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ILdsumd On 4tudie ici par simulation Monte Carlo les fluctuations d'un 4chantillon h l'autre

des moments multifractals de r4seaux de r4sistances a14atoires pr6s du seuil de percolation. Pour

des systbmes de tattle L, )es fluctuations
ne

d4pendent de ~hp qu'h travers la variable d'4chelle

~hpL~'~ A ~hp
=

o, ce n'est qu'h travers la variable d'4chelle hL*
que ces

fluctuations d4pendent
de h, le rapport entre )es bonnes et les mauvaises r4sistances. Ces r4sultats sont en accord avec

)es pr4dictions d'une forme d'4chelle pr4c4demment proposde pour la distribution de probabiIit4
conjointe des moments multifractals. Dans la direction ~hp # 0, Ies fluctuations relatives sont

maximales lorsque la Iongueur de corr4Iation du massif est de l'ordre de L.

Abstract Sample to sample fluctuations ofthe multifractal moments of percolating random-

resistor networks
are

studied via Monte Carlo simulations. For systems of sire L, these fluc-

tuations depend
on ~hp, the deviation from the critical concentration, only through the scaled

variable ~hpL~'~. At ~hp
=

0, these fluctuations depend on h, the ratio of the good and bad

conductances, only through hL*. This is consistent with
a

previously proposed scaling ansatz

for the joint probability distribution of multifractal moments. In the ~hp # o direction, the

relative fluctuations are largest when the bulk correlation length is of the order of L.

1 Introduction.

Much of the attention which multifractal objects [1-6] have attracted probably comes from the

fact that previous experience with critical phenomena and the renormalization group did not

lead one to believe that an infinite set of exponents might be needed to deal with physically
important problems. The percolation transition, for example, was believed to be

a standard

second-order transition, it came as a
surprise then that resistance fluctuations due to resistance
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noise [5], or
equivalently moments of the current distribution in percolation networks [6], were

found to scale with exponents which depend on the order of the moment considered. Within

the larger context of multifractal objects this has sometimes been interpreted as coming from

the existence of an infinite number of correlation lengths [7, 8] hence questioning in turn the

use
of standard renormalization group approaches for these problems.

The picture which seems to emerge now instead, is that much of the standard phenomenology
associated with scaling, critical phenomena and the renormalization group still applies. In

particular, there is still one basic correlation length: in other words, any reasonable definitions

of correlation lengths differ only by prefactors [9, 10]. The scaling of this correlation length
is dictated by the "first renormalization group" which contains the usual relevant operators,
such as, in the

case
of percolation, lip

= p pc and h the ratio of microscopic conductivities

[10-12]. The infinite number of exponents comes about here because each of the moments,
in the field-theory formulation [13-16], couples to a

different symmetry breaking field [1fi-18].
The associated operators were

called "dominant" because they span a space where
a

"second"

renormalization group (RG) operates. This second RG is slaved to the first one and cannot

modify the fixed point
or exponent of the first RG [9, 16-18].

One of the satisfying aspects of this point of view is that it is to some extent generic. It was

applied for example with success to dynamical systems, more
specifically the circle map [19].

Because of similarities between the field-theory formulations [3, 13-16, 20] this approach should

apply to percolation and to localization. Of course for the more
difficult problems, such

as

turbulence or diffusion-limited aggregates, what should correspond to the first renormalization

group is not even known,
so we cannot tell if the preceding picture remains valid.

The phenomenology of the approach just discussed is summarized by the scaling properties
of

a
joint probability distribution for the multifractal moments. Given the scaling properties

of this universal joint probability distribution, one can
find the scaling of all macroscopic

observables, in analogy with the case of critical phenomena where the free energy plays this role.

In this paper then, we first recall the proposed scaling of the joint probability distribution, and

we then
use

Monte Carlo simulations to verify, in the context of percolation, some predictions
of this scaling form which had not yet been put to the test.

2. Model and summary of known results.

Consider
a twc-component random resistance network where each bond has

a
resistance rg

(good conductors) with probability p and rb (bad conductors) with probability I p. When

rg is finite and rb infinite, we have the conductor-insulator problem, while when rg is zero

and rb finite,
we

have the superconductor-conductor problem. Working in
a

finite system of

size L near the percolation threshold pc, the percolating samples (PS) and the non-percolating
samples (NPS)

are averaged separately. By a
percolating sample, we mean a

sample with a

spanning cluster of bonds having resistance rg, the smallest of the two. < >p and < >Np
refer to averages over respectively the percolating and the non-percolating realizations of the

random network. Multifractal moments are moments of the current distribution averaged
over

realizations of the random network, and they
are

called multifractal because of their peculiar
scaling properties at the percolation threshold Ape (p pc( =

0 and h + rg/rb
=

0, namely,

Gp(u, L, Ap
=

0, h
=

0) =<
~j (I[)" >p

~-

L~~n (I)

O(g)

BNP(n, L, Ap
=

0, h
=

0) =<
~j (I()~ >Np

~-

LYn (2)

Oib)
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At the most simple-minded level,
we say we have multifractal behavior because we have the

infinite sets of exponents -zn and yn that do not obey the familiar linear dependence on n

encountered in the case of gap scaling. There are more subtle definitions [14] but we do not need

to go into these details here. The quantities appearing above are called multifractal moments.

