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Abstract I investigate various instances of bifurcation in a random stationary environment.

This is done for a model equation, with
a

bifurcation parameter fluctuating in space. The noise

is either Gaussian or two states Poisson. I estimate then the order parameter as a
function

of
a

bifurcation parameter. This is mostly done by Lifshitz-tail type estimates on
the linear

part of the equation. However, near the threshold of instability in the absence of noise, this

one-whatever small it is-becomes important and there the nonlinearity becomes crucial too.

One long standing interest of Rammal was the problem of localization in random media. In

its classical formulation, this is a
purely linear problem

one wants to know, given
a random

potential, the structure of the spectrum II] and the properties of the eigenfunctions, if there

are any, which is far from being granted. Some years ago, i suggested [2] to study the problem
of nonlinear buckling of rectangular plates under longitudinal stress and with wavy boundaries.

From localization theory, the first buckling mode should be localized,
as are the eigenstates

of the Schr6dinger equation in a
random potential. A somewhat idealised form of the same

problem of bifurcation with random conditions was
proposed recently by Zimmermann [3] and

can be stated as
follows. Consider the Swift-Hohenberg equation
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where a(z) is a
real function of

z on
the real line. The uniformly bounded solutions of ii)

have
a

bifurcation at c =
0 for c < 0, the only solution of ii) is

a =
0, although for c > 0,

a two parameter family of periodic solutions exist. One of the parameters in this family is a

phase, irrelevant here, and the other the wavenumber, limited to an
interval around qo. This

model has
a

variational structure (as the equation of the buckling problem itself),
as

ii) is the

Euler-Lagrange condition minim12ing the functional
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thus it makes sense to single one solution out of all the ones of (i), that is the uniformy bounded

one with the highest potential V(a). On an infinite line, this is not well defined, because the

integral from to + infinity in (2) is diverging. However we assume that
we are

looking at the

solution with the maximum of V per unit length, even though this one requires to eliminate

local defects altogether. From this optimal bifurcated solution, one can compute for instance

the average absolute value of a, ((a(.)(), the averaging being by gliding over z. This quantity
((a(.) () is

a continuous function of c, that is equal to 0 for £ negative and, for £ positive expands

near Zero as
~~l/2 g3/2

('~(.)') @ ~ 31/2_~5fi ~
'

Let us
formulate

our
problem of bifurcation in a random environment as

follows
: we use

the same equation as
(i), but assume now that c is a random function of space c(z). To make

easier the discussion, we shall assume this random function to be the sum of
a

given random

function q(z), plus one
bifurcation parameter u, independent of z, so that (I) becomes

:
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Replacing ~~ ~~~
in (2) by ~~ ~ ~~~

~~~, one gets the energy associated to (3)
2

~

so that we can ask ourselves the question of the behaviour of ((a(.)() as a function of u, q being

a
given random function of z. Actually we shall be concerned with the behaviour of ((a(.)() for

the optimal a(z), I-e-, the one extremalizing the energy. Indeed this depends
on the random

function q(.). We shall consider three possible choices of random function. First q(.) Gaussian

with a coloured noise, then q(.) Gaussian with white noise, and finally q(.) Poissonian.

1. q(.) Gaussian coloured noise.

In that case, vi.) is a Gaussian Random function of
z

specified by its average value (q(.))
=

0,

as well as by the correlation (q(z)q (z'))
=

# ((z z'(), #(.) being
a smooth function of its ar-

gument tending to zero at infinity with a range I. We want to compute the behaviour of ((a(.) ()

as
the bifurcation parameter u

in (3) tends to minus infinity. In this domain, )he integrand

of the energy is almost certainly zero, unless the first term, that is
~~~~~ ~ ~~~ ~~~

manages
2

to become positive. This happens somewhere, because
a

random Gaussian function q(.) has

always
a

probability, whatever small, to reach a large positive value, that will overbalance the

large negative
u.

