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Abstract. MBE growth on high symmetry surfaces depends to some extent on
the shape

of the terraces which form the embryos of each new atomic layer. The conditions for formation

of compact or
fractal terraces are discussed in two limits: large terraces, to which

a
continuous

description applies, and small terraces, which require that the discrete nature of matter be taken

into account. In both
cases

it is found that terraces are
fractal if and only if diffusion of adatoms

along steps is much slower than on the flat surface at the same temperature. Precise conditions

are given which should be accessible to experiment.

1. Introduction.

Progress in the understanding of fractal phenomena has been
a

major contribution of Rammal

and his coworkers. In the present work
we

address the possibly fractal shape of terraces on a

crystal surface growing by molecular beam epitaxy (MBE).
An important problem in this field is the typical size £ of the islands

on
the growing surface.

Indeed, the measurement of £ can
give information on the surface diffusion constant Ds, and

even allows a
quantitative determination of Ds itself, at least in simple cases [II. Domains of

size £ may also form in the surface layer if, for instance, the adsorbate has a
variety of possible

equivalent superstructures.
In most theoretical investigations [2, 3, 4], the island shape has been assumed to be compact,

I. e. not fractal. However, fractal islands have been observed by scanning tunneling microscopy
(STM) in the deposition of Pt on Pt at 205 K [5] and of Au on Ru (0001) [6] at room tempera-

ture. Fractal islands seem to be observed only at (relatively) low temperatures. Si on Si (001)
has been investigated also at low temperature by Mo et al. [Ii, but the situation is complicated
because both surface diffusion and sticking-to-step are highly anisotropic.

The mechanism underlying island fractality is the so-called diffusion limited aggregation
(DLA) [7, 8, 9]. DLA is

a
growth process where atoms diffuse from far away and Stick to the
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first growing island they find, at the very place where they touch it for the first time. Because

of fluctuations, islands develop tips, most incoming atoms reach islands at tips, and thus the

tips become longer and the fractal shape appears.

In MBE growth this scheme is oversimplified because atoms can also be deposited right on

top of an
island. This favours

a compact shape, since atoms diffuse to the edge of the island

both from outside and inside. For small islands, however, the flux from inside is negligible.

A theory describing the shape of growing islands on a
high symmetry crystal surface will

be outlined in the present article. Analogies and differences with existing theories will be

discussed.

2. Magnitude oft for fractal islands.

The effect of terrace edge fractality
on

the typical length £ has been discussed by Villain et

al. [10] and will only briefly be summarized here.

Evaporation will be neglected since the temperatures of interest are
low. The basic pic-

ture is that atoms falling on the surface mostly land
on terraces between steps. These mobile

"adatoms" diffuse (with
a diffusion constant Ds) until they reach

a step and
are

incorpo-

rated there. Sometimes, however, they meet another diffusing adatom before reaching a step,

and they may therefore form
a

pair. Pairs are supposedly immobile and stable at the low

temperatures we are
considering.

The density pi of diffusing adatoms per absorption site may be easily evaluated. Adatoms

have
an average lifetime ri before being incorporated into a step, and pi is equal to the

product of ri times the rate F of incoming atoms per site. That is, pi "
Fri. During its

lifetime ri an adatom diffuses
a

distance of the order @S By definition, this length has

to be identified with the typical distance between steps, £. Thus, £~ m Dsri and

pi >
F£~/Ds. (ii

The sign " m " means "of the order of magnitude of'. We can now
evaluate the rate of

pair formation. Diffusing on a two dimensional surface,
an adatom visits approximately (I.e.

disregarding logarithmic corrections) Dsri * £~ distinct sites. The unit of length is the

interatomic distance. Each of these £~ sites has, on average, a
probability pi of being occupied,

and each adatom has therefore a probability pi£~ of forming
a

pair. The rate 1/rn~~ of pair
formation (nucleation) per site is obtained by multiplying by the rate F of atoms falling on

each site

1/rn~~ m
Fpi£~

m
F~£~/Ds. (2)

Now, since £ is, among other things, the typical island size before coalescence, there should

be
one

and only
one

pair formation in an area £~ during the whole life of an island. The

corresponding lifetime is equal to I IF times the island density, which is I/£~f for fractal

islands with fractal dimension df. DLA in 2 dimensions gives df
=

1.7. Therefore

i/Tnuc > F/£~~ (31

Equations 2 and 3 yield
I

£ m

~~ ~ ~ ~~ (4)
F

For non-fractal terraces, df
=

2 and [3]

~ i/6

t R

(")
jsj

F
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Fig. I. An adatom approaching a terrace (a) sticks preferentially at a tip, and
can

then be remitted

(b) and diffused into
a

gulf. It may also diffuse straightforwardly to a
gulf along the step edge (c).

