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Rdsum4. Nous d6crivons d'abord
une

m6thode simple pour diagonaliser l'Hamiltonien

d'6change isotrope d'un cluster de N spins dans le
cm

le plus g6n6ral oh toutes les constantes

d'6change sont diff6rentes. La technique, bas6e
sur l'ini,ariance rotationnelle du systbme, con,

duit I une
r6duction consid6rable de la matrice totale. On donne des expressions simples de

l'aimantation et de la susceptibilit.6 et la m6thode est appliqu6e I la d6termination des inter,

actions d'6change d'un complexe comprenant cinq ions Cu~+ On montre 6galement que pour

une asse2
grande var16t6 de configurations de spins pr6sentes dans les complexes m6talliques,

on peut r6soudre l'Hamiltonien de spin d'6change isotrope dominant de manibre directe par des

techniques de recouplage. Ceci permet de traiter des clusters jusqu'£ neuf spins,
ces

derniers

pouvant avoir des facteurs g diff6rents. Nous poursuivons cette revue par une
6tude th60rique

des propr16t6s magn6tiques de spins
en

interaction sur un anneau avec une
6tude d6tail16e d'un

complexe oligonuc16aire m6tal-nitroxyde forms de six ions Mn~+(S
=

5/2) et de six radicaux

libres (s
=

1/2). Le comportement en
fonction de la temp6rature de la susceptibilit6 est inter-

pr6t6 k l'aide d'un modble semi,classique de chaine altern6e cyclique. Enfin, nous donnons
un

proc6d6 pour d6terminer les trois constantes d'6change d'un systbme de trois spins 1/2 coup16s

par 6change isotrope dans le cas non
r6solu oh

ces
trois constantes sont toutes diff6rentes.

Abstract We first describe
a

simple method for diagonalizing the isotropic exchange Hamil,

tonian of
a

cluster of N spins in the most general
case

where all the exchange constants are

different. The technique, based
on

the rotation invariance of the system, leads to a
considerable

reduction of the total matrix. Simple expressions of the magnetization and susceptibility are

provided and an example of the determination of the exchange constants of
a complex with five

Cu~+ ions is given. It is also shown that for
a

large variety of spin configurations occuring in

metal complexes, it is possible to diagonalize the dominant isotropic exchange spin hamiltonian

in a
straightforward way by using recoupling techniques. This allows to solve problems up to a

nine spin cluster with spins having different g values. This survey is pursued by the theoretical

approach of the magnetic properties of interacting spins on a
finite ring with

a detailed study
of an

oligonuclear metal nitroxide complex formed by six Mn~+(S
=

5/2) and six free radicals

(s
=

1/2i. The temperature behaviour of the susceptibility is interpreted with a semi,classical

model of
a

cyclic alternate finite chain. Finally
we give

a
procedure for determining the three

exchange constants of three spin II? coupled by isotropic exchange constants in the unsolved

case
where these constants are

all different.
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1 Introduction.

There is
a

considerable interest in the study of magnetic properties of polynuclear complexes
where several electronic spins S; are coupled with dominant isotropic exchange integrals. An

abundant litterature concerns this subject and
we

will quote only
a

few examples provided by
trinuclear complexes [I(a)], Fe-S compounds [I(b), 2] which play an essential role in biochem-

istry, chromium complexes [3], and tetra-nuclear complexes of Mn~+ ions [4]. Usually, in these

systems, because of the low symmetry of their local environment, the individual magnetic ions

of the iron group are
in singlet orbital electronic ground states which

are
well separated from

the excited orbital states. The
same

situation occurs for the electron in a
free radical. There

is
no first order contribution of the spin-orbit coupling and to a good approximation the g

factors of the various ions
can

be considered
as

isotropic and close to the free electron value.

The exchange Hamiltonian
can be written:

7io
"

-2 £ J;;s; s; (I)
I<j

where the spins s; and the exchange constants J;, may be all different. The J;; may have

arbitrary signs corresponding to ferro and antiferromagnetic couplings.
In presence of an external magnetic field H, the cluster Hamiltonian becomes:

7i
"

7io + gpBH st (2)

where st
"

£ s, is the total electronic spin.

;
The complete cluster Hamiltonian always contains additional anisotropic contributions like

the single ion fine structure terms, the antisymmetrical and symmetrical anisotropic exchange
interactions and the dipolar coupling [I(a)]. These contributions are

small and
can be treated,

together with the Zeeman effect,
as

perturbations of the dominant exchange hamiltonian 7io.
A technique for diagonalizing the total Hamiltonian including the above contributions

as
well

as any anisotropic part of the Zeeman effect
or hyperfine interactions has been developped

elsewhere [5], in order to interpret E.P.R. or
M6ssbauer spectroscopic data. However, except

at very low temperatures (T
-J

I or
2 K), the magnetic properties of the cluster such

as
the

temperature dependence of the susceptibility
are essentially determined by the spectrum of

7io and are not sensitive to other perturbing effect. We shall then restrict ourselves to the

diagonalization of7io.

In section 2 we
describe

a
general method for diagonalizing 7io for N interacting spins. In

section 3 we give
a

much simpler method which is restricted to special geometries but can

be used
as a

first approach of the various problems and has the advantage to deal with spins
having different g values. Sections 3 and 4 are concerned with systems which cannot be treated

with the above techniques: cyclic alternate chains ofspins and three spin 1/2 at the corners of

a
general triangle.

2 General case.

First, it should be noticed that the dimension of the total spin space of a system of N spins
N N

s; is d
=

fl (25; +1). Direct diagonalization of 7io in the product basis fl (S;, M;) becomes

;=I i=1
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hardly tractable when N > 4 or 5 if S; > I. For example, in tetranuclear complexes of
Mn~+ (S;

"
5/2), d

=
1296. The diagonalization of such

a large matrix is usually performed

[6] by splitting it into
a set of submatrices which are associated to the different values of MS, of

the z component of Stz In the above example, the maximum order of the submatrices is 146.

With the much more efficient method presented below, the maximum order of the submatrices

is only 24. The higher that d is, the greater will be the reduction factor of the order of the

submatrices.

