 sites ring with spins Si> 52, 53> 54, and denote by

P;j the permutation operator for spins I and j. A three spin cyclic permutation P3 is given by
P3= P12P23 and

a
four spin permutation P4 by P4= P12P23P34. It can

be shown [17]:

P3-P(
=

-4i Si (52 x 53) (2)

P4 P(
=

-2i (Si (52 x 53) + 52 (53 x 54) + 53 (54 x Si + 54 (Si x 52)) (3)

So a
finite chirality, defined by (Si (52 x 53)) # 0 for instance implies that ~afic/~ao is not

integer nor
half integer. The results of figure 5 indicate

a
finite spin chirality in the ground

state expected for ~a/~ao =
1/2 and the vicinity of ~a =

0. This is consistent with the fact that
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Fig. 2. (continued)

~a/~ao "
1/2 and ~a/~a =

1/2
are the only values for which the Hamiltonian (I) does not break

time reversal symmetry. Furthermore, finite chirality implies a non-coplanar spin configuration
in general. This

non
coplanarity appears very naturally in

a mean field semi classical picture,
where spins

are
assumed to be mutually uncorrelated and pointing in different directions,

thus defining
a classical unit vector field n(I)

on
each site I. With such

an
hypothesis, the

contribution of the spin background to the total phase seen
by the hole during its motion

around
a

closed path is half of the solid angle spanned by the vector field n(I)
on the unit

sphere when I goes along the path [6]. Our exact diagonalizations suggest that such
a

semi-

classical
mean

field picture predicts the right variation of the spin chirality as a function of

the external flux. However, it has been shown that
a

class of wave functions leads to a strong

JOURNAL DE PHYSIQUE T 3, N' 2, FEBRUARY iW3 j8
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Fig. 3. Probability of presence for the hole on different sites in the ground state. a) 4 x 4 square

lattice for sites of type i see
Fig. lb). "With spins" corresponds to the full Hilbert space and "Without

spin" to the maximally polarized state, equivalent to a
single spinless particle. b) Same

as
previous

case, for sites of type 2. cl 2 x 8 strip with ~a, = ~ae = i2, for sites
on

the internam ring. d) 2 x 8 strip
with ~aj =

0 for sites on the internal. Note that the magnification on the y axis is much larger for case

c) and d) th;tn for a) and b).

reduction of the modulus of the hopping amplitude, eventhough its phase
can

be tuned to the

right value. It would be of course interesting to know if we can
reproduce the ground state

energy at finite flux, using a
semi-classical static spin background. It is not so

straightforward,

since it requires an
optimization

over
all the associated unit vector fields n(I)

on the lattice.

We haven't attempted this yet, since we suspect t~hat the large finite twist could lead to a too
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Fig. 3. (continued)

siuall absolute value of the hopping amplitude. In principle, those semi-classical states are not

eigenstates of the total spin. However, it is always possible t~o project them onto the subspace
with the small value of the total spin. It would be interesting to optimize the overlap between

such
a state and the actual ground state, to get a

better understanding of the physical nature

of this ground state.

In this paper, we
also report some results on an a priori different class of variational

wave

functions. Rather than starting from
a

semi-classical picture, which is well adapted when the

n field varies only
on very large length scales (I.e. when ~a/~ao < I),

our
trial states definitely

contain strong quantuiu fluctuations. The idea is that the spin part of the wave
function should

provide
a source of fictitious flux acting

on
the hopping of the hole. Let

us
denote by z

the
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Fig. 4. Total spin of the ground state versus ~a. a) square lattice. b) 2 x 8 strip for ~aj = ~e " i2. c)

2 x 8 strip for ~j =
0 and ~ae " ~.