3. Stabilizing effects.

We will now discuss the stability of non-fractal shapes during growth. Compact, non-fractal

forms are stabilized by the rearrangement of atoms within
a terrace, which is

a
negligible efLect

only at very low temperature. Indeed, compact shapes are energetically favoured because they
minimize the surface tension energy. Thus, atoms bound at the edge of an island (hereafter
called gradatoms) will diffuse along the

same
edge and tend to repair fractality. This will be

called edge-
or

step-diffusion rearrangement.
The word "gradatom" (from the Italian gradino, the French gradin or the Latin gradus) is

preferred to "stepatom" to avoid the initial "s" which we prefer to keep for "surface".

A similar healing effect is due to atoms temporarily ejected from tips which diffuse to a

deeper place, or to atoms which do not stick at first hit to the island and diffuse then to a site

inside some deep gulf (Fig. I). This will be called off-cluster rearrangement.

4. Small islands at low temperature.

Fractal islands actually observed during heteroepitaxy of Au on
Ru(0001) [6] show dendritic

arms
with

a
typical width r~ of some ten nanometers. The very simple argument that follows

suggests that this width is mainly controlled by the diffusion constant Dg of gradatoms. We

assume low temperature, and that two gradatoms meeting along the edge of a terrace form the

immobile and stable nucleus of
a new

layer for the lateral growth of the terrace.

Imagine for instance
a

small island growing on (001) face. At first it will keep its most stable

form, that is,
a square (Fig. 2a),

even
though the adatoms mainly stick to the corners. If

we

assume that they all stick to the corners, for
a linear dimension

r
sufficiently large the island

will take a cross-like shape (Fig. 2b). This shape is observed in Hwang et al. experiment
(but with

a
substrate of hexagonal symmetry!). For a smaller size

r < r~ gradatoms have the
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Fig.2. a) Stable form of a
small terrace at low temperature. b) Dendritic instability under growth

conditions.

time to diffuse to the center of
an

edge and to form there
a

stable nucleus. Before reaching

a
newly formed layer, gradatoms have to cover a

distance of the order of the linear size
r

of the island. This takes a time
r m

r~/Dg. The density of gradatoms on
the side of an

island is pf
=

Fr, where F is the rate of incoming adatoms per unit site
on

the island edge;

thus F
=

F£~/r. Therefore, pf
=

F£~r/Dg. The island undergoes stable growth if the

gradatoms
are

able to cover a
distance of order

r
without meeting another gradatom. This

implies rpf < I. This condition is not sufficient, because it only requires that one
particular

gradatom be little likely to form a pair before reaching an adsorption site (kink). In fact, we

must ask the same requirement from
a

number of gradatoms of the order of
r.

Since for each

gradatom the probability of pair formation is rpf for r gradatoms it is r~pf. Therefore the

critical linear size r~ beyond which the island growth is unstable is given by

r(£~
=

Dg/F. (6)

£ is directly accessible to measure by scanning tunneling microscopy, for instance. Assuming
for £ equation (5),

one finds

j~3
'

~ g~
g j~)

~ F2Ds

Equation (6) is meaningful only if r~ < £, that is if rf£~ < £~, and according to equation
(5)

F > D(/D(. (8)

Since F is known and both r~ and £
are

directly measurable with STM, equation (6) allows

an experimental determination of the diffusion constant of gradatoms Dg. In the
case of Au

on Ru [6], the pictures taken at 300 K suggest r~ m 10 nm, £ m 100 nm, with F~~
=

30 s,
which imply Dg m 10~ s~~ Assuming

an activated form

Dg
=

D( exp (-pwg) (9)

and
a

typical value of the prefactor D( m 10~~ s~~,
our

estimate yields
an activation energy

W~ of the order of 0.35 eV, which is not unreasonable. Equation (8) implies that the surface

diffusion constant has a lower bound of approximately 10~ s~~ at room temperature, which in

turn gives an
activation energy Wsd * 0.29 eV for surface diffusion.
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The simple argument above gives only an estimate of the typical length beyond which an

island is no longer able to retain its polygonal shape. What happens when the size exceeds

r~ can
only be studied by numerical simulations. This has been done by Xiao et al. [11].

They assumed off-cluster diffusion due to the weakness of the sticking coefficient of adatoms

on islands. Since this type of sticking coefficient is assumed to increase with temperature,
they found that island fractality decreases with temperature, in contrast with experiments on

homoepitaxial Pt [5].

