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Rdsumd. Ce travail est une revue de deux problbmes motiv6s par l'6tude des modbles bidi-

mensionnels pour la supraconductivitd I haute temp6rature critique. La premibre partie
con-

cerne
l'6tude du spectre d'6nergie pour des dlectrons de Bloch bidimensionnels soumis £

un

champ magndtique uniforme. Une analyse semi-classique permet d'en comprendre les propr16t6s
qualitatives et quantitatives. La deuxibme partie est un plaidoyer pour l'utilisation des m6thodes

du "Chaos Quantique" dans l'6tude des systbmes de fermions fortement corr616s. La distribution

des dcarts de niveaux d'un modble t J en deux dimensions,
en

fournit
une

illustration.

Abstract. We present here
a

review of two problems motivated by 2D models for high
Tc superconductivity. The first part concerns the energy spectrum of 2D Bloch electrons in

a

uniform magnetic field. A semiclassical analysis provides a qualitative as well as a
quantitative

understanding of this spectrum. In the second part we
make the case for the application of

"Quantum Chaos" to strongly correlated fermion systems. It is illustrated by the level spacing
distribution for the t J model in two dimensions.

1met R. Rammal for the first time at the Paris meeting on
Statistical Mechanics in January

1983. Pierre Moussa introduced us to each other. Some similarity between Rammal's work on

the Sierpinski lattice [75] and
some one dimensional almost periodic models studied by Bessis,

Moussa and myself [15] was
the reason why he wanted to make my acquaintance.

During the short discussion we had together at this meeting, it became immediately clear

that we
had two points in common : we

had both got our
degree in

a
French university, and

both worked hard to understand the structure of the Hofstadter spectrum [55].
On the first point, we shared the hardship of being outsiders in the French research institu-

tions heavily dominated by the smart but arrogant "Grandes Ecoles" alumni.

On the second, we were both fascinated by the complexity and the importance of magnetic
field effects in Solid State Physics.

Bloch electrons in
a

magnetic field, superconductor
or normal metal networks, the quantum

Hall effect, electronic properties of quasicrystals, high Tc superconductors and quantum chaos
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have been the focus of our frequent and continuing dhcussions over the years since then. Not

to mention the subjects of daily life, professional matters, politics and private problems
as well.

Scientific ambition,
a strong need for affection and

a
wounded pride secretly underlied his

life. Rammal died on a
Friday in the middle of a scientific discussion after years of heartbreak

for his country falling apart, and years of acute physical pain, despite the hope that medical

technology gave him for the better.

Jean Bellksard

Toulouse, July 1992

1. BlocI~ electrons in
a

magnetic field.

Electronic motion in a crystal subject to a magnetic field has been one of the main topics in

Solid State Physics. A magnetic field breaks the time reversal symmetry and reveals details of

the microscopic structure of
a

crystal. The Hall effect, the de Ham van Alphen effect, electronic

diamagnetism in metals, the Meissner effect, flux quantization of vortices in superconductors
and

more
recently the magnetoresistance oscillations in slightly disordered metals, and the

quantum Hall effect, are examples of the complexity
a magnetic field introduces in homogeneous

materials.

The first study of such problems goes back to Landau in 1930 [58] for the motion of electrons

in a metal, in the effective mass approximation. It was soon followed by the work of Peierls

[72] for Bloch electrons. But it took until the fifties, with
a paper by Luttinger [64] to start a

systematic study of the problem. The main remark coming out of these works is that magnetic
translation operators [94] are generating the effective Hamiltonian describing the electronic

motion in the independent electron approximation. The
case

of two dimensional systems in

a perpendicular uniform magnetic field became increasingly important after the development
of electronic devices such as MOSFETS

or heterojunctions [2]. It is nowadays possible to get
metallic thin films 200 1 thick. Many of the afore mentioned effects

are
actually enhanced in

two dimensions.

More recently, the discovery of high Tc superconductors in copper-oxides [12] led several

experts to propose that the main mechanism leading to Cooper pairs, lies probably in the

planes of the copper atoms, reducing the problem to two dimensions. Moreover, the flux

phases approach reduces the problem to the case of independent charged particles in a lattice

and
a

magnetic field. Even though this last approximation is questioned nowadays, it led many
physicists to go back to the question of the 2D electronic lattice motion in

a
uniform magnetic

field.

If
we

denote by U and V the two magnetic translations describing such
a system, they are

unitary operators fulfilling the following commutation rules
:

UV
=

e~~'"VU (I)

Here, o =
#/#o is the ratio between the magnetic flux # through the unit cell and the flux

quantum lo
=

hle (h is Planck's constant and e the electron charge).
To describe the electronic motion in

a
crystal, let us consider first the case for which a =

0

corresponding to the absence of
a

magnetic field. Only those energy levels near the Fermi

energy participate in conduction, so that we can restrict ourselves to a finite set of bands

crossing the Fermi surface. For simplicity, let us restrict ourselves to the case of only one such

band. Let E(k) (k
=

(ki, k2) being the quasimomentum) be the corresponding band function.

By Bloch theory, E(k) is periodic with respect to the reciprocal lattice. Peierls then proposed
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to replace k
=

(ki, k2) by the dimensionless operator K
=

(Ki, K~), where

K»
=

) I"h£ A»)
=

COnSt (P» eA»)
,

»

in the expression of E to get the effective hamiltonian. Here A
=

(Ai,A~) is the vector

potential, a~ (p
=

1, 2) are the lattice spacings in each direction.

Remembering that e~~i and e~~? satisfy the commutation relation (I), the Peierls Hamiltc-

nian can be written
as a convergent power series in the operators U and V.

The rigorous justification of this Peierls substitution has been done in [IS, 85] and leads to

corrections to the Peierls Hamiltonian. But whatever the corrections, the effective Hamiltonian

always admits
a

representation in the form

He~
"

~j hmi,1112(°)U~~ v~~~~~~~~~~~
'

(2)

(~l~i,~1~~)~zz

where hm~,m~(al's
are

smooth functions of a. This series usually converges absolutely.
The simplest

case consists in looking at a square lattice for which
we

ignore the higher order

terms in (2). It gives rise to the sc-called "Harper model" namely [49] :

HHarper
"

u + u~~ + v + v~~ (3)

The analogy between (I) and the canonical commutation relations (where h
=

h/2x),

jQ, pi
=

;h
,

(4)

between the position Q and the momentum P operators, is realized if we replace U by e~~
,

V

by e~Q and 2xo by h. Therefore
a

plays the role of an effective Planck constant in (I). l'he

main difference is that h is a fixed parameter once and for all, whereas a is proportional to the

magnetic field and
can

be varied like
a

tunable parameter.
We thus have realized

a concrete system in which one can test the semiclassical methods. In

a crystal with lattice spacing of order of 11, and
a strong realistic magnetic field of order of

10 T we get a
of the order of10~~, which is quite small and justifies

a
semiclassical approach.