As 7io is invariant under the rotation group R3, each level is associated to an
irreducible

representation of this group. We denote by Eo (o, St) the energy of
a

multiplet in, St, MS,),
which is associated to the representation Ds,, the index

a
being necessary in order to take

into account the fact that a given representation Ds, may occur several times. The states

fl (S;, MS, form
a

basis, denoted by fl), of the total spin space and generate the reducible

I

product representation 17
=

fll7s, of the douhle rotation group. 17 can be reduced to:

>

17
=

ns,l7s, (3)~
s,

so that the index
a takes ns, different values for each value of St- According to general results

of group theory iii, the calculation of the multiplet energies Eo (a, St) and of the associated

eigenstates is reduced to a
problem of order ns, for each value of St-

In the case of four interacting Mn~+ ions, St varies from 10 to 0 and the corresponding
values of as, are 11, 3, 6, 10, 15, 21, 24, 24, 21, 15 and 6) respectively

so the highest order of

the submatrices is 24.

The above property is easily understood if
we remark that the only non vanishing matrix

elements of 7io are
ii, St MS, (7io( j, St, MS,)

,

where I and j take ns, values.

2, I TECHNICAL PROCEDURE. We start from the multiplet S'
=

~j S~, corresponding to

I

the maximal value of St which occurs only
once

in the reduction formula (3)
so that the index

a can be dropped. ~Ve consider the state (S', -S') corresponding to the minimal value, -S',
of Ms, and spanning the subspace Ms,

"
-S'.

Obviously,
N

IS', -S')
=

fl (Si, -S~). (4)

>=1

The submatrice of 7io with respect to the normalized state (S', -S') is a simple I x I matrix

A) (7io) which, according to equation (4) is equal to multiplet energy

Eo (S')
=

-2~j Jijsisj (5)

I<j

Now, we
consider the subspace Ms,

"
-S'+ I. By application of the raising operator

N

St+
"

j~ Si+
on

the state (S', -S'),
we

easily obtain the normalized state (S', -S'+ I) in

I=i

the basis in). Then, by an
orthogonalization procedure [8] we calculate

a set of orthonormal
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states (pi, S' I, -S' + I)
,

belonging to the subspace Ms,
"

-S'+ I, orthogonal to the state

(S', -S'+ 1) forming with it
a

complete orthonormal basis of this subspace, and expressed in

the basis fl).
To obtain the orthonormal states (pi S' 1, -S' + 1) the Schmidt orthogonalization process

is probably the best known method [8]. By construction, these new states are eigenvectors of

St~ for the value Ms,
"

-S'+1 and of S) for the eigenvalue (S'-1) S'. The index pi runs

over a
number gi " ns,-i of values which is equal to the number of multiplets St

"
S'-1.

This number gi appears automatically in the process of orthogonalization.
The ns,-i x ns,-i submatrix As,-1 (7io) of 7io in the orthonormal set (pi, S' 1, -S' + I)

expressed in the basis fl) is a real symmetric matrix. Its diagonalization provides the energies
ED (al S' 1) of the multiplets St

"
S'-1, where the index al runs over the same number gi

of values as pi The corresponding eigenstates jai, S' 1, -S'+ 1) can be also obtained from

this diagonalization, but they
are not useful for computing the magnetic susceptibility of the

cluster.

Now, we
consider the subspace Ms,

"
-S'+ 2. By action of the operator St+ on the

states (S', -S'+ 1) and (pi, S' 1, -S' + 1)
,

we obtain the orthonormal states (S', -S' + 2)
and (pi, S'-1, -S'+ 2) expressed in the basis fl). By the same orthogonalization pro-

cess, we build
a set of orthonormal state (p2> S'- 2, -S'+2) belonging to the subspace

Ms,
"

-S'+ 2 orthogonal to the states (S', -S'+2) and (pi> S'- I, -S'+2), forming
with them a complete orthonormal basis of this subspace and expressed in the basis fl). The

index p2 runs over a number g2 " ns>-2 of values which is equal to the number of multiplets
St

=
S'- 2. Again the energies Eo (o~, S'- 2( of the multiplets St

"
S'- 2 are the eigenvalues

of the ns,-2 x ns> -2
submatrix As,

-2
(7io) of 7io in the orthonormal set (p2, S' 2, -S' + 2)

and similarly the eigenstates (a2> S'- 2, -S'+ 2) could be obtained from the eigen-vectors
of this submatrix.

The process of action of St+, of orthogonalization and of diagonalization of the submatrices

As,-I (7io) of 7io in the successive orthonormal sets (pi, S'- I, -S'+ I) belonging to the

subspaces Ms,
"

-S'+ I, is carried on until Ms,
"

-S", where S" is the minimal value

of St (usually S"
=

0 or
1/2 for most of the systems considered in magneto chemistry). A

Fortran program following this method has been realized in order to determine the unknown

J~j constants from the magnetic data.

2.2 MAGNETIC PROPERTIES. in the presence of
an external magnetic field H, the energy

levels of the cluster Hamiltonian given by equation (2)
are:

E(o, St, Ms~, Hi
=

Eo(tY,S)+gpBH Ms; (6)

This result is exact and not a first order perturbation approximation because we have assumed

that the g factors of all interacting magnetic ions are isotropic and identical, so that the

Zeeman term gpBH St commutes with 7io This is
a

serious limitation for an exact calculation.

Otherwise
we must use a perturbation treatment [5] and the problem may be extremely complex

as there is usually
a

large number of multiplets Eo(a,S) very close to each other. Then

the Zeeman term mixes many multiplets. This situation will be avoided from some special
configurations which will be studied in section 3.

Starting from equation (6), the magnetic moment of each Zeeman level is -gpB Ms, Intro-

ducing

~ =

~))), Ii)
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The average magnetic moment of each cluster is:

g~~
j~ j(2s~ + 1) ch jj2s~ + 1) xi sh jj2s~ + 1) xi oath xi I js~)

"
= < ' j~, jsh (2s~ +1) xi I (s~) 18a)

with

f (St
=

L
exP I- Eo la, St /kTl (8b)

the index
a running over all the multiplets with

a
fixed of St. The expression (8b) is

a
simple

generalization of the Brillouin formula.

The molar magnetic susceptibility for
a

powder or a
frozen solution is given by

o,hich generalizes the Curie law.