5. Classical linear stability analysis.

In the previous section, the appearance of a
fractal shape has been attributed to the fact that

a small tip
on an

island tends to become longer because incoming adatoms land preferentially

on
that tip. This instability is not typical of a random process only, and its competition with

stabilizing effects can be studied within a deterministic growth scheme. In the case of a planar
surface this

was
done by Mullins and Sekerka [12]. We shall not go beyond their analysis, but

we shall adapt it to our purpose. The argument (given
more

in detail in Appendix I)
can

be summarized
as

follows. Away from
a step, the density p of adatoms obeys the equation

T7~p+ F
=

0. The boundary condition along a step in the case of perfect sticking is p =
0. The

growth rate on
each point of the surface is proportional to the current j

=
-DT7p. From these

equations, it can be deduced that a sinusoidal perturbation 6x
-~ cos

(ky)
on a straight step

parallel to the
x

direction generates a
destabilizing term 6idest * Const x k6x due to atoms

diffusing toward the step. This term is proportional to the wavevector k of the perturbation

as in the analysis of Mullins and Sekerka. The constant is proportional to the flux F, but

also depends on the average distance £ between islands, and on the radius R of the cluster

of interest. More precisely, the island collects in the time t the atoms falling in the area £~

during that time. Therefore, the number of atoms reaching
a

given island per unit time is of

order F£~, and the flux per unit step length is obtained dividing by R. Finally

6+de~~ m

~~~
x kbx (10)

The stabilizing term due to off-cluster rearrangement is [12, 13]

6i~tab m -Const x
k~6x. ill)

This formula is rederived in Appendix I. Instability
occurs

if the wavelength I/k of the

perturbation is larger than lllfl, multiplied by some temperature dependent constant. Of

course, I /k has to be smaller than £. Thus the instability arises if £~ > Const IF. Replacing £

by equation (5), fractal islands
are seen to be favoured by

a strong deposition flux F. The case

of step-diffusion will now be investigated in more detail. The stabilizing term 6i~tab satisfies

a continuity equation
~

~~~~~~ 3) ~~~~

~Tje
current j along the step is related to the gradient of the chemical potential p by the

~~ ~ ~~~

~

£~~
~~~~

The chemical potential p is proportional to the curvature,

32~
p m -C~. (14)
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Thus,
6k~tab

=
-CAgk~6x. (15)

The kinetic coefficient A~ which appears in equation (15) is given by
a

Kubo formula, whicb

may be seen to be (Appendix 2)

Ag "

~ fl j
dt(Um(t)Vm(°)) (16)

where m labels the adatoms and the vm 's are their velocities. The correlation function is easily
computed (Appendix 2) and one obtains

Ag =
(Ii)

T7k

where 1/7k is the rate of emission of gradatoms from
a

given kink. The constant C depends

on the orientation of the step. For the easy orientation, it can be shown that C
=

~
exp (pwo)

2
where Wo is the energy of a kink. Therefore

AgC m exp (p (Wo Wk)). (18)
~k

It is more relevant to consider the uneasy orientation. Indeed, if the island has the shape
of a rounded polygon at equilibrium, the tips are expected to develop at the

corners since the

latter
are preexisting tips. Then, in

a square lattice, C
=

4T and

A~C m exp (-flwk ) (19)
r~

In any case
this is small at low temperature.

A straight step is unstable if

~~~ > AgC. (20)

Since R < £, the previous result implies F£~ > AgC.
At low temperature, t m

(D~/F)~/~ and instability
can occur only if

F/D~ > (AgC/D~)~ (21)

Bales and Zangwill [14] and Uwaha and Saito [15] have also investigated the stability of
a

straight step on a
growing crystal. They took into account evaporation, which modifies pretty

much the above analysis. Also, they have assumed the presence of the so-called Schwoebel

effect. This effect consists in the impossibility (or difficulty) for adatoms coming from the top
of a terrace to go down the step because of

a
potential barrier. The existence of such

a
barrier

in certain cases, postulated by Schwoebel [16], is supported by microscopic calculations [Iii.
The Schwoebel effect is a necessary condition for the instability of

an
infinite step, but is not

essential for small islands since, anyway, the number of atoms coming from inside the island is

much smaller than the number of those coming from outside. On the other hand, evaporation
of adatoins from the surface

can
be neglected at those low temperatures where fractal islands

are
expected according to calculations and have been actually observed.

As seen above, most of the analytic tr~atments address the stability of infinitely long straight

steps. Of co(Jrse. small I;lands ha;e not iiifinitdy long straight edges. The case of a circular
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island
can

be treated. But islands are not circular either at low temperature, even at equi-
librium. The equilibrium shape at temperatures of interest is something like a square with

severely rounded corners. The stability of such a shape is a nonlinear problem. A numerical

treatment has been given by Ben Amar [18].