However if we build artificially a network with lattice spacing of the order of lpm, in a magnetic
field of few Gauss, we can get o te I. Such networks were indeed built by the Grenoble group

[68, 69] by
mean

of superconductors. The de Gennes [34] and Alexander [I] theory for such

networks permits to relate in a
simple way the groundstate energy of the Harper Hamiltonian

(3) to the normal metal-superconductor transition curve
in the temperature-magnetic field

phase space. In this problem however the electron charge e must be replaced by the Cooper
pair charge 2e, in lo.

1.I ALGEBRAIC APPROACH. Another approach to (I) consists in considering the case for

which o =
p/q is

a
rational number. Then U~ and V are commuting. In an irreducible

representation
we can always represent U and V by mean of q x q matrices e~~iu and e'~?v

where
u

and
v are

unitaries such that

u~
=

v~
=

I
uu =

e~~'P'~vu (5)

Substituting in the expression (2) for the effective Hamiltonian,
we get a

k-dependent q x q

matrix which
can

be numerically diagonalized
on a computer, giving rise to a family of q

subbands.

JOURNAL DE PHYSIQUE I f 3, N' 2, FEBRUARY lW3 17
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Fig-I- Spectrum of Harper's model (Hofstadter's butterfly).

For Harper's model, this diagonalization is especially simple for the subband edges are ob-

tained for k~ =
0 or

x/q mod 2x. It gave rise to the famous Hofstadter's butterfly [55] (see
Fig. I). As one can see from figure I, the eigenvalue spectrum as

the magnetic flux varies,
exhibits

a
fractal structure of high complexity.

The first mathematical difficulty, in this numerical approach, is to show that whenever the flux

o becomes irrational,
one can approximate the spectrum by

mean of the rational one. This

can be done using C*-algebra techniques (see [71]).
A C*-algebra A is

a
complex vector space, with

a
bilinear product, and

an
antilinear involution

a E A
--

a* E A satisfying (ab)*
=

b*a*. Moreover A has
a norm for which it is

a Banach

space (namely each Cauchy sequence converges) and satisfies

llall~
=

lla*all (6)

A unit I is an element of A such that aI
=

Ia
= a

,

Va e A. Therefore from (6) ))I) =
I. A

C*-algebra has not necessarily any unit, but if
some

unit exists it is unique. One can
always

enlarge
a

C*-algebra by adding
a

unit by brut force. A *-homomorphism p A
--

B between

two C*-algebras A and B, is a
linear map such that p(ab)

=
p(a)p(b), p(a*)

=
p(a)*.

This structure is actually very natural from two points of view.

First of all, the topology generated by this norm is purelj~ algebraic, because (6) tells
us that

[[a[)~ is the spectral radius of a*a (a purely algebraic concept). This is confirmed by the fact

that if p is a
*-isomorphism from A to B then p is norm preserving. Thus the norm is an
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algebraic invariant.

Moreover, the antilinear involution permits to define positive elements, namely those elements

of A which can be written in the form a*a for some a E A. This positivity property is essential

in Quantum Mechanics in that it permits to define energy and groundstates for instance. Then,
if a E A, ))a II

is the smallest non negative number "c" such that 0 < a*a < cI.

It can be shown [78] that there is
a

unique largest C*-algebra Au (up to isomorphism)
generated by two "abstract" unitaries U and V satisfying (I). Au contains a unit. It is called

the "'rotation algebra" and had been defined and studied by Rieflel [78]. Moreover, given any

compact subset I of R, one can
show that there is a

C*-algebra AI generated by elements of

the form (2) where the hm~,m~ are continuous functions of
o on

I and vanish all but for
a

finite

number of them. AI has always
a unit. In

a
certain sense AI can be seen as Uo~ IAn. Actually

for a e I there is a natural *-homomorphism pa AI
--

Ao which consists in evaluating all

the hm~,m~'s at o.

Given an element
a

in a C*-algebra AI with a unit I, its spectrum SpA(a) is the set of

complex numbers
z e C such that zI a

has
no

inverse element in A.

The main result justifying the numerical calculation is
:

Theorem i Let H
=

H*
a

self adjoint element of AI, where I is a compact subset of R.

Then the spectrum E(a)
=

Sp
A

(pa(H)) is continuous with respect to a
namely its gap edges

are continuous functions of
a.

~

A C*-algebra can be represented by operators in a
Hilbert space. Namely a

representation

x is the data of
a

Hilbert space 7i,, called the representation space, and of
a

*-homomorphism

x
A

--
B(7i,) into the C*-algebra of bounded operators on 7i;

For the rotation algebra several representations have physical meaning. For instance, Harper
in 1955 [49] used the following one 7i,

=
£~(Z), namely the Hilbert space of quantum states

on a
discrete lD chain, and the operator x(U) is the translation by one, whereas x(V) is the

multiplication by e~~'(~~°'~) if N is the position operator. It is not difficult to see then, that

the Schr6dinger equation x(HHarper)~l
"

E~I, where HHarper is given by (3) is nothing but the

Harper equation

~l(n + I) + ~l(n 1) + 2 cos
2x(z

on
)#i(n)

=
E~I(n) (7)

We can also represent U and V on
f~(Z~) namely in

a
2D lattice, by mean of the discrete

magnetic translations. At last,
one can also represent them

on
L~(R) by e~w~i and e~W~?

where 7 =
2xa, 1(2 is the position operator and Ill

"

-I).
Many other representations do exist and are useful for practical purposes.

1.2 SEMICLASSICAL ANALYSIS. To go forward
on the knowledge of the Hofstadter spec-

trum, we
will use

the semiclassical analysis namely we will develop an asymptotic calculus as

a --
0. This can be done

as
follows setting 7 =

2xo we use the representation

x(U)
=

e'~~~+w~~~ x(v)
=

e~~~?+w~?~
,

(8)

and expand the effective Hamiltonian (3) in powers of @.
If k

=
(ki, k~) is chosen

as a
maximum

or a
minimum k

=
kc of the band function E(k),

one

gets for H an expression of the form

H
=

E(kc) + I(fif~~ )~vI(~ltv + O(7~~~)
,

(9)
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Fig.2. Comparison between exact spectrum and semiclassical formulae for the Landau levels in

the Harper model; points are extracted from the numerical exact spectrum, full curves represent

semiclassical formulae given by Equation (11).

where M~v is the effective mass matrix near the extremum and + (resp. -) is chosen for

a
minimum (resp. maximum). The O(7) term is nothing but Landau's Hamiltonian in

the effective
mass approximation. The corresponding eigenvalues

are easy to get, namely
(n EN)

:

En
=

E(kc) +
j ~~j+j~ + o(72)

,

(lo)
1 2

where ml, m2 are
the eigenvalues of M, and

n E N labels the corresponding Landau levels.