2.3 EXCHANGE COUPLING IN A PENTACOPPER III) COMPLEX. As an illustration of our

method we study the interactions between copper in the pentacopper (II) complex involved in

biological systems. This complex has been synthetized and its structure determined by X-ray
diffraction [9]. In this system we

have five Cu~+ interacting spins Si
=

1/2. Figure I describes

the structure of this complex. Essentially there
are

four Cu~+ ions at the corner of
a

rectangle
with distances Cul Cu4

=
Cu2 Cu3

=
3.27 I and Cu1 Cu2

=
Cu3 Cu4= 5.77 1. The

fifth Cu5 ion lies
on an axis which is perpendicular to the rectangle in its centre. The distance

of Cu5 to the four others is 3.46 1. However, the approximate C2v symmetry of the geometrical
figure formed by the five Cu~+ cannot be fully used to decrease the number of exchange

constants. Indeed, slight distorsions of the molecular complex from this symmetry reduces the

point group to identity. In particular the two main exchange constants J14 and J23 cannot be

considered
as

identical due to a
small difference in the Cu O (H) Cu bridge angles. Finally

a

reasonable form of the exchange Hamiltonian is:

Fig. I. Structure of the pentacopper III) complex.

7io
=

-2J14Si 54 2J2352 53 2Jis (Si + 52 + 53 + 54 Ss (10)
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Figure 2 illustrates the temperature dependence of the magnetic susceptibility of the complex
in the form of the product XT us. T for 5 K < T < 300 K [10]. At low temperature T < 50 K),
the product XT is nearly constant at a

value 0.38 K cm~/mol. This corresponds to an
isolated

spin St
"

1/2 in each complex, which leads to XT
=

0.375 K cm~/mol. In the upper temper-

ature range XT increases up to 1.5 1(cm~/mol which shows the presence of antiferromagnetic
couplings in the cluster. Our technique was used to determine the values of the exchange

parameters. The best fit was obtained with g =
2.06, J14

"
-161 cm~~, J23

"
-87 cm~~

and Jis
"

-0.8 cm~~. This confirms the difference between Ji4 and J23 and shows that the

coupling of Cu5 with the four other Cu is weak.

2. oo

~

l. 60

j
b 1. 20

E

~
0. 80

~~
0. 40

0. 00

0 60 120 180 240 300

TEMPERATURE / K

Fig. 2. Temperature dependence of the magnetic susceptibility (;T
us.

T) of pentacopper (II)
complex. (+)

are experimental results and t-he continuous curve represents the best theoretical fit

using the Hamiltonian (2) with 7io given by equation (10). This fit waft obtaitted witlt g =
2.006,

TIP (Temperature Independent Susceptibility)
=

6.26 x10~~ cm~/mot, J14
"

-161 cm~~, J23
"

-87 cm~~, Jis
=

-0.8 cm~~

3. Special geometric configurations.

For a
surprinsigly large number of spin configurations occuring in metal complexes where

isotropic exchange interactions are dominant, it is possible to diagonalize the Hamiltonian 7io

by simple recoupling techniques. A systematic investigation of soluble problems up to a n =
9

spin cluster has been performed. Another advantage of this simple technique is the possibility

to treat spins with different g values.

In order to illustrate our purpose we stars with two elementary examples.

3,I n =
2 (FIG. 3.1).

7io
=

-2Ji?Si S~
=

-Jii IS) S( S() (11)