6. Conclusion.

We have demonstrated that islands
on a

surface growing by MBE can be fractal at low tem-

perature, in agreement with experiment. According to our
formulae, fractality disappears at

low growth rates. This does not seem to be confirmed by experiments [6]. This may be an

effect of a low sticking coefficient.

Fractality of terraces is predicted to increase the average terrace size £. This may be expected
to have effects on the quality of crystals, but these effects depend

on
the crystal structure. The

influence of the Schwoebel effect
on

the crystal quality is also expected to be important, but

this is left for further investigation.
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Appendix 1.

The Mullins-Sekerka instability in the case of step-diffusion rearrangement.

The usual Mullins-Sekerka instability takes into account off-cluster rearrangements. Here the

appropriate formulae for step-diffusion will be derived.

We want to specify conditions for the fractal growth of
an

island, in the intermediate tem-

perature regime where a continuous description
can

be properly employed. As
a

first
case we

will consider the boundary edge of the island as an
infinite straight step parallel to the y axis

(Fig. I). Since atoms have
a

small probability of falling directly
on top of a small island,

we

assume
that adatoms diffuse

on the surface to the step only from one
side, the right one for

definiteness. The step thus grows to the right (positive
x ).

As we
discuss in the body of the paper, the step in a diffusion field is unstable to fluctuations,

since new adatoms will preferentially hit the protruding parts of the boundary and will amplify
the fluctuation itself. This is the assumed mechanism leading to a

fractal structure.

We replace this stochastic behaviour by
a

deterministic process, an average current of

adatoms onto the boundary edge. We introduce also
a

diffusion current along the step as

a
stabilizing effect, and compute the resulting step profile to first order in the amplitude of the

fluctuation.

Assume a
sinusoidal perturbation,

6x
=

qcos(ky). (A.I.I)

The density of adatoms obeys the diffusion equation with
a constant sourcs

(the deposition
flux F);

we
still consider the temperature sufficiently low as to allow neglecting evaporation

from the surface. To simplify
we

require stationarity:

D~T7~p + F
=

0. (A.1.2)
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Approximating the island boundary with a straight step is certainly not satisfying when the

wavelength ilk of the perturbed profile becomes of the order of the linear size R of the island,

but
we expect the results to be correct in order of magnitude. The solution of equation (A.1.2)

for q =
0 is

~°~~~
~s

~~ ~ ~ ~ ~~' ~~ ~~

where A and B are constants Since the y axis has been chosen along the average step direction

(Fig. I), the term in x~
may be neglected in the linear stability analysis. For that reason

the linear stability analysis yields the same
results

as in the case F
=

0 already discussed in

literature ([18, 19, 20]). Even the nonlinear version should give analogous results for F
=

0

and for small F in the
case

of a small island.

Imperfect sticking of adatoms to the step can be taken into account if
we

write Eq.(A.1.2)
in

a
discretized form

Ds(pn+i +pn-1-2pn)+F= 0 (1<
n

<£-1) (A.1A)

and supplement it with appropriate conditions near
the step. For n =

1, the diffusion constant

Ds will be assumed to have
a

value D' < Ds. A small value of D' corresponds to a
small

sticking coefficient. Also, adatoms
can

be released from the step, at a rate 1/rg. The resulting
equation is

Ds (p2 Pi) D'pi + I /rg + F
=

0. (A.1.5)

We shall first discuss the
case

of perfect sticking. This means that the sticking coefficient is

equal to I (D'
=

Ds) and that no adatom is released from the step (rg
=

cc). Then insertion

of (A.1.3) into equation (A. IA) yields A
=

0. This means that p should vanish along the step.
This should also be true for q # 0. It turns out that

a
solution of equation (A.1.2) for q # 0 is

p =

-(
(x~ lx)

pi cos
(ky) exp (kx). (A.1.6)