The O(7~) term can
be obtained from (9) by perturbation theory. In particular if H is poly-

nomial in U and V, one can get an expansion of En in (10) at every order in 7. In particular
for Harper's equation, the Landau levels

are
given by (see Fig. 2)

Et
=

+
4

7(2" +1) + )~ ll + (2~ + 1)~l
fit"~

+ (" + l)~l +
(7~)j

(11)

Such an expression can actually be generalized near each rational value p/q e Q of a. For

indeed, using the matrices
u

and
v

in eq.(5), and the generators Up
=

pp(U) and Vp =
pp(V),

the sub-C*-algebra of Mq(C) © Ap generated by U'
= u © Up and V'

= v © Vp is isomorphic
to Ao if o =

p/q + fl. Therefore in this representation, the effective Hamiltonian pa (H)
can

be

seen as a q x q matrix kp with elements in Ap. In much the same way we get an expansion near

6
=

2xfl te 0, if
we

replace Up and Vp by e~(~i+W~i) and e~(~?+W~?) and developing in power8

of li. The difference is that for 6
=

0 the "band function" E(k) is replaced by a matrix valued

functions 7i(k). Diagonalizing 7i(k) gives a sequence of q subbands Ei(k),
,

Eq(k), which

gives the spectrum of pp/q(H), whenever we vary k. Correspondingly we get k-dependent
eigenstates )I)k

,

I
=

I,
,

q.
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Such
a

"classical" mechanics corresponds to motion in
a

fiber bundle. Here the ((k, )I)~) e
T~

x C~; k e T~) is a
line bundle associated to the i~~ subband.

To describe the spectrum near a
band edge, we pick up a band (namely

we
choose I e [I, q]),

and let kc be the value of k for which E;(kc) is the band edge we consider. Then kc is
a

maximum or a
minimum of E;. In order to reduce the problem to the case a -- 0, we replace

the matrix valued Hamiltonian kp by an effective band Hamiltonian by mean of a standard

Schur complement formula

tip(z)
=

(<lfip4 + (<lfipo;
~~ ~

Q;fiplo
,

(12)

where ii) = (I)k_k~, Q;
= Iq (I) (ii and Iq is the unit matrix in Mq(C).

The eigenvalue E of kp
near E; (kc) is then given by the equation

:

E
=

eigenvalue of jip(E)

Expanding (12) in powers of li gives rise to an
expansion of the same form as

eq.(9) where

now
M is the effective mass for the subbands. So we get Landau sublevels at each band edge.

However the O(6) term splits into two pieces

where fl;(k)
=

(I)kk(I(. The first term is proportional to (b( and gives rise to a
discontinuity

of the derivative of the band edges (namely for
n =

0) at o =
p/q (I.e. 6

=
0). Notice that

@@ is the density of states at the band edge.
The other term is proportional to 6 and accounts for the curvature of the i~~ bundle introduced

by the matrix Hamiltonian ~(k). It produces an asymmetry of the derivative of the band edges

near o =
p/q (see Fig. 3).

Formula (13)
was written for the first time by Wilkinson [92] for the Harper model. Rammal

[76] rederived it for Harper's model and related the derivative fiE;,n(6) /fi6 to the magnetization
of

a
superconducting network, using Abrikosov's theory. The formula (13) was

derived in full

generality (namely for any model given by Eq.(7)) in [13] (see also [51, 77]) where it was
called

the Wilkinson-Rammal formula.

1.3 BANDTOUCHING. The Wilkinson-Rammal formula is valid Only at a
band edge sep-

arated from other bands, namely whenever E;(kc) is
a

simple eigenvalue of ~(kc). On the

contrary, if two bands touch at k
=

kc, the asymptotic is different and depends upon the order

of the contact between them. Whenever two bands touch each other, the contact is generically
conical (see Fig. 4). Degenerate perturbation theory indicates that the effective Hamiltonian

jip(z) in (12) must be
a

2 x 2 matrix corresponding to the eigenprojection :

1<1(<1+ 1<'1("1 =
fl

,

if Ei(kc)
=

E;>(kc), I and I' being the labels of the touching bands, and kc the conical point.
One can show that the lowest order term in the jip(z) expansion is given (after

a
suitable

choice of coordinates) by a Dirac operator, namely

jip(z)
=

E; (kc +
Vi l~, ~

~~

~~~
~'~~~ + O(d) (14)

'1 2
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Thus Landau sublevels
are replaced by Dirac levels namely

Ez,~z =
E; (kc) + 24@sgn(n)

+ O(6)
,

(15)

where n e Z is the Dirac label.

For Harper's model, it was shown in [17] that there is no gap at E
=

0. In particular if

o =
p/q, where q is even, the middle gap is closed producing a conical bandtouching. This is

what
we can see

in figure 4 at a =
1/2 where the Dirac levels

are given by (6
=

2x(a 1/2))

Ef~
=

+2(2n(6()~'~ (l
*)

+ O((6(~'~) n > 0 (16)
'

2

~

Non generic touching had been studied in [9].
Playing with such a semiclassical analysis permits actually to reveal the topology of the

classical bands underlying the system. A bunch of Landau sublevels will reveal the existence

of a local extremum in a subband. The slope of these levels permits to measure the local

curvature of the subband
near

this extremum. The expansion of this level in power of 6

permits in principle to compute the higher order derivatives of the subband function. In much

the same way, Dirac levels reveal the existence of a conical bandtouching. At last saddle points
also produce a

special packing of sublevels. This has been studied by Helfler and Sj6strand

[52]. It permits to understand in particular why the Hausdorfl dimension of the Hofstadter

spectrum may not vanish [88].
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1.4 TUNNELING EFFECT. The previous analysis does not account for exponentially small

terms in a
(or

a
p/q) which may be produced by the tunneling effect. Actually considering

E(k) to be the classical Hamiltonian where ki (resp. kz) represents classical momentum

(resp. position)
we may get tunneling between wells in the k

=
(ki, k2) phase space. Because

E(k) is periodic in k, any well is actually infinitely degenerate by mean of the translation in

reciprocal space. It will produce
a

broadening of the Landau levels and sublevels which gives

an
exponentially small correction as a or a

p/q
--

0. This broadening has been described by
Wilkinson [92] and Helfler-Sj6strand [52].

Before going into it, let us restrict ourselves to the simpler case for which we have classically
degenerate wells in the cell of periods of the reciprocal lattice, close to each other. Such a

phenomenon appears for the following model studied by Wilkinson [92] and Barelli-Kreft [10]

Hw=U+U~~+V+V~~+t2(U~+U~~+V~+V~~), (17)

with12 > 1/4. Indeed, if12 < 1/4, Hw admits
a unique classical minimum at ki

"
k2

"

x
mod 2x which bifurcates at 12 "

1/4 into
a

local maximum and gives rise to four minima

symmetric by
a

fourfold rotation around ki
"

k2
" x.

This symmetry produces an exact

classical degeneracy. Thus the corresponding Landau sublevels are exactly degenerate modulo

O(tY").

To describe the tunneling effect between these four wells, we replace the Hamiltonian by
a

4 x 4 effective Hamiltonian for each value of the Landau quantum number
n.

Using the rotation
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symmetry, this matrix admits the following form :

0 t r

il~~~~~~~ ~"~7~~ ~
'

~~~~

t r
? 0

where En (7) h the n~~ Landau sublevel computed
as

before,
r =

f E R and t e C. Using
WKB techniques [50, 93], one can write t (resp. r) in terms of tunneling action8 Sn_n_ (re8p.