N°2 ENERGY LEVELS AND EXCHANGE INTERACTIONS OF SPIN CLUSTERS 429

J J

J23

~

-- ~

Sj
~'~

S~ 52
~~~

Si S~ Sj S~

Sj=Sj=S

2 3

S' J' J'
~~

J'

J J Si Sj Sj 53
JSj~S~

J J

~
S~ S~

Sj =Sj=S~= Sj =Si=S~=S#54 Sj=Sj=Si=54=S

J,
j =

J

4 5 6

52 52
J J

J J S~ S~

53 Si S~ Si
J J

~ ~
54 54

54~
Sj

Sj
=

S~. Si
=

Si Sj
=

S~, Sj
=

54

Iii. Iii z
Iii, Jm z J

~' ~~ ~~ ~~
"

~

Iii =J~i=J'

7 8

Fig. 3. Configurations ofn
=

2, 3, 4 spins, with isotropic exchange interactions, for which the energy

levels and the corresponding eigenstates can be obtained analytically by vector recoupling techniques.
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and the energy multiplets
are

E (St)
=

-Ji2St (St + I) + C

with (Si 52( < St < Si + 52 and C is
a constant. The corresponding eigenstates are,

(SiS2StMs,). If Si and 52 have respective gi and g2 values, the g factor for any multiplet is

given by the simple Landd rule

Notice that if both g values
are

anisotropic with gill, gii, g211
and g~ i

values for example, at

the condition that the principal directions of the g tensors are
parallel, equation (12) applies

as well for each component [III.

3.2 n =
3. In the general case the solution of the spin Hainiltonian

7io
=

-2Ji~si s~ 2J~~s~ s~ 2Ji~si s~. (13a)

cannot be given explicitely and must be obtained with the help of
our

general numerical

procedure of section 2. The particular
case of three spins 1/2 will be discussed later (Sect. 5).

However, if two of the exchange constants are equal, Ji?
"

J13
"

J, with S?
=

53
"

S (spins
at the corners

of an isocele triangle (Fig. 3.2), 7io reduces to:

7io
"

-2JSi 523 2J?352 53. (13b)

with 523
"

52 + 53. Then the multiplet energies are apart from
an

irrelevant constant

E (523> St
=

-J St (St + I) + (J J?3) S?3 (523 + 1) (14)

in this equation 523 verifies the usual triangle inequality (52 53( < 523 < 52+53, and for each

value of 523, St obeys to (523 Si < St < 523 + Si Clearly, a given value of St appears ns,
times according to equatioii (3). The corresponding eigenstates are [12] (SiS2S3 (523) Stms,)

Again if g2 " g3 " g # gi the g value of each mult.iplet is given by equation (12) replacing g2

and 52 by g and 523> except if St
"

0 where gs, "
0.

There
are numerous examples [13] of trinuclear complexes having this symmetry of the

interacting spins like those containing the groupings Cu Co Cu, Cu Mn Cu and Cr Cr Cr.

If the three spins lie in the same line (Fig. 3.3) expression (IS) is still valid. This is the

case
of trimeric nickel II acetylacetonate [14] where Si

"
52

"
53

"
1, J

=
26 cm~~ and

J13
=

-7 cm~~ For the special case of three identical spins at the
corner of an equilat-

eral triangle (J12
"

J13
"

J23
"

J, Si
"

52
=

53
"

S (Fig. 3.4), the energy levels are

l~ (523> St)
"

~St (St + ')

3. 3 n =
4. In this case

there
are six exchange constants Ji~ in 7io The recoupling technique

can be used in two cases:

(I) Firstly if J12
"

J23
"

J13
"

J and J14
"

J24
"

J34
"

J'.

which corresponds to a
tetrahedron (C3v symmetry) with Si

"
52

=
53 # 54 (Fig. 3.5),

g~ = g~ = g~ = g # g~, ~Te easily obtain, with obvious notations, the energy levels:

E (S123> St)
=

-J'St (St + I) + (J'- J) S123 (Si?3 +1) (15)
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and the corresponding eigenstates are (SiS2S3S4 (S12) (S123) Stms,) The g value of each mul-

tiplet is given by equation (12) replacing gi> g2> Si and 52 by g, g4, S123 and 54 respectively.
In the particular case ofa regular tetrahedron (Fig. 3.6) with J

=
J', 54

"
S the energy levels

are
simply -J St (St + I). This

case was
reported for

a
tetranuclear Manganese (II) complex

with S
=

5/2 [15].
(iii) Secondly if J12

"
J23

"
J34

"
J41

"
J with different values of J13 and J24. This

corresponds to various geometrical spin arrangements
Four spins S~ with Si

"
53 and 52

=
54 at the vertices of a

losange with equalinteractions
along the edges and different diagonal interactions (Fig. 3.7).

Four spins Si with Si
"

53 and 52
"

54 at the vertices of two equal isocele triangles 124

and 234 sharing
a common edge 24. This arrangement corresponds to an irregular tetrahedron

(C2v symmetry. Fig. 3.8) and the losange discussed above is simply the particular case where

both isocele triangles
are in the same plane.

The energy levels
are:

E (S13, 524, St)
"

J St (St + I) + (J J13) S13 (S13 + 1) + (J J24 524 (524 + 1) (16)

with eigenstates (SiS2S3S4 (S13) (524 St Ms,
Several systems of this kind involving tetranuclear complexes with Mn or Fe ions are reported

in the litterature. A more complete review will be given in reference [16]. We just wish to

point out that this is the
case

for the tetranuclear manganese complex Mn402 (02 CCPH3)~
(OEt2)2 consisting of a

central planar core
of metal atoms (two Mn~+Si

=
53

=
5/2, two

Mn~+ 52
"

54
"

2) bridged by two p3-oxo ligands. Susceptibility data
was

fitted [Iii by
using equation (16) with J

=
-2.8 cm~~, J24

"
-1.5 cm~~ and J13

"
0, but the fit was

obtained with the assumption that all of the spin states have the same g, with
an unusually

low value g =
1.47 which is unrealistic for Mn~+ ions. We are reinterpreting these results by

assuming that gi " g3 "
2 for Mn~+ ions and allowing a different value g2 = g4 for Mn~+

ions, a procedure which is possible for this kind of system. Preliminary results provide
a more

realistic value g2 -~

1.6 with larger exchange constants (J
=

-8 cm~~, J24
"

-11.2 cm~~).
The

case
of four identical spins (Si

=
S) arranged in

a square with n-n- interactions J and

n-n-n-
interactions J13

"
J24

"
J' (Fig. 3.9) is

a
particular situation of the above one.

3.4 n > 5. The basic configurations which can be solved are, besides
a

single spin and
a

pair of spins, three spins on a
isocele

or
equilateral triangle and four spins on a losange or a

square. For solving, through
a

simple angular momentum recoupling, spin cluster with a higher
value of n it is necessary to combine in a symmetric way the above basic configurations. For

example the configuration represented in figure 3.5 (irregular tetrahedron) is a
combination of

a
single spin 54 with three equivalent spins on an

equilateral triangle.
We can solve systems with n =

5 by combining
a

single spin Ss with four spins Si
"

52
"

53
"

54
"

S located
on a square (C4v symmetry)

or
by combining three spins Si

"
52

=
53

on an equilateral triangle with t~vo spins 54
"

Ss
"

S' symmetrically arranged with respect
to the triangle (C3v symmetry). In the first case we

obtain
a

pyramid (Fig. 4.1) and in the

second
case a

bitetrahedron (Fig. 4.2). There is
no difficulty for obtaining the energy levels of

the various multiplets and the corresponding eigenstates and g factors will not be reproduced
here for the sake of briefness.

There is another situation involving five spins which is represented in figure 4.3. This is the

case
of

a
double isocele triangle which have

a common summit (D2 symmetry if the 5 spins

are in the same plane, C2v symmetry otherwise) if we
neglect second neighbour interactions.
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j 54

J .~
,"

j s~
'. ./ J

)

~. J :~" j

~~

Si

~

Si

55
II

Sj
=

52=S~=54"S

Ii1
= J~4 =

J' 55

j~
=

j~)
=

jj~
=

j~~
=

j>,
S

= S~ =
53

=
S 54

"
55

"
S'

j, j,, ~ j Iii
" J5~ =

J'(i=1,2,3) J' J15 z J

2

~
J

53 2 53 52

ii
~'

J 55 J

55
54 S

Si~
Sj

S
=

52
=

S~
=

54
"

S

~ = S~ =
S~

=
S

i =
S

Jj~
= J24 "
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Fig. 4. Configurations of
n =

5, 6, 7 spins with an exactly soluble Hamiltonian
as

in figure 3.

Notice that the
case

of five spins on a centered square (Fig. 4A) is
a

particular
case

of the

pyramid.

A symmetrical array ofsix spins
can

be obtained by combining 4 equivalent spins
on a square

and
a

pair ofequivalent spins
on

the axis ofthe square. We obtain an octahedron configuration
(Fig. 4.5) for which the regular octahedron (Fig. 4.6) is

a
particular

case.

Configurations with 7 spins are obtained either by considering
a

centered regular octahedron

(Fig. 4.7)
or two irregular and equal tetrahedra sharing

one common corner
(Fig. 4.8). We

could also consider the
case

offigure 4.3 but with three equal isocele triangles sharing
a common

summit.

Finally the spin configurations with
n =

8 or 9 are
represented in figures 5.1 and 5.2. We

shall focus
our attention to the last case which is illustrated by

a
wonderfull example [18], the

nomanuclear Oxide-Bridged Manganese Complex. We have 8 Mn~+ ions S~ =
2 ii

=
1.. 8) and

a
central Mn~+ (So

=
5/2) ion.

4 8

Setting SA
"

~j Si and SB
"

~j Si, SAB
"

SA + SB

i=I I=5
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J J
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II- II /
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J j j

56 54

S,
=

S (i=1,.. 6)
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Ii
i =

In
= J~~ =

J' J' z J

Jo~ =
J" (i=1,.. 6) J', J" z J

8
7

Fig. 4. (Continued)

the energy levels
are

readily given by:

~

~~(j ~~ )j/)£(~~~~/j~~ J'~~~~l~4~
l

+~~ ~~~~~
~