~

The first term is the particular form of equation (A.1.3) which vanishes on both steps at

x =
0 and

x =
£. The second term should vanish when

x
has the value (A.1.1). Therefore,

for small q,

~~

~~~
~~'~'~~

The velocity of propagation of the step, disregarding any effect of line tension, is in each

point equal to D~n(n T7p), where
n is the unit vector normal to the step.

The two components of the gradient of the density are

m

-) ~~)~~
cos

(ky) () + kpi cos
(ky) (A.1.8)

s)
=

-kpi sin (ky) exp (kx) ci -kpi sin (ky). (A.1.9)
y

To first order in the amplitude of the fluctuation the normal vector n
reads

n =

1, ~

f~(~~ sin
ky))

/ + (~ f~(~~ sin
ky))

(A.1.10)
~
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and
we

finally find

v~ =
6k

=
-F£/2 + D~pi(k Ill) cos(ky). (A.1.11)

In a
comoving frame the first term vanishes. Since

we are
interested in the case k£ > I, in

the comoving frame
we

have

6i
=

k£F/26x. (A.1.12)

The fluctuation is therefore exponentially amplified, since k£F is positive. This formula is

valid between two infinite steps. For a terrace of radius R, it is reasonable to replace £ by
£~/R

as
explained in the text and equation (10) is obtained.

We now discuss the case of imperfect sticking. The quadratic term in equation (A.1.3) will

be neglected. Equation (A.1.5) implies

(D~ D')B D'A + I /rg
=

0. (A.1.13)

Therefore the value A of the adatom density
on

the step is given by

A
=

+ (~~ l) B. (A.1.14)
D'Tg D'

In the
case

of two parallel steps, B is of order F£/2D~,
as

in equation (A.1.6). The main

difference with the
case

of perfect sticking is that I/rg
now depends

on
the curvature, since

adatoms
are more easily released at tips, where x"

=
3~x/3y~ is negative:

A t Au Al x". (A.1.15)

The solution of the diffusion problem has still the form (A.1.6). The boundary condition

is p(x) equal to (A.1.15) when x
is given by (A.I.I). Then

a
correction proportional to k~

should be added to (A.1.7). This yields
a

stabilizing term proportional to -k~6x in 6i,
as

in

the original calculation of Mullins and Sekerka.

Appendix 2.

Calculation of the diffusion coefficient A.

A is defined by
j

=
-Ai7p (A.2.1)

where p is the chemical potential. Let us assume a free energy of the form

F
" jd~rP~(~)

j
d~rP(~)P(~l. lA.2.21

For small variations of p one
has

Asp(r)
=

6p(r) (A.2.3)

which implies
j(r)

=
-AAVp(r) jA.2.4)

and therefore

)(r)
=

-div j(r)
=

AAi7~p(r). (A.2.5)
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Transforming to Fourier components this becomes

fik "
-AAk~pk (A.2.6)

which can be readily integrated, with solution

pk(t)
=

pk(0) exp (-AAk~t). (A.2.7)

Taking the thermal average according to F we get

ip~(tip-~(oil
=

ip~p-~i exp (-AAk~t). (A.2.81

Taking the time derivative of the left-hand side
we

end up with the following equation,

ip~(t)p-~(o))
=

-AAk2ip~p-~) exp
(-AAk2t). (A.2.9)

Making
use

of the trivial identity

lPklt)P-k1°))
= )~ dt'lPk lt')P-k1°)) lA.2.1°)

and using Equation (A.2.5),
we

finally find

lPkltlP-k1°)1
=

i~ ki )~ dt' lJoklt'lJ«,-k(°)1
=

= )~ dt' lik(t').I-k(°)I (A.2.ill

Summarizing,

~~ j~~p-~) exp (-AAk2t)
=

1i'dt' 0kit') I-k~°~~ ~~.~~~~

The latter relation is true if t is large enough to provide for an exponential decrease of the

integral. If
we

also assume
that t < AA /k~,

we have

AA lPkP-kl
=

j j~ dt' liklt'l I-k(0)1 (A.2.13)

Since the free energy is quadratic in the density, the correlation function is simply

(Pkp-k)
=

(
(A.2.14)

and Eq.(A.2.13) becomes

A
"

~ j~ dt' lik It') j-k (0)) (A.2.15)

This general formula will now be applied to the special case of diffusion on a step. We take

the current of gradatoms along a step edge,

Jk
=

fi ~
vm exP (tkxm)> iA.2.161
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where m labels the gradatoms and N is the total length (assumed to be large) of
a step

(assumed to be straight). Then equation (16) is obtained by inserting equation (A.2.16) in

equation (A.2.15).
The average thermal distance between kinks is to

" exp (Wo/T). A gradatom
covers such

distance in
a

time To "
£(/Dg. Let t

= To The average number of gradatoms emitted by

a kink per unit time is 1/7k. A fraction I/£o of these gradatoms reach
a

kink. Therefore

the number of gradatoms which are effective on a length to is given
as ro/(Tk£o) Since their

velocity is v =
£o/ro,

we find

A=
~~S~2_

foT 7k£o Trk
(A.2.17)

which is equation (17).
Quite surprisingly, the result is independent of both Dg and Wg.
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