Sopp) between neighbouring wells (resp, diagonally opposite wells) in the form :

where w

aslov's corrections.

It turns
out that

(Imsopp(
>

(Imsnn.( so that r becomes
negligible

compare to t.
contrary to the Schr6dinger

case,
the real part of

n_n
does

terms in the pression of
level splitting

when 7 varies.

E~
=

+~de-lIm(sn_n )jH
~~~

(~~(s~
~

/~ ~ i)
~ ~~~~-(lm(Sn n,)(/~ ~i~ (fi~( s / ~ #) (~°)

The corresponding Landau level splits into four levels like
a

braid as 7 varies (see Fig. 5).
The same phenomenon has been also observed with Dirac sublevels [9]. In figure 6 is repre-

sented the braiding of Dirac sublevels produced by the touching of two bands along five conical

points with an exact fourfold symmetry around the fifth
one. One can see on

figure 7 that the

WKB formulae fit quite well with the diagonalization method.

The broadening of Landau sublevels can be described in much the same way by using the

reciprocal group translation symmetry in the k-phase space instead of the fourfold rotation

symmetry used above.

We replace then the Hamiltonian we started from, by an effective Hamiltonian Htunnei acting in

the Hilbert space generated by the Landau eigenstates of given quantum number
n

associated

to each well. Since each such well is labelled by a point in
a 2D lattice, Ht~nn~j can be

seen as
acting

on
f~(Z~) by

mean of magnetic translations. However, when one computes
the corresponding flux, one can see that now Htunn~j e Ao> with a'

=
lla mod I instead

[92, 52]. This scale invariance of the spectrum was proposed for the first time by Azbel [6] who

emphasized the role of the continuous fraction expansion of
a. The Gauss map a'

--
I lo (see

in [57]) precisely generates this expansion.
If H has the fourfold symmetry of the original lattice,

so
does Htunn~j. Moreover the

ma-

trix element of Htunnei between two wells located at sites I and I' is proportional to e~~"'/~

where Sill is the tunneling action between the wells and I'. So that
as 7 --

0 only the

nearest neighbouring wells should be accounted for. This leads to the following approximate
Hamiltonian :

Htunnei
" 7~e~'~~'~'H (Uo> + UJ~ + Va> + VJ~) + O (e~~'/~)

,

(21)

with S' > ImS.

This formula shows that the broadening of each Landau sublevel is actually given by
a Harper

Hamiltonian, properly renormalized; thus the corresponding spectrum is again the Hofstadter
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one. Repeating this construction again and again gives rise in principle to the fractal structure

of the spectrum.

However the previous analysis works only for well separated Landau sublevels. Near the band

centers, Helfler and Sj6strand have developed the same kind of ideas and they have shown that

for Harper's model, each step of the renormalization analysis can
be locally described by mean

of four standard forms, one of them being the Harper model, the others taking the possible
bandtouchings into account.

The
same

analysis has been performed by Kerdelhud [56] for the Harper model on a triangular

or honeycomb lattice.

The main result of Helfler and Sj6strand is contained in the following theorem [52]

Theorem 2 There is C > 0, such that if o admits
a continuous fraction expansion of the

form [al,a2,
,

an, with an > C Vn, then the spectrum E(a) of Harper's equation has a

zero Lebesgve measure.

We remark however that if C > I, the set of such a's has
zero

Lebesgue measure. A conjecture
(The Ten Martini problem of Kac [17]) is that E(a) should have a zero Lebesgue measure for

any irrational
a.
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1.5 FLUX PHASES THEORY. The discovery of copper oxide superconductors in 1986 has

probably been
one

of the most important events in Solid State Physics in years. The main

reason is that it provides probably
a new mechanism for pairing of electrons. The corresponding

forces
are

much stronger than the phonon coupling in BCS theory, producing higher critical

temperature. Yet, this mechanism is still not understood.

Nevertheless the
enormous

effort since then by theoreticians has permitted to concentrate the

studies on a
small number of models. It is right

now
accepted by most of the experts that

the key phenomena are to be found in
a

2D model, representing the Fermi plectrons in the

Copper orbitals, the Oxygen being there only to create an effective doping by holes in these

orbitals. One possible model is the sc-called Hubbard model in two dimensions, with a strong
electron-electron interaction, which can be approximated by the sc-called t J model as an

effective Hamiltonian.

A great deal of work has been done in finding
a

good approximate ground state for such
a

model. One of the approaches proposed was
the sc-called flux phase approximation. The basic

idea in such an approach is that in the t J model, spin variables can be considered as slow

whereas charge variables
are

rapid. Therefore a kind of Born-Oppenheimer approximation leads

to a
model in which the spins are

frozen, creating
an

effective magnetic field acting
on

charges
(here holes). In this adiabatic approximation, the charged particles become independent, and

the Hamiltonian becomes similar to the Harper model. However the magnetic field is no longer



N°2 SEMICLASSICAL METHODS IN SOLID STATE PHYSICS 483

/
110÷x~

~j
/

~ ~

/ x

/ x

/
'

I
h

ow~÷~
~

Q x ,I
I

j

i '

"''°~
f~' Ax'

/

,

<' i

_-~$ i ',
~ £

'% ~"°°~"TI7~©f~i~~~T)~7k~jtS~llT
~j~w°~'

,, ~ 'i~gncu,F'u,

~
,

~/

k I
~

, ,,

~~_~

"~~j
t,

~~ ~

,

i

I I
I

~

i

'j
~

~'~~~~

~
t

~
' x',

, ~

'

~
~

lX¾ll~
, &l'

K

Energy

0.6

o.4

0 2 ''~i

Flux

,'I
1-.

-0.2
l~~

I
'"

-0.6

Fig.?.

figure crosses are from exact
spectrum

whereas full
curves

are coming from

(from lower figure
: points are extracted from numerical exact spectrum and curves correspond

to emiclassical expansions (from



484 JOURNAL DE PHYSIQUE I N°2

necessarily uniform, and it is still a dynamical variable in that it must be chosen to minimize

the Fermi
sea energy, given the holes concentration.

Because this problem is already difficult, many studies were dealing with the ansatz of
a

uniform minimizing magnetic field. So that
we are

back to Hofstadter's spectrum.
One of the main conjectures based upon this series of approximation, was that the mini-

mizing dimensionless flux o =
#/#o should be equal to the concentration b of charges (b

=

number Of charges per site). This conjecture was
based upon numerical calculations On Hofs-

tadter's spectrum (see in [59]) and was further proved to be correct in the semiclassical limit

[77], namely b
-+

0 for the Hofstadter like models. This is what gave birth to anyons, a kind

of quasipartide with a magnetic flux attached to it. They can be reinterpreted in terms of

parastatistics, thanks to the fact that the indiscernability of identical particles in 2D leads to

a representation of the Braid Group [30].
Even though such

an
idea was very appealing because of its fundamental character, it has

not been verified in experiments [39] and one can say that it has hardly any future by
now [3]

at least in the context of high Tc superconductors.
One of the main problems with such

an
approach is that the system should be driven sponta-

neously toward
a state breaking the time reversal symmetry. Even though such a mechanism

is a priori possible, there is some doubt that it can
be broken in the t J model with spin 1/2

[37].
Another problem is that the minimizing magnetic flux is certainly not uniform. For indeed