~~~ ~~~~ ~ ~~

+ Ss7 (Ss7 + 1)1, (ii)
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s

So

J' (I.:I' J' J [;>;." J

J'
.."'

J
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54 55

Sj
=

S~
=

Si
=

S S,
=

S (i=1,.. 8)

s
i =

s~
=

s~
=

57 =
S'

11 = J~~ = J~~ = J~x =
J'

Ji~
= J~~ Jo,

=
J" Jai

=
J" (i=1... 8)

J', J" z J

2

Fig, 5. Configurations of
n =

8, 9 spins with
an exactly soluble Hamiltonian

as
in figure 1,

where J, J', J" correspond to exchange couplings represented in figure 5.2. The magnetic data

are very well fitted with J
=

-11.2 cm~~, J"
=

-0.97 cm~~, J24
=

J68
"

J'
=

-26.2 cm~~,
J13

"
Js7

"
0. (With this latter assumption imposed by chemical reasons, the two terms

-J'S13 (S13 + Ii and -J'S57 (557 +1) in the general formula Iii must be dropped).
Notice that the molar susceptibility for

a
powder

or a frozen solution is, in the general case

studied in this section, at the first order of perturbation theory

which replaces the exact expression (9) when all the g values
are

equal.

4. Array of spins
on a

ring.

Much work is currently devoted to t-he synthesis of molecular ferromagnets [19, 20]. For this

purpose the metal nitroxide systeius have provided promising results. Indeed, three dimensional

ferromagnetic order has been observed in
a

few systems involving weakly coupled alternate

linear chains of nitroxide and metal ions [21]. Besides these compounds presenting long range

order, most of the available metal-nitroxide complexes
are

oligonuclear species.

These limited high spin molecular species are important for the understanding of the mag-

netic interactions, since they offer simple models allowing a theoretical treat.ment of the mag-
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netic data. However, whereas numerical approaches have been developed for infine unidimen-

sional compounds, the understanding of large but finite oligonuclear species is problematic due

to calculation limitations.

Recently [22] such
an

oligonuclear complex of nitronyl nitroxide with manganese which

includes six S
=

5/2 metal Mn~+ spins and six
s =

1/2 radical spins
was

synthesized and

crystallized Fig. 6). A complete treatment of such
a

magnetic system is beyond the possibilities
of the most powerful computers and only

a
lower limit of the metal radical interaction

was

deduced from the qualitative examination of the magnetic data.

1

, 1, j

j s
~

'

£ i

a b

Fig. 6. la) View of the cyclic hexamiclear unit of [&In(h fac)jNi T Ph]~. The fluorine atoms of the

hexafluoroacethylacetanate ligands ha,,e been omit ted for clarity. (b) Schematic representation of the

niagitetic atoms on
the ring.

4, I THE MAGNETIC SYSTEh<I. LOW' TEMPERATURES, Tlie suceptibility beliaviour shown

in figure 7 is typical of
a paraiuagnet ic system. The antiferroniagnetic nature of the manganese-

nitroxide interaction is owll estahlished. The Haiuiltonian of the system is:

6

7i
=

-iJ ~j Js~ (S; + S;+1) (19)

1=1

with J < 0 and 57 e Si

The numerical determination of the energy levels of 7i is a very difficult problem because the

total dimension of the space is 6~ i~
=

2 985 984. The total spin St is a good quantum number
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'

0 50 100 150 200 250 300

/

Fig. 7. Variation of xT with T for
a

monomeric formula ((o) experimental, (m) low temperature
theoretical behaviour, (+) high temperature theoretical behaviour according to equation (41) with

J/k
=

-240 K.

and
we

have
a very large number of inultiplets. There is

one
level St

"
18, II levels St

"
Ii, 60

levels St
"

16 etc... the number of levels of lo,ver multiplicity increasing very fast (36120 levels

St
"

4 and a total number of multiplets 267004 !). This precludes any numerical treatment

even by taking into account the existence of
an approximate sixfold axis of symmetry.

However the presence of
a

broad plateau at low temperature in the XT vs. T curve, corre-

sponding to a
value 12.6 uem 1l inole~~ for

a Mu
=

NO pair strongly suggests the presence of

a St
"

12 ground state with
a gap with the other excited states. Indeed, since both the Mn~+

ion (S
=

5/2) and the radical (s
=

1/2) have almost isotropic g =
2 factors, the total factor

will be also close to 2 and the Curie law for
a Mn NO pair gives:

~T
=

~/) g~st (St + I)
=

(St (St + ii (uem K mol~~) (20)

For St
"

12, xT
=

13 in close agreement wit-h the experimental value. Notice that this value

of St corresponds to the minimal energy of the complex for antiferromagnetic coupling. Indeed

each Mn NO pair has
a maximal energy -5/2 .J corresponding to Sit

=
S; + si =

3 and
a

minimal energy 7/2 J corresponding to Sit
=

2. Then the maximal energy of the complex is

-30 J with St
"

18, ,,.hile its minimal energy has
a

spin St
"

6(S- s)
=

12. This corresponds
to a

ferrimagnetic like chain with
a

sublattice 65 and
a

suhlattice 6s. The ground state energy
is not known but it must be lower than the classical energy 30 J and higher than the

sum

of the minimal energy of each pair 42 J. lve observe at very low temperatures (T < 10 K)
a

strong decrease of the XT value. This is due to saturation effects. The reported experimental
susceptibility values

on
figure 7 are those of M III. The working field apparatus was H

=
5000 G.