An interval of coherence of q(.) has a length I, and in this interval the probability that q is

everywhere larger than (u( is about exp
(-flu2)

,

where fl~~ is approximately
/

dz #(z). In
I

this interval,
a

local instability will begin to grow at the value of
u

under consideration. As
u

changes, by increasing for instance but staying large negative, the value of ((u(.)() will remain

dominated by the contribution of the intervals of the real line that have just bifurcated in this

sense because the ones that have bifurcated for still lower values of
u are too rare to contribute



N°2 BIFURCATION IN A RANDOM ENVIRONMENT 367

significantly
:

their amplitude have grown algebraically as a function of u but they are rarer

by an
exponential term. From all of this one

deduces that (ju(.)j) behaves as exp (-flu~)
as

u
tends to minus infinity. There is likely a multiplicative factor depending

on u like a power,

that cannot be attained by this analysis.

2. q(.) Gaussian white noise.

The calculation in that case follows lines very similar to the previous case, but for one sup-

plementary complication arising from the fact that q(.) has zero range correlations. We shall

estimate first the probability that in an
interval of length A the average value of q(.) is bigger

than some fixed value U. This average value is

EA
"

/
dz q(z), and it is

a
Gaussian random variable itself, being linearly related to

A
A

a
Gaussian quantity. Let us

specify the distribution of q(.) by (q(.))
=

0 and (q(z)q jr'))
=

wb jr z'), then the probability distribution for EA is the Gaussian

~ l/2 ~ ~j
~ ~~~~

2w~~
~~~

2w '

whence
a

domain of length A will be unstable against the growth of a
fluctuation of a(.) If in this

domain the value of EA is larger than -u, that will occur with
a

probability exp

~"
The

2w

gravest mode of the linearized equation in this domain will have a wavelength A, much smaller

a
priori than I :

otherwise the probability would be too small, because of the exponential form

of P (EA On the other hand, this length cannot be too small, otherwise the dominant term in

the equation (I) would be the fourth derivative with respect to z.
This

means
that the optimal

A is when this fourth derivative term is of the same order as the other terms in (I), that implies
~

of order (u(, or A
-J

juj~o~
so

that the probability of having a
bifurcation to a nonzero

A
~~~

a(.) in a domain with this length is exp

-~~
,

where C is a numerical constant. This
w

last exponential yields, as in the previous case
the dominant order term (again up to algebraic

prefactors) to ((a( in the
u - -oo

limit.

3. Bifurcation threshold in the small Gaussian noise limit.

Till now we have presented results depending essentially on the linear part of the Swift-

Hohenberg equation, and that could be rather easily reformulated as a Lifshitz-tail analysis of

the linear part of this equation (see at the end for possibility of
a more detailed analysis). Now

we are going to consider a range of values of parameters where the nonlinear part of (I) plays

a
crucial r61e, that is the neighborhood (in

a sense to be precised) of
u =

0, and in the limit of

a small amplitude Gaussian noise.

Near the threshold, the relevant equation in the Newell-Whitehead-Segel [4] approximation
of (I), that is an

enveloppe equation for the complex amplitude of fluctuation a(.) with a
phase

factor exp(iqoz). Let A(z) be this complex amplitude,
a

slowly varying function of z thus,
that is the solution of

iv + q(x)]A(z) + 4q(
~

jAj~A
=

0, (5)
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the validity of this implying that
u

and e(.)
are

small and that the long range part of q(.)

only is kept ("long range" meaning over a
length scale much longer than the wavelength ). I

qo
shall restrict myself to the case of

a
Gaussian white noise for q(.), the case of a coloured noise

being very much the same. That q is small implies that
w

is small. From the reasoning we

already presented, the order of magnitude of the average of q over a length A is (w/A)~'~,
so

that I shall consider this as
the order of magnitude of the q(z)-term in (5). Let take first the

bifurcation parameter u as zero in (5). The length A on average has to make a compromise :

if it is too large, the average value of q is too small and the amplitude of A(.), being of order

jq( becomes too small too, although if this length becomes too small, the second derivative in

(5) becomes dominant and the optimal solution is zero. Then the order of magnitude of A is

determined by the balance of the three terms in (5), given that q(.) is of order (w/A)~'~ This

yields A
-J

w~~'~ and A
-J

w~'~. Moreover the range of values of
u

where this applies is such

that
u -J q -J

(w/A)~'~
-J

w~'~ Otherwise, either the dominant term in (I) is (ua(z)), if
u

is

positive,
or one has to rely upon transcendental estimates if u is negative.