a slave boson approach shows that the uniform magnetic field ansatz gives rise to an unstable

state [79].
However, at the half filled band and for a bipartite lattice, preliminary rigorous results by

Lieb and Loss [62] indicate that the uniform magnetic field ansatz with flux 1/2 mod I should

be correct. Nevertheless we may suspect that
a

small amount of holes should produce
a

slight
disorder in the magnetic flux distribution.

One possible way to approach the
non

uniform magnetic flux problem was to consider the

case of a periodic flux to use again the semiclassical approach for the stability of the Fermi

sea. This was done in [8] to find out that the local disorder introduced by the periodicity, was

producing only
a

global correction to the ground state energy by
mean

of
a

form factor, and

the "anyon rule" &
=

b was still valid
as

b
-+ 0.

However
as

shown in [3] it has been recognized that the small field limit & -+
0 and the long

period
one

do not commute, probably because of the so-called "magnetic breakdown" caused

by tunneling effect in phase space near separatrix [87]. Therefore, the understanding of the

minimizing magnetic flux is still
a

pending question.
This long discussion

was at the heart of the exchanges between Rammal and one of
us

(JB)
during the years 1990-1991.

The very fact that the ground state of the Hubbard or the t J model
was so hard to compute

led them to think that the usual approaches were not suitable for a result.

2. Quantum chaos.

While one of
us

(JB) kept talking for months of quantum chaos with Rammal on the basis

that such phenomena should be important and universal,
one day in April 1990, Rammal

called him on the phone to claim that in the Hubbard model on a
finite lattice, the eigenvalues

tend to exhibit many avoided crossings
as the coupling constant was varied [38]. That was an

indication that
some

chaotic behaviour, whatever that means, should
occur in these models.

Still, a clear test of such an idea had to be done, and even with it the question of the mechanism

producing this effect remained unclear for the next year. Apparently Rammal took this idea
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very seriously because he produced several works with his students on quantum chaos before

May 1991 [80].
We find under the name of "Quantum Chaos" several topics mainly developed since the

end of the seventies by a community of physicists who would probably disagree on a unified

definition of the subject.
Most of them however would say that it concerns the quantum signature of classical chaos on

the dynamical properties of
a system. As its stands, such

a
definition reflects

a
pragmatic point

of view taking into account the fact that most of the studies have concerned systems with two

degrees of freedom so far. It is very significant that the title of the Les Houches 1989 summer

school proceeding was "Chaos and Quantum Physics". As explained by the organizers in the

foreword, "the expression "Quantum Chaos" at first makes
us think of

a
quasi-exponential

proliferation of publications from the last decade hiding more or
less legitimately behind

a

scientific ill-defined label".

The subject developed around three kinds of technical approaches Random Matrix Theory
(RMT), Semiclassical Theory (ST) and Dynamical Localization (DL).

2.I THE RANDOM MATRIX THEORY. First of all, the oldest approach is Random MatriX

Theory (RMT). It was proposed in the fifties by Wigner [9 II as a
convenient way of representing

the Schr6dinger operator for
a

nucleus. The idea is that such
a

Hamiltonian is very complicated
and can be approximated in many respects by

a
finite (but large) dimensional matrix HN,

where N is the dimension, the elements of which
are

random variables. The simplest example
consists in taking these variables to be gaussian, identically distributed and independent. This

ensemble of matrices is called
a

GOE (gaussian orthogonal ensemble)
or GUE (gaussian unitary

ensemble) depending upon whether HN is real symmetric
or

complex hermitian. The main

features of these ensembles are :

(a) the density of states of such matrices is given by
a

semicircle law [91],
(b) the level spacing distribution exhibits

a repulsion of neighbouring levels.

One can approximate the level spacing distribution by the one for 2 x 2 matrices called the

Wigner surmise
:

fl
=

I(GOE)
p(s)

m
Z~~sPe~'b~ (22)

fl
=

2(GUE)

On the other hand if the random matrix is diagonal (or quasidiagonal) the level spacing dis-

tribution follows a Poisson law namely [2 II

P(S)
=

e~' (23)

This is in particular the case in Anderson's random potential model [70] used in Solid State

Physics to describe disordered systems giving rise to Anderson localization.

This RMT has been developed by Dyson and Mehta [40] to the point of becoming
a very

eJlicient tool of calculation. The relevance of such
a

theory for Nuclear Physics started to be

checked in the sixties by Porter [74] and eventually by Bohigas et al. [48] in 1982.

In 1984, Bohigas et al. [26] proposed to use the RMT as a statistical tool to investigate
spectra of quantum systems with small number of degrees of freedom. The first example was

the Sinii billiard. Following a general idea of Berry [21], they established
a phenomenological

rule, namely that
a

"generic classically integrable system" should have a level spacing distri-

bution p(s) given by
a

Poisson law implying some kind of level clustering, whereas
a

"generic"
classically chaotic system should obey one of the Wigner distributions GOE

or
GUE depending

upon the symmetry properties of the quantum Hamiltonian. In such a statement, the word
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"generic" has not a
precise meaning yet, even though recent rigorous results of Sinii [83] permit

to say more at least for integrable systems. But it indicates that special systems having extra

symmetries (such
as

the harmonic oscillator [23] or geodesic motion
on an arithmetic surface

of constant negative curvature [24, 81]) may fail to follow the rule.

2.2 THE SEMICLASSICAL APPROACH GUTZWILLER'S FORMULA. The next technical tool

used in "Quantum Chaos" is a
formula based upon a WKB approximation and first established

by Gutzwiller [46] in the context of impurity levels in Solid State Physics, and later by Balian

and Bloch [7] in the case of eigenmodes of an
Optical cavity.

Let 7i(x) (x
=

(q,p) E R~
x

R~, classical phase space) be
a

classical Hamiltonian corre-

sponding to a quantum one
k. We consider the case of N degrees of freedom, and denote by

h and h
=

h/2~ the Planck constant. We assume that k has a
discrete spectrum and denote

by ED < El < < En < the corresponding eigenvalues counted with their multiplicities.
If

~~~~
(E~ e2) '

(it is a
smooth approximation of the Dirac measure)

we define the smoothed density of states

d(E, e) by
:

d(E, e)
=

~j b<(E En (24)

n

Using a Feynman path integral, and a stationary phase method [47] d(E,e)
can be approxi-

mately written
as

jqq
~~d(E, e) m

I(E) + j
~j A;(E)e~~~?(~)'~e ~ (25)

J

In this expression d(E) is the "Weyl asymptotics" [90] or
classical term, namely

:

d(E)
=

~ / d~~xb(E 7i(x)) (26)

Moreover, in (25) we sum up over
the family of periodic orbits indexed by j, corresponding to

the energy E. Then, 2j(E) is the period of this orbit, S;(E) is its action £$_~ f. p~dq~, and

7j a phase shift (the Maslov index of j) which takes into account the existence ~f caustics or

focal points in the phase space. At last A;(E) is
a counting factor which

can
be written in

terms of the Floquet matrix of orbit.