According to the high value of St
"

12 of the ground state gpB H St/kT
=

8T is not much lower

than unity at very low temperatures and the Curie law (20) is not applicable. An elementary
calculation starting from the expression of the magnetization using the Brillouin function leads

to a
corrective factor which becomes significant for T < 10 K. The theoretical curve in figure 7

including this correction describes correctly the magnetic behaviour at low temperatures.
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4.2 HIGH TEMPERATURES. DETERMINATION OF THE EXCHANGE INTEGRAL, We have

shown that for a pair mole Mn NO, at low temperatures (xT)LT
°~

13. At very high temper-

atures all the spins
are

independent and (xT)HT
"

4.75. It is well known [23] that increasing
T, xT first decreases, then reaches

a
minimum and then increases towards its high temperature

value. At low temperatures we
populate only the ground state (here St

"
12); then increas-

ing T, we populate excited levels with lower values of St and xT decremes. But when T is

high enough we populate the higher levels (the highest being here St
"

18) and XT slightly
increases. In this compound, at T

=
300 K, no

minimum is observed and XT
=

5.8 is above

the high temperature limit. This makes the problem particularly difficult as it has been shown

[23] that for Cu- Ni chains (S
=

I, s =
1/2) there is almost no difference between

a finite

chain and
an

infinite chain only above the minimum. However here the Mn~+ spin is S
=

5/2
and it will be shown that the results are different. We shall consider a model in which the Mn

spins S are classical spins and the NO spins
s are quantum spins. This approach has been used

[24] for an infinite chain of antiferromagnetically coupled Mn~+ (S
=

5/2) and Cu~+ (s
=

1/2)
spins. A priori this model is valid only at high temperatures but it gave good results from high

temperatures down to a temperature such that JS/kT
-~

10. We shall
use the same formalism

for our
cyclic chain with six S

=
5/2 spins coupled with six

s =
1/2 spins.

The g factors for both kinds of spins are assumed to be equal to 2.

According to linear response theorv the susceptilJility for a pair Mn NO is given by:

x =
~j)i~ $ i(Si + si (si + si)1. (21)

,j

where the symbol
means the t.hernial average. For evaluating the latter

we must first

calculate the partition function Z and various correlation fttnctions bet.ween classical spins
(S)Sj), classical and quantum spills (S/sj) and between quantum spins (s/sj).

The partition function of the t.ing is

wit-h

=~ ~+i "
I ch

~ ~"~~
(23a)

kT

,vhere

s~,~+i =
s, + s,+1 (23b)

and

$,~i
"

(S,,i+i
"

S [I ii + cos 01,~+i)]

[,~+i being the angle bet,veen S~ and S~+i
Equation (23a) is the quantum partition function of the spin ,«;. In equation (22) we

have

a
classical partition function with

a sum performed on the cla~sical degrees of freedom of the

classical spins: Si and dot
=

sin [d9~d~a,.
It is possible to expand z~,i+i in terms of Legendre polynomials

oa

z~,~+i " Z (91,1+1) "

~ a;P; (cos Pi,i+1) (24)

k=o
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Using the addition theorem of spherical harmonics, it is easy to show that

(25)
« a~

Z
=

(25 + 1)~ (
(2k + 1)~

The coefficients ak are
given by

ak "

~~ ~ /~ z(P)Pk(cos P)sin P dP. (26)
2

o

Setting

~ =
-2JS/kT (27)

we
easily obtain the ak in terms of z, which is the unique parameter of the problem. For

example

ao
"4~~~(z sh

~
ch

~ + l) (28a)

al
"12~~~ ((~~ + 12~) sh z (5~~ + 12) ch

~
z~ + 12) (28b)

At low temperatures all the ak have the same order of magnitude ak °~

e~ lx.
At very high temperatures ao "

2, al °~

~~/2
so

only ao is relevant. For intermediate

temperature (z
=

1), ao "
2.53, al "

0.541, a2 "
9 x

10~~

Finally with
a

good accuracy we can write

Z
=

(25 + 1)~a( (1 + 3d~) (29a)

with

d
=

ai/3ao (29b)

E,,en for
x =

4, where d
=

0.407, the corrective term 3d~ is only 1% and it is possible to write

Z
=

(25 + 1)~a(. (30)

For an open infinite chain the expression (30) is matheiuatically rigorous and the limitations

of the model arise at low teiuperatures from the classical treatment of the S spins. Here, for
a

finite ring, the theory is further limited by neglecting terms in al, a2.. etc. The approximation
will become less and valid

as x
increases but will give reasonable results

as
long as ~

is not

too large (x < 8). We shall perform
our

calculation of the various correlation functions by
limiting ourselves to terms in ao and al The classical correlations are given by (S/Sj) with

for example

(sjsj)
= (~(~~

~ j j
d~i da6zi?s

cos
Pi z?3s

cos
P~z34z4szs~z~i (31)

~

Using (24) and (30)
we

obtain

lslsl) "~
(d + d~) (31a)

isisi) =~ ld~ + d4) 131b)

s2
lslsl) =12d~ (31C)
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where d is defined by (29b).
It should be noticed that

a terra in d~
appears in (31a) contrary to the

case
of the infinite

open chain because the spins 56 and 52 are the
same distance of Si Similarly in (31b) and

(31c) there
are extra terms in d~ and d~.

For the autocorrelation function (S/S/)
we

replace its classical value S~/3 by S(S + 1)/3
which gives the correct behaviour of the susceptibility at very high temperatures.