4. Poisson noise
near

threshold.

By Poisson noise, I mean a two valued noise q(.) switching randomly from -c, c
positive, to

0, as z
changes. Considering z as a time variable, this is Poissonian when the probability of

switching is constant per unit "time". This kind of noise has properties rather different from

a Gaussian noise, in particular there is obviously no large values of jq(.)j, that is bounded by
definition. This implies in particular that the average (jai) is zero for

u
less than c. For

u
bigger

than c, the
sum

u+q(z) becomes eventually positive, but over length typically of order I, where

I is the persistence "time" of the Poisson process. Let us investigate the threshold
u = c + b,

b small positive. As in the previous case, because we are near threshold, the relevant equation
is the amplitude equation (5) limit, for the full equation (I). If I

was
infinite, one would be

back to the standard bifurcation problem for the amplitude equation on the infinite line, and

one would have (jai)
-J

b~'~
near threshold,

as usual. But in the present case this is not what

happens, because the amplitude equation associates a length scale to an amplitude scale
on

~2
a segment of length L, the bifurcation takes place at b

= p, according to a
standard result.

Hence for
a

Poissonian q(z), the bifurcation will occur
first in the longest intervals, but these

intervals have
a

probability of occurence decreasing exponentially when their length increases,
~ ~2

like exp Furthermore this length L is associated with
a

bifurcation threshold b
= ~,

~
L

whence the estimate of the relative probability along z of being in
a

bifurcated interval
~$-l/2

exp
,

which gives, again up to algebraic subdominant factors, the law of growth
l

of ((a() near b
=

0j+. Notice that in this case, I did as if the various bifurcated intervals were

independent, which is rather natural, since they are very rare near threshold and so very far

away from each other. Thus the overlap of bifurcated solutions in different intervals may be

neglected,
as we

did.

5 Final remarks.

have presented here an
heuristic approach of the question of bifurcat.ions in

a
nonlinear

environment, as
posed by the Swift-Hohenberg equation. One might wonder if a more analytical
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approach is feasible. This is likely to be true at least in the case of Gaussian white noise. In that

case, one may write the fourth order equation (I)
as a set of four coupled nonlinear differential

equations of first order
:

ao =
a(zi> al =

Ii
a2 =

Ii
a3 = li~ and

~~~
=

v(a) + e(z)ao, where a is the vector (ao> al, a2, a3) and where v(a)
= (v q() no

dz
al 2q]a2. For such

a
white Gaussian noise, one

applies the Chapman-Kolmogorofl method

to get the equation for the evolution of the probability distribution of a, let P(a, xi be this

probability. It obeys the Chapman-Kolmogorofl equation

The results presented before concern the equilibrium solution of this equation ~~ = 01.
z

plan to come to this in the future. It is worth noting however that the general stationary

solution of this equation in the absence of noise is a rather arbitrary (but integrable and

positive indeed) and of the form P(H), where H(a) is the constant of the motion of the

dynamical equation for
a

in the absence of noise, that was
discovered by Zaleski [5] and that

reads

~
~2 ~4

~
d~ 2 ~~ ~3~ d2~ 2

~~~~ ~~ ~°~
2 4

~

~°

dz~
dz dz~

~
2

dz2

~~ ~~~
l

~~~~ ~~~~ ~
~~'

References

[1] See the special issue of the J. Stat. Pllys. 38 (January 1985).

(2] POMEAU Y., J. Pllys. Lett. France 42 (1981) Ll note (3).

[3] ZIMMERMANN W. communication at the Nato ARW, Estella (Spain)
on

"New trends in nonlinear

dynamics Nonvariational aspects", september 8-14, 1991.

[4] SEGEL L-A-, J. Fluid Mecll. 38 (1969) 203;

NEWELL A-C-, WHITEHEAD I-A-, J. Fluid Mecll 38 (1969) 279.

(5j POMEAU Y., ZALESKI S., J. Pl1yS. France 42 (1981) 515.