This formula shows that a large number (sometimes infinite) of oscillating terms (as h
-+ 0)

must be taken into account to describe the fluctuations of the density of states away from

its Weyl classical limit. This sum has very different properties depending upon whether the

classical dynamics defined by 7i(x)
on the energy shell 7i(x)

=
E is quasi-integrable

or
chaotic.

This is due to the exponential proliferation of classical periodic orbits in the latter case.

2.3 DYNAMICAL Lo CALIzATION. Several classical Hamiltonian systems in a strongly chaotic

regime exhibit
a

diffusive behaviour in phase space. The prototype of such systems is provided
by the standard map [32] given by :

Pt+i = pt + Ii sin qt

qt+i " qt + pt+i mod 2~
,

(27)
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where t is the discrete time, and describing a rotator kicked periodically in time. Such a map is

a
generic model for describing the behaviour of

a
Hamiltonian system near a resonance which

can
be restricted to two degrees of freedom [63].

In his 1979 report, Chirikov [32] showed that for K > 4, the typical behaviour
can be

described via a
diffusive process with diffusion constant (see Fig. 8) :

~ t~o ~~~~ ~~~
~~~~ ~~~~

Even though this result is not rigorous, recent mathematical progress has been made [18, 31,
89] on a

slightly different model, the sc-called "sawtooth map", which happens to be ergodic,
and has

a
diffusion constant. For the standard map only rough estimates at finite time have

been obtained [36].
This system can

be quantized, and is known as the " kicked rotor problem" [28]. The quantum
evolution is given by

a unitary Floquet operator F given by

F
#

e~'lie~~+ ~"Q
,

(~g)

where Q and P are the usual position and momentum operators on a
circle, satisfying [Q, PI

=

ih. Actually, here Q> P and h are dimensionless quantities. If one wants to introduce physical
parameters, such as the period T between two kicks, the moment of inertia I of the classical

rotor, one is led to the expression of the effective Planck constant

heft
"

~) (30)

showing again that it can be tuned by varying the kicks frequency for instance.

It has been argued by Fishman, Grempel and Prange [42] that F should have a pure point
spectrum on

the basis of an argument similar to the
one leading to Anderson localization.

Then the momentum space is quantized according to pn =
nh (n E Z) and similar to lD chain

like in the Anderson model. As h
-+

0 and fixed time the quantum evolution converges to the

classical one, so
that if

we compare the average ((pt PO )~) over an
inital state in classical and

quantum mechanics, the two functions agree for time t < T. Beyond this point the quantum

average stay bounded while the classical
one

continues to increase (see Fig. 8).
An argument by Chirikov, Izrailev and Shepelyansky [33] supplemented by numerical calcu-

lations shows that the classical diffusion constant D is related to the breaking time T and to

the localization length f of the quantum system

T m ( G3 const j~ (31)
h

The discrepancy between classical and quantum behaviour is due to existence of quantum
interference effects which trap the quantum state in a

finite region of phase space.
The relationship between classical diffusion and quantum local12ation has been extended to

systems with a
higher number of degrees of freedom. A simple example is then given by a

standard map in which It is actually
a

quasiperiodic function of time, namely

It(n)
=

Itof(win, w2n; ,wv_in)

Such
a system can be viewed as a

v-dimensional lattice in momentum space, for which the

localization theory works if v =
2, all states are

localized but now the localization length
(like the diffusion constant) increases exponentially fast with K. If

v > 3
an

Anderson metal-

insulator transition is expected leading to absolutely continuous spectrum for large 1( [29, 82].
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Fig.8. Time evolution of the kinetic energy for the standard map in the chaotic regime K
=

4;

the straight line corresponds to the classical energy and points represent quantum curves for different

values of the effective Planck constant (from [16]).

2.4 WHAT IS THEN QUANTUM CHAOS ? Let
us

make more explicit the notion of " Quantum
Chaos" lying behind the technicalities previously presented. First of all, as remarked by Berry
[20], chaos is a property characterizing the long time behaviour of classical systems. While at

short times the motion of a classical Hamiltonian system is deterministic, in the long run, a

stochastic description becomes more suitable when chaos appears. This paradoxical situation

has been explained in terms Of a "sensitive dependence"
on

initial conditions [86].
In quantum mechanics there is always

an extra parameter, namely Planck's constant h or

some other parameter proportional to h. We have seen in section I that a flux ratio plays the

role of h and is
no

longer
a

universal constant. In the kicked rotor problem
an

effective Planck

constant occurs
which can be physically tuned

as
desired.

To simplify notation let
us

denote by h this elsective Planck constant. The semiclassical

limit corresponds to h
-+

0. It is known that in most systems the quantum quantities at fixed

time do converge to their classical counterpart as h
-+

0.

However, there is
a

"clash" between the limits h
-+

0 and t -+ oo, even for systems as simple

as a free rotor [20]1 It means that these two limits definitely do not commute.

Where do long time quantities appear in quantum mechanics ? Precisely when we deal with

stationary states. They
are

unchanged under time evolution and they give rise to the spectrum
of the Hamiltonian. Therefore we

would not be surprised to see
effects of classical chaos in the

behaviour of the spectrum as h
-+ 0. Notice however that the quantum states, for h > 0, have

no complexity in them at all if the system has
a

finite number of degrees of freedom [44].
Let us

first consider the case of a classically integrable Hamiltonian 7i. The Liouville-

Arnold theorem [5] asserts that there is
a canonical change of variables, the action and angle

(Ii,
,

IN, Pi, ,@N) E R~
x

T~, such that the Hamiltonian
can be expressed as a function
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of the actions I
=

IL>- ,IN) only. The EBK [41] quantization procedure consists then in

replacing each Ii by njh where nj is an integer, to get the eigenvalue spectrum :

Efff
~~

=
7i(nib,

,

nNh) (32)

If 7i is smooth enough, this expression is the first term of an
expansion in powers of h. In

some cases
(as

we have seen in section I) exponentially small terms must be added to take

into account the occurence of the tunneling effect due to exact classical degeneracies between

classical regions. Still, as h
-+

0, each eigenvalue is well labelled by the quantum numbers

(ni, nN)
= n, and if two levels cross we can follow them independently.

If now 7i is not exactly integrable, say if 7i can be written as

7i(1,
@) =

7io(1) + ef(1,
@)

,

(33)

where f is a smooth enough function of (I, @), for e small, the KAM theorem (see [43]) asserts

that most of the unperturbed invariant tori, I