N°2 INFINITE U HUBBARD MODEL IN AN ORBITAL FIELD 509

Plaquefle with hole
0.5

0 +-

..
I -

DA 2 +-

k 0.3
m
S

0.2

o-1 ;.'
".._

0 0.2 DA 0.6 0.8

q/q~

(a)

Plaquefle without hole
0.5

,." .._
0 +-

,"
", -

DA ;.' "., 2 +-

I 0.3
)

."
".,

0.2 ;.' ".

oi

0 0.2 DA 0.6 0.8

Q/Qo

16)

Fig. 5. Fictitious flux per plaquette
as

defined in text for the square cluster, for the three types of

plaquettes (see Fig. ia). a) Plaquette with the hole located
on

it. b) Plaquette without hole. In both

case
a) and case b) and for

=
o-S, a

degeneracy of the ground stat.elead t-o a
values slightly different

from o.5. The discrepency has been corrected by hand.

position of the hole
on

the lattice, and by vi, y~,
,

yn the positions of the
n

down spins. We

investigated
wave

functions of the form:

~ ~~~ ~~ ~~~ ~~~~ ~~~ ~~~ ~~' Y~ ~l ~b)(jn (VI,
,

y~ ~~

where @(~, y) is the polar angle of site
~

with the origin at site y. This
wave

function binds
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a
fictitious flux tube to each down spin. 4lsp,n (vi >yn) is a spin wave

function and 4l)()~
denotes its restriction to the allo,ved states with the hole at site ~, to values of y, # ~. We

assume 4l)j)~ to be norinalized, ie:

~ ~§(~)
2

Vi <Yj< <y

~~~~'
~~' 'Yn)

"
I.

v,#x
"

is)

g(~) is interpreted
as

the hole wave function given this spin background. It depends for instance

on the chosen gauge for the A(~s. So the presence of g(~) is required by gauge invariance. We

chose for 4lspjn a wave
function with

a
uniform spatial density, with

a
tunable amount of

repulsion between the down spins. More specifically, we assumed
a

Couloiub gas-Jastrow form:

~z

ib[[)n (vi,
,

Yn "

fl
~XP (io'Yui (2 luuil~)

fl
Ym Yl l~

/Z~'~(Z). (6)

m=I I<I<m<~z

The length £ is chosen to ensure
the global neutrality of the corresponding plasma, which leads

to:
~

£~
=

~'
(7)

2~n

As this point, we stress that this variational study has been limited to the same square cluster

case.
We chose the origin of the coordinate system to coincide with the center of the square

cluster, and used the lattice spacing as the unit length. z(~) is
a

normalization factor, deter-

mined in order to satisfy equation IS). Unless p =
0, it varies with ~ in general. The

wave

vectors Q have been either (0, 0) or (~, ~) in our
trivial

wave
functions. In all the

case we

have studied, Q
=

(~, ~) gives a
lower energy. We think this is because each time the hole

hops towards
a

site occupied by
a

down spin, the phase factor in equation (4) acquires a large
additional contribution of

~.
This interferes destruct~ively with configurations where the hole

hops towards an up spin site. Such
a

negative interference no longer occurs
if Q

"
lx, ~). In

what follows~ this value of Q has been assumed.

For given values of Q, p~ n
and

~a~ ,ve
minimize the expectation value of H by adjusting the

hole wave function g(~). This is equivalent to an
effective

one
particle tight binding problem

since

(H)
=

£tij g* (~i) g (zj + h-c- (8)

(iJ)

with the normalization constraint:

L ig (~, )i~ =
I 19)

In equation (8), tip a coiuplex number given by:

11

~lij
"

e~~~? ~j fl
eXp jl (b (~j, ym b (~i, Yli ))I ~b[[I/ lu'l)~b[[I/llYl) (~°)

Yl< <Yn ill#I
Ym#Xj

In equation (10), the sum runs over
spin configurations (y) corresponding to the hole located

at site j. The spin configurations (y') is defined from (y) after the hole has moved from j to

I. From Cauchy Schwarz inequality,
we

have ]I,j < I. Quite generally, we can write:

ii j = Iii
j exp I (A,

j
+ a(~)

=
]t;j exp a[) ii1)
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a(~ is the fictitious vector potential generated by the spin background. We expect the total

fictitious flux through the system to be n~2o in absolute value. Figure 6 shows the variational

energy for p =
2, and several values of

n.
The value p =

2 seems to provide the best variational

states in the class described by equation (6). The main feature is the multiple crossings of

the series of curves. As a result, the variational ground state energy corresponds to the lower

envelope of this family of curves. In general, for a given value of n, the energy as a
function

of ~a/~ao begins to decrease, up to the point corresponding to a vanishing effective flux. A

consequence of this series of crossings, is
a strong reduction of the amplitude of variation of

the variational energy as a
function of the external flux. However, the absolute value of the

energy is quite above the actual value from exact diagonalization. IlJrthermore, the variational

method overestimates the total spin of the ground state by quite
a

large amount. In order to

understand the nature of these wave
functions, it is helpful to study the effective Hamiltonian

defined in equation (10). For each plaquette
we

define an
effective flux froiu the oriented

sum

Of a)f's around the plaquette. The phase modulo 2~ is chosen to be in the interval ~, ~].
The average effective flux (~a) is then obtained by averaging over all the oriented plaquettes
with

an
equal weight. The result is plotted in figure 7a. As intuitively expected, the optimal

wave function corresponds to approximately miniiuizing the absolute value of (~a). We note a

systematic bias towards
a

smaller value of
n. This behavior is simply related to the results of

figure 7b. This last figure represents the amplitude it) which is the average of ]I;j over
all links

on the lattice with equal weight. Clearly, increasing the number of spin flips reduces it) quite
dramatically, thus favoring the state with smaller

n at a
fixed value of ](~a)]. We conclude this

section by stressing that p =
2 seems to be

a rather sharp minimum for the trial wave function

energy. If p is not close to this value, the
curves

corresponding to figure 6 do not even cross,

due to a stronger reduction of iii
as a

function of
n.

.8
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~
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',, ".._ n=3
", ".,

,:

..'" n=4

$
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""

3
0 o-1 0.2 0.3 DA 0.5

Q/Qo

Fig. 6. Variational energy for the best trial states defined in text on a 4 x 4 cluster for various

values nd of the number of down spins. The thick
curve

is the lower enveloppe. Note that the fully

polarized state (nd
=

0) has not been included. It is optimal state at small fi.

To conclude
our report, all the calculations st.rongly support the picture that the fictitious

fields induced by the spin currents (I.e.
non

coplanar spin configurations) cancel
an

external
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Fig. 7. Effective Hefr for the hole for the variational wave
functions (see Eq. (10)). a) Average

effective flux (see Eq. iii)). The thick line represents the actual variational ground state. b) Average

hopping amplitude. For each value of ~, nd is chosen
so

that the variational energy is minimal.

orbital magnetic field, However, it does not seem to be easy to reproduce the rather large

effective bandwidth in the presence of a
large twist of the spins by simple variational schemes,

such
as

the mean-field semi-classical states of reference [6] or
the Jastrow type wave functions

discussed here. It seems that the systems take advantage of the exponentially large dimension-

ality of the subspace corresponding to the minimal value of the total spin. Those who would

derive
a

simple picture for these ground states should concentrate on
iuaxiiuizing the value of

(t), which appears to be more
difficult than simply adjusting the effective flux.

Another important issue is to understand the finite temperature behavior. Some preliminary

results of recent Monte Carlo siiuulations suggest that the fictitious flux ~afic exhibits a very
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singular behavior at any finite T in the low
~a

regime, specifically [5], when T is much smaller

than the bandwidth, f~f)
~

~. Extrapolated to T
=

0 this would lead to a
finite value

~=o
of ~afic in the presence of an infinitesimal positive value of ~a. This may seem at first glance in

contradiction with the results of figure 5. However, taking the T
=

0 limit in the Monte-Carlo

simulation of reference [15] amounts to taking the thermodynamic limit. We expect then that

the excitation energy of the minimal spin subspace above the Nagoaka state for a single hole

at ~a =
0 to vanish in that limit. Furthermore, these low spin states may dominate the entropy

at any finite temperature. One of the striking results of reference [14] is the observation of

a finite chirality of ~afic in the limit of
~2 -

0 for the minimal value of the total spin. Of

course, these states have a finite excitation energy for
a finite size system. If they survive

in the thermodynamic limit, they may be the way to reconcile finite cluster diagonalizations
and finite temperature studies. The idea that low spin states with quite different properties
compared to the ferromagnetic state may dominate physical observables at finite T is also

suggested in the high T series expansions of reference [10] where, in the absence of external

flux,
no

evidence of ferromagnetism appears at any density of holes.
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