Now we evaluate the quantum-classical correlation (sisj~).

we have

(SQS2~)
"

(~~)
~ j /

d~il d~i6Y12S COS ~2223234245256261 (32)

where

j2Jsi
Si? )j (33)yin =

Tr si~exp
~~

yi~ =
-2s (cos Pi + cos «2) flPi2) 133a)

with

~~ m mmw)1/2
~~~~~~

~~+cos~12)]~~~

~~~~~

Then we expand f (f12) in terms of Legendre polynomials

n~

f(P)
=

£bkP;(cos P). (34)
k=o

The coefficients bk are
obtained like the ak through equation (26), f(0) replacing z(P). We

easily obtain the bk in terms of z
defined by (27):

bo =x~~(ch
x

-1) (35a)

bi "3x~~ [(x~ + 4) ch
x 4 sh x + x~ 4] (35b)

At low temperatures all the bk are of the order of e~ lx. At very high temperatures only bo
°~ x

/2
is relevant. For intermediate temperatures (x

=
ii bo "

0.543, bi
"

0.0044, b2 =
10~~ and we

have checked that if x is not too large the expansion (34) can be restricted to bo and bi
Setting:

C =
2
(~

+
~°

(36)
0 o

We obtain front (32) to (36)

(s( S()
=

~~c (I + d~) (37a)
3

(S~ ~(
~

~
(~ ~ ~~~ (~~~)

(~~~~) ~/~ ~~~ ~ ~~ (~~C)
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For an infinite chain we would not have the terms in d~, d~ and d~ in the above equations.
Finally the quantum correlations (si~sj~) are given by:

(8~8~) " ~~~~
) ~ j j

Cl~il Cl~i6Yl?Y23234245256261> (38)
~

where the y are
defined by (33). We obtain:

~2
(s(s() =-c~ (1+ d~) (39a)

3

~2
(s(s() =-c~ (d + d~) (39b)

3

~2
j~~ ~~~ ~? j~ ~2~ j~g~~

4 ~

Obviously the autocorrelation function is given by:

~f ~~~ ~

~(8 + ii
j~g~j

i 1 ~

From the general expression (21) the magnetic susceptibility is given, according to the various

correlations functions, (31), (37) and (39) by

XT
=

'~~~~
g~ (S(S + 1) + 25~ (d + d~ + d~ + d~ + d~)

3k

-4sSc (1 + d + d~ + d~ + d~ + d~) + s(s + 1)+2s~c~ (1 + d + d~ + d~ + d~) (40)

As far as d « I, I-e- that the correlation length is short,
we find the

same
result

as for an

infinite chain.

XT
=

~jj' g2 [s(s + i) + sis + 1) +
~~~~

(~~j+
~~"~"

,

141)

but equation (40) is more appropriate at lower temperature. For S
=

5/2 and
s =

1/2 equation
(41) rewrites

XT
=

4.7.5 +
~'~~ ~ ~'~ ~ ~ ~'~~

~~, (42)
d

For x =
4, where d

=
0.407 and

c =
0.818 the difference between (41) and (42) is only 6 x10~~.

So
we

have determined the value of
x

which is involved in the expressions of
c

and d in (42)
for the highest temperature data I-e. 300 K where XT

=
5.8 (uem K mol~~). We obtained

x =
4.0, which corresponds to an

exchange integral J
=

-240 K. Then we have calculated XT
for lower values of T using (41) and the agreement is very good down to T

=
150 K ix

=
8)

as shown in figure 7. For lower teiuperatures the theoretical curve increases faster than the

experimental
one as

expected. Indeed the neglected coefficients a2> b2 play
an increasing role

and at low temperatures the spins S cannot be considered
as

classical spins.
We have also calculated the theoretical position of the minimum of the curve XT us. T for

this value of J and
we

found
x =

I.I, I-e- T
=

1090 K with
a

corresponding value ~T
=

4.09.

At normal temperatures we are
far from the theoretical minimum. However, we

have shown

that, for S
=

5/2, there is no great difference between
an

infinite chain and
a

ring with 12

spins at normal temperatures I-e- well below the minimum. This
was not the

case
for S

=
1

and 8 spins [23] for which the minimum is also
x -~

I. This shows that the difference between

an infinite chain and
a finite ring decreases not only with the size of the ring but also with the

space dimension I.e. with the number of degrees of freedom of our system.
The general method detailed in this section is applicable to any finite ring of interacting

systems in any region where x
is not too large.
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5. The three spin 1/2 cluster.

We consider
a

cluster of three spin 1/2, Si> Si, 53 at the corner of a triangle which is not

equilateral
or

isocele, with isotropic exchange interactions.

The Hamiltonian 7io is written for simplicity, setting a =
-2J23 etc... as

7io
"

aS2 53 + bsi 53 + cS2 Si (43)

This system has three levels St
"

3/2, St
"

1/2 and S(
=

1/2 respectively. From susceptibility
measurements we can derive only two independent energy splittings between these levels. But

we have three unknown parameters a, b, c.
Then, it is obvious that susceptibility experiments

cannot provide the exchange parameters of this cluster.

The same problem arises for
n < 6 exchange coupled spin 1/2. Indeed there are

~~~ ~~

exchange constants and the number of energy levels is C]/~ or C(~ ~~~ /~
according to the

/rity
of

n
(even

or odd respectively). Then the number of energy splittings available are C]/~ -1 or

C(~ ~i~/~
1. It can

be easily checked that this number is lower than the number of exchange
constants for

n =
3, 4, 5. This difficulty is not present for higher values of the spin S. Even for

n =
3, a system of two spins 1/2 coupled with

a spin 1 at the
corner

of
a

triangle will lead to

four levels and consequently to three independent energy splittings allowing the determination

of the three exchange parameters.
Coming back to the three spin 1/2 problem, the energy levels

are

a + b + cEjS
=

3/2)
"

~

~ + b + c Ii
E(S

=
1/2)

"
~ 2

a + b+ c
~

Ii
(44)E IS'

"
1/2)

"
~ 2

with

Ii
= (a~ + b~ + c~ (ab + bc + ca)) ~~~ (45)

Then susceptibility (or specific heat) experiments only provide the energy splittings

hi =E (S'
=

1/2) E(S
=

1/2)
=

Ii

A2 =E(S
=

3/2) E(S
=

1/2)
=

~ ~ ~ ~
+
),

(46)

I-e- a + b + c and ab + bc + ca.