=

const, survive but
a

theorem by Poincard [73]
asserts that only a discrete set of periodic orbits of 7io survives the perturbation.

Perturbation theory in quantum mechanics can be used uniformly with respect to Planck's

constant [19]. The occurence of unstable periodic orbits of 7io corresponds in quantum me-

chanics to level crossings producing (as h varies), after perturbation, some kind of anticrossings
(like the Jahn-Teller effect of molecular physics). On the other hand, classical chaos precisely
develops

near
unstable periodic orbits. So

we are
led to admit that this local "hyperbolicity"

is associated with avoided crossings of levels [45].
However in the fully chaotic regime, some new phenomena occur which cause the level split-

ting to increase. For indeed the tunneling effect between unperturbed resonant eigenstates is

enhanced by the chaotic classical transport. This has been beautifully illustrated in [27]. In

this latter case the usual WKB theory, requiring classical orbits in the complex phase space,

does not provide the correct level splitting. Everything looks like if the transport of the
wave

function through the dynamical barrier
was more efficient by using the classically chaotic mc-

tion than by using the usual tunneling elsect. These results in level splitting are of the
same

order of magnitude
as

the
mean

spacing between levels.

A good example of such a phenomenon is given by the Zeeman elsect on Rydberg Hydrogen

atoms (see Fig. 9). If the magnetic field is small enough, each principal quantum number splits
into

a
bunch of Zeeman sublevels roughly linear in B. However, bne

can see
that rapidly these

sublevels will start creating a
lot of crossings. Due to higher order terms they tend to avoid

each other. If the number of such avoided crossings becomes too high, each level will oscillate

very rapidly as B increases. Moreover one can see that the splitting at the avoided crossings
becomes larger in the classically chaotic regime (namely B large) than in the regular region

[35].
We remark that if instead

we
consider h

-+ 0, and
a

given window of classical energies [E-, E+],
then h

-+
0 will select quantum numbers "n"

-+ oo, and
we

will be in the
same

situation.

These arguments give
an

insight into what should be called Quantum Chaos. First of all, in

the quasi-integrable regime, one can
assign quantum numbers unambiguously to levels, even if

they exhibit sometimes avoided crossings. For indeed, in this latter case, the level splitting is

very small (typically of order e~"~ by WKB approximation) compared to the mean spacing
separation of order h.

In the chaotic regime however, the quantum numbers become meaningless. The spectrum is

fuzzy due to level oscillations, and the level splitting is of the order of magnitude of the mean

level spacing. For this reason
(and this is somewhat paradoxical) the spectrum is more rigid

in the chaotic case than in the regular
one.
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Fig.9. Zeeman sublevels for Rydberg Hydrogen atoms in
a strong magnetic field B. ~ =

B/Bc is

the dimensionless magnetic field expressed in atomic units (~
=

i corresponds to B
=

2.3~ T). The

natural parameter here is fl
=

~~/(-2E)~. fl < i is the perturbative regime whereas here fl > 60,

namely the atom is in a strongly chaotic regime (from [35]).

2.5 LEVEL REPULSION. To illustrate this point, let us compute approximately the statis~

tics of level repulsion. Let
us

consider
a

Hamiltonian H depending upon some parameter h,
the spectrum of which being given by

a
discrete set Eo(h) < Ei(h) < Ei+i(h) < of

eigenvalues only sensitive to the variation of h.

We will define three scales of variation for h

(I) a
microscopic scale b~, such that if h'- h

=
O(b~) perturbation theory for individual levels

Ei(h) is convergent;
(it)

a
short scale b,, such that in the range h'- h

=
O(b,) the macroscopic shape of the

eigenvalue distribution does not change, but each pair (Et Ei+i) of individual levels oscillates

a large number of times;
(iii) a

macroscopic scale bM along which the macroscopic shape of the spectrum is modified.

We assume that

6p < b, < 6M

Now let us
consider the level separation between Ei(h) and Ei+i(h). Consider

an
interval

[ho> fill of size O(b~) along which Ei(h), Ei+i(h) exhibit
one

avoided crossing. As h varies

from ho to hi, the main variation of H(h)
can be described by

a 2 x 2 matrix corresponding
to the subspace generated by states I and + I. Thus

one can
write

H(hi) H(ho)
"

bH(h) m fl~ (ei + J fi)
,

(34)

PWrS(I,I+1)

where the sum concerns all pairs of eigenvalues (I,I + I) which anticross, and we have used

the representation of 2 x 2 matrices given by Pauli's
one

J
=

(ai, a2> a3). The constant et
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represents the mean variation of (Et + Ei+1)/2 which we can neglect here because et has an

appreciable value only
on

the scale bM by hypothesis. So et * 0. Here vi is some vector in R~.

Remark that if H(h) is real symmetric fi E R~ (namely the second component of vi vanishes).
Let us now

consider an
interval [h-, h+] with size O(b,) and let

us
decompose it into N

=

O (b, /b~) subintervals Uf]o~[hk, hk+i] of size O(b~).
Hence the total variation of H(h) along this interval can then be written as :

N-I

H(h+) H(h-)
=

fl~ L
« v)~~ (35)

k=o

By hypothesis
on

such
an

interval N is large, but the macroscopic shape of the spectrum does

not change,
so

that one can consider the v)~~'s (as k varies)
as identically distributed random

variables, whereas the rapid oscillations make them independent.
Therefore the sum

N-1

£, ~(k)
~ ~~

i

k=0

becomes a
Gaussian random 2 x 2 matrix with

mean zero as
N gets large.

The level spacing Ei+i Et is then given by

s=Ei+i-Ei=2]Vi)

namely its distribution is given by the Wigner surmise

p(s)
=

Z~~se~'b~~ if V E R~ real symmetric
case

p(s)
=

Z~~s~e~'~'~~ if V E R~ complex hermitian case

We have here
a

beginning of
an argument explaining why the Wigner law should be universal.

2.6 CHAOS IN STRONGLY CORRELATED FERMIONS SYSTEMS. Let us now consider the

t J model describing
a

2D strongly correlated fermion lattice gas

HA
=

t £ (I n~,_a) c$,,cy,a (I ny,-a + J £ S~ Sy
,

(36)

#-yj= i,~~yEA j~-yj=1,~,yEA

A is a finite lattice in Z~, taken with periodic boundary conditions, c~,a is the fermion creator

operator at the site
z E A of

an electron of spin a, n~,, =
cl,c~,, is the number of electrons of

spin a at z, and S~ is the spin operator for electrons at site I. HA acts on the Hilbert subspace
of states with occupation number n~ = n~,t + n~,i < I at each site (the sc-called "Gutzwiller

projection" ).
The total number of particles £~(n~,t + n~~ i)

=
Nt + Ni is fixed and equal to N No where

No is the number of holes. To avoid frustration
we

will assume that A is bipartite and in

particular that N is
even.

Since the total spin is conserved
we will fix 25(~)

=
Ni Ni

to its value which maximizes the dimension of the corresponding sector. Since N is even,
25(~)

=
0 or I depending upon whether No is even or

odd. The physics will correspond to the

thermodynamic limit namely N
-+ oo, No IN

-+
b (b is the doping concentration), SIN

-+
0

(no magnetization here).
This model describes

an
electron gas with a large number of quantum particles. It is quite

unclear
t1 prton whether it has any classical limit, the particles being fermions. So how can we

speak of any chaos in such a
model?
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Even though we do not know yet the answer to that question, we can check whether the

eigenvalue spectrum is very sensitive to physical parameters. So one can measure its level

spacing distribution. To do so, we must however be careful enough, not to introduce extra

phenomena liable to hide a possible level repulsion. For instance if our Hamiltonian admits a

symmetry, the dilserent sectors will not be coupled together and the eigenvalues of H in two

sectors will be independent. One
can

then check that the level spacing distribution will satisfy

a Poisson law.

In our t J model it is therefore important to restrict H to a sector of each symmetry. This

is why we must choose N, No, the total spin S(~) Moreover, due to translation invariance, we

must choose a given quasi-momentum sector indexed by k. Lastly the J term admits a spin
rotation invariance which forces us to choose a spin sector.

From the numerical point of view, the choice of the finite lattice A is done by defining a

sublattice £ of Z~ generated by two vectors x and y E Z~. In order to preserve the square

symmetry, we will choose

X "
(q>P) Y "

(~q>P)

where q and p are two integers. Thus £
=

xZ + yZ and A
=

Z~/£.
A can

be identified with the square whose sides
are x

and y and the number of sites becomes

~
~

~j
~

~2 ~ ~2

In this way we can
have 16 or 18 sites (we choose N even to avoid spin frustrations)

as shown

in figure 10. To avoid matrix size too big for the computer memory, we
choose No

"
I (one

hole).
Now the main technical difficulty lies in the spin symmetry. It is actually too hard to

compute matrix elements in each spin sector. To avoid such a long calculation it is better to

break this symmetry by modifying the J-term
as

£ (Ji (Sf)S)~) + S(~)S)~)) + Jjj S(~)S)~))
,

(37)

jz-yj=1,~,YEA

with Ji # Jjj. The limit Jjj -+ oo is actually the Ising model which is obviously integrable.
At last, the level spacing must be normalized in order to allow

a comparison between levels

far apart in the spectrum. The normalization is usually chosen in such
a way as

the local

mean level separation be
one. This

can
be done by calculating the density of states p(E) (see

Fig. II) and replacing the levels Ei by the number fi
=

f~$ P(E)dE where p is
some

smooth

approximation of p(E). This operation is called "unfolding the spectrum" [25].
The calculation has been performed in [65] (see Fig. 12) and exhibits a GOE distribution.

In [65] it is also shown that
as Jjj -+ oo

the level spacing distribution becomes Poisson.

2.7 DISCUSSION AND SPECULATIONS. The previous analysis is certainly very preliminary.
But it shows that RMT can

be used to investigate whether
a system is integrable. Actually

recent and still unpublished investigations of various models indicate that such
a

method is

justified. For instance,
a

Heisenberg spin chain in lD, known to be integrable by mean of
a

Bethe Ansatz [22] exhibits a Poisson distribution [4].
In much the same way a lD t J model with

one hole should also be integrable [60]. A

numerical calculation shows that it satisfies
a

Poisson distribution [84]. Presumably with two

holes the situation should be dilserent [61].
One could

use
such

a
method to test the integrability of

a 2D Ising model with magnetic
field, by computing the level spacing distribution on the transfer matrix. While for a zero
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magnetic field [67] it is known to be integrable, it is unclear whether integrability holds for

every magnetic field. Such a test could give an indication.

The next question concerns the GOE character of the result for the t J model. All matrix

elements of the Hamiltonian
are

obviously real,
so

that this result should not be surprising.
However the approach in terms of slave bosons, flux phases or anyons superconductivity sug-

gests that, at least for low energy excitations, the time reversal symmetry should be broken.

We do not see
anything like that here. It is however not a

sufficient argument, because this

breaking of the time reversal symmetry alsects only the ground state. For
one

hole, the Na~

gaoka theorem [66] requires that the ground state be unique
so

that time reversal symmetry
should not be broken. Moreover, the path integral approach used in quantum Monte Carlo cal-

culations [54] shows that for spin 1/2,
no time reversal symmetry breaking is required, namely

there is
no

need to introduce a complex gauge field. Therefore,
one

does not expect any of the

approximation like flux phases
or anyons to work unless in trivial case, namely whenever the

dimensionless flux is 0 or
1/2 mod I.

Another important question raised by this result concerns the validity of the quasiparticle
approximation in terms of

a
Fermi liquid theory. Even though quasiparticle peaks have been

observed in
a t J model or in the 2D Heisenberg ailtiferromagnet, if the theory

were
made of

well defined independent quasiparticles
we would expect a Poisson distribution to occur. How

to reconcile the two points of view ? Presumably, while level repulsion do
occur at high enough

energy, in the region where the density of states is large, whereas at low energy, elementary
excitations may produce level clustering. However this has not been tested yet. If this is so a

liquid theory should be only
a

low energy approximation, and RMT should give the explanation
for the incoherent background in Green's functions.

If such
an

explanation fails, namely if GOE still holds near the groundstate energy, then

we
ought to find another explanation for the appearance of quasiparticles peaks. We suggest

that "scars" [53] may be relevant in such
case. We would then have

a new
kind of excitations,

neither bosons
nor

fermions, but
scars

conspiring to produce
a

stable excitation.

Lastly,
an

important question
concerns

the conductivity. We conjecture that the linear

behaviour of the resistivity with respect to temperature ill] should be
a consequence of the

random matrix approach. However, again, only low energy excitations are relevant for such

calculations. Therefore if RMT holds at small energy and explains the linear law of resistivity,
the quasiparticles approach becomes questionnable.

The computation of conductivity requires the knowledge of the matrix elements for the

current operator. This involves the locality properties of the Hamiltonian. It means
that some

basic structure is required to describe the Hamiltonian in terms of random matrices. Like

in Quantum Field Theory, translation invariance and locality
are

essential ingredients there.

Randomness will occur only for the part of the Hamiltonian which is not constrained by these

two requirements. We are
currently investigating this question [14].
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