If the three Landd fact.ors g, associated with the three spins Si
are

all equal gi = g, EAR

experiments in low fields are of
no

help since there are five allowed transitions (three within

the quartet and
one

in each doublet), but all of them correspond to the
same g value. On the

other hand at very high field gpBH » a,b, c, the problem becomes trivial
as

from the many

allowed transitions it is straightforward to obtain, a, b, c. But when the exchange constants are

of the order of10 cm~~ it is very difficult to obtain
a

much larger Zeeman effect.

This problem of the asymmetric triangle
was

previously raised by several authors [II, 25]
without any simple solution.

Consider now the frequent situation where the three g values
are

different.
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The Hamiltonian of the problem is then:

3

li
"

7i0 +
~ gi@BHSi~

"
7i0 + 2 ~ $Si~ (4i)

1=1 I

with ei =
1/2g;pBH.

In high fields the problem is similar to what happens in high resolution NMR spectroscopy.
Considering three non-equivalent spin 1/2 nuclei (having different chemical shifts) with indirect

isotropic exchange interactions, we obtain the Hamiltonian (47) with ei =
-i;hH/2 where i; is

the gyromagnetic factor of nucleus I. Usually the chemical shifts involved are all large compared
with the spin coupling constants. Under these circumstances, the basic product states are good
approximations of the eigenstates and the simple first order treatment of 7io can

be applied.
The spectrum will then consist of

a
simple quartet of four equally intense lines for each nucleus

and there is
no

difficulty for determining the modulus of the three exchange constants. This

is the well known ABC system [26]. More progress is possible about the determination of the

relative signs of the exchange parameters if one of the three nuclei is of
a different species or

if its signals
are

well separated from those of the other two nuclei. This is known as an ABX

system [26]. A complete solution of the problem in NMR high resolution spectroscopy has been

incorporated in a computational scheme [27] but requires the observation of many resonance

lines. Corio [27] has discussed in detail the limiting
cases of weak and strong coupling which

is of interest here. In t,he latter
case

he has shown that
one

observes
a

central resonance

line with two equidistant satellites but this information only provides two additionnal relations

gi +g2 +g3 and an another other complicated expression between the gi and the three exchange
constants from which

one can
deduce

a
value of gi a+ g2b+g3c. As

we
have added three unknown

g factors, we are left with the entire problem.
The solution given below

uses
simultaneously the susceptibility data which is easy to perform

and the EAR spectrum if available.

We assume that the Zeeman effect is
a

first order perturbation with respect to Ho, which is

the usual situation in clusters with electronic spins. The molar susceptibility is easily obtained

and is given in cgs units by:

with
A~ A2

(48b)~l @' ~~ kT

ga =g(S
=

1/2)
= g

)
I(a + b + C)g J'l (49a)

gb "g (S'
"

1/2)
" g +

j
llU + + C)g J'l (49b)

g~ =g(S
=

3/2)
= g (49c)

where

g =
(gi + g~ + g3) (50)

J'
= gi a + g2b + g3c. (51)
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The expression (48a) of the susceptibility involves four independent quantities: g,J' defined
by (50) and (51) and J, I defined by

J=a+b+c (52)

1
=

ab + bc + ca (53)

which
can

easily be determined by
a mean square fit.

If EPR is performed
on this system, neglecting any hyperfine coupling which can be in-

cluded in
a

specific example,
we have three intense transitions within each multiplet. The

corresponding energy transitions
are

given by equations (49) and are well separated. Their

observation provides
a

direct determination of g (position of the central line) and the two

symmetrical satellite lines give
a

relation between g, J', J and I which can be checked with the

values obtained from the susceptibility data.

Notice that within the quartet S
=

3/2, there
are 3 coincident transitions with relative

intensities (3/4, 1, 3/4) and
a total oscillator strength

~
~~'

~~~~

We have determined the intensities of the EAR transitions corresponding t-o the satellite lines

ga and gb. We obtained:

i A'~ (gi + 2g2 3g) + B'~ (2gi + g2 3g) ~

j56)16 =

3g
2 (gi + g2) +

~,2 ~ Bi? + RIB'

,vitli

A=I-a( 31+.J) A'=I+a( 31-J)
B=I-b( 31+J) B'=I+b( 31-J) (57)

A direct observation of the ratios la /I~ and Ib/I~ provides two new
independent relations

between the six unkno,vn parameters gi, g?, g3, a, b, c
which must be combined with the four

relations (50-53 ). So combining susceptibility data and E-P-R- measurement.s in low fields,
we

can
determine all the constants which

are
characteristic of the system.

For illustrating t-he method, ,ve consider
a

simple numerical example in ,vhich we
have

a =
I cni~~, b

=
5 ciu~~,

c =
6 cni~~;

gi "
1.9, g2 =

1.8, g3 =
2.3

The zero field energy splittings are hi
"

4.6 ciii~~ and £h2 =
8.3 ciu~~, the g values

corre-

sponding to the central line and the t,,>o satfllite lines are g~ =
2, ga =

I.153, gb "
1.847 and

are
well separated. At normal teniperat.ures their relative intensities

are 10, 1.13 and 0.85.

At low temperatures, the intensities given by (54 56) must. he o.eighted by the respective
Boltzmann 10, 1.13 and 0.85 factors o,hich only involve xi and z~ defined by (48b) which

are
known. According to the ;alues of the exchange constants the relative intensities of the

three lines
can

be greatly modified. In particular if A2 > 0 (antiferroniagnetic coupling) and

A2 > kT, the relative weight of the central line ,;ill decrease and the comparison of the line

intensities becomes easier. Consequently the accuracy on
the determination of the exchange

constants will be improved.
We are now

experimentally investigating non-centrosymmetric systems including two Cu~+

ions coupled with a Nitroxide radical for which this theory can be applied [28].
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6 Conclusion.

We described some particular problems which arise in the study of the magnetic properties
of spin clusters. Due to the considerable progress in magneto-chemistry techniques a large
variety of situations can occur.

We have developped general techniques allowing to solve many

of these situations. In several cases it is possible to diagonalize the exchange Hamiltonian in

an exact way. When the number of interacting spins is increasing approximate methods
were

developped with particular attention paid to finite ring arrangments.
Undoubtedly new kinds of spin arrangments will be discovered for which the techniques

developped in this paper will be useful at least
as a

first approach.
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