G's refer to multifractal moments of the good conductors and B's to multifractal moment of

bad conductors. More specifically, the multifractal moments of the currents (squared) in the

bonds of type rg and the multifractal moments of the currents (squared) in the bonds of type

rb, averaged over
the PS, are noted Gp(n, L) and Bp(n, L) respectively; the corresponding

quantities averaged over the NPS are noted GNP(n, L) and BNP(n, L). These quantities are

computed for
a

unit applied current I.

The behavior of the multifractal moments Gp, BP, GNP, BNP can be summarized by writ-

ing down
a

generalized homogeneous function for the joint probability distribution P, as in

references [9-12]

l'iigpin)i
,

ibpin)i
,

igNpin)i ibNpin)i P Pc, h, L)
=

>~L~~"~~"~P ligp(n)>~ni ,lbPin)>-Yn ,igNp(n)>~" i ,lbNP(n)>-Yn

iP Pc) l~'~, hi', L/1) 13)

Quantities such as
(gp(n)) stand for several multifractal moments labeled by n, the sum on the

right-hand side being over the corresponding values of n.
As in references [9-12], the function

P should be universal, except for non-universal metric factors multiplying every quantity
on

which P depends. We have not written these metric factors explicitly for the sake of clar-

ity. The ensemble
on

which the joint probability distribution P is defined is the ensemble of

realizations of the random resistor network. The expectation value of gp is Gp etc... These

expectation values are calculated from the joint probability distribution P in (3) with the mea-

sure fl dgp(n)dbp(n)dgNP(n)dbNP(n). Note that only positive integer multifractal moments are

n

considered since these are the macroscopically observable ones. When they are known exactly,
they also provide in principle

a
complete description of the problem [11] even

though
a

given
quantity may converge slowly [21]. The semi-colon before the last three variables in the ex-

pression for the joint probability distribution P is used to emphasize that these quantities are

associated with the first renormalization group.

The expression for the joint probability distribution predicts, for example, that in the scaling
region we should have,

Gp(n, L, lip, h)
=

l~~"Gp (n, L/I, Apl~/~, hl~) (4)

This scaling form and the corresponding ones for GNP, BP, and BNP at lip
=

0 has been

checked explicitly in references [12,22]. Another prediction of the joint probability distribution

is that at the percolation threshold, p = pc, h
=

0, and for finite systems, the expectation of

gp(n)~ for example scales as
L~~~", while the k'th cumulant for the fluctuations of gp from one

realization of the disorder to another scales
as

L~~~". This is the analog of gap scaling ill].
This had been known for

a long time [23] in the
n =

I case
where this property follows from

the fact that the probability distribution for the resistance of a percolating sample depends
only on the resistance divided by L~~i The analog of universal amplitude ratios which follow

from the scaling form of P has been discussed in reference [11] where several universal ratios

were obtained, at lip
=

0, h
=

0, by Monte Carlo simulations on square and triangular lattices.
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In the following, we test some predictions of the scaling form of the joint probability distri-

bution at h
=

0 and lip finite. More specifically,
we compute

C(m, n; k,I) +
~~~~~'~'~~'~~~~~~'~'~~'~~~~~~f (5)

(gp(m,L,Ap,h)) (gp(n,L,Ap,h))

where the averages are cumulant averages, and where k and I are integers. At lip
=

0, h
=

0

the scaling of the joint probability distribution predicts that the above ratios, C(m, n; k, I),
are

size independent and universal. In other words, the C(m, n; k; I)
are the universal amplitude

ratios we just referred to [11]. At finite lip and h
=

0, the prediction is that C(m, n; k,I)
are

universal functions of the variable lipLQ~ only, while at finite h and lip
=

0 they are
functions

of hL~ only. It is these dependencies which are verified in the next section.

3 Numerical results.

Monte Carlo results are obtained for random (bond) resistance networks. The lattices are of

size L x L and
a

unit current is applied through two parallel bus bars of length L. To compute
the current distribution, one inverts Kirchhoff's laws using

a sparse matrix algorithm [24]. Only

percolating samples are kept to compute statistics of the multifractal moment distribution. In

all cases, we
restrict ourselves to IS < L < 63. The lower bound for L in d

=
2 seems to

be sufficiently large to be in the scaling regime, as
discussed in reference [25]. We have also

obtained results in d
=

3 which are similar to those presented below, but since the statistics

are not as good we will not discuss this case any further.

Figure I shows the results for the average of the multifractal moments for n =
1, 2, 3. The

various symbols stand for various values of lip,
as

explained in the caption, and for
a given

lip the multifractal moment increases with L. As expected from equation (4) with h
=

0 and

I
=

L, each moment, scaled by its size dependence in the fractal regime, is
a

function of the

variable lipL~'~ only. The flat portion of the plots represents the fractal regime. The slope on

the right-hand side is viz,> + d 2n(d I)),
as can be trivially obtained from the power law

dependence d 2n(d I) of the n'th multifractal moment in the Euclidean regime. The slopes
obtained numerically for

n = 1, 2, 3 respectively are, -1.3, -3.8, -7.0, while the corresponding
predictions are, -1.30, -3.76, and -6.36. The corresponding results for lip

=
0 and h finite

were presented in references [10, 12].
Figure 2 shows C(n,n; I, I) as defined in equation IS) for

n =
1,2,3 and h

=
0. A large

number of samples is needed to obtain accurate statistics for these quantities: from 20,000 for

L
=

IS, to 8,000 for L
=

63. Figure 2 is consistent with C(n, n;1,1) being also a function of

the variable lipL~'~ only,
as predicted by the general scaling ansatz (3). At lip

=
0, it has

been shown in
a

previous paper [I Ii that the results do not depend
on

whether the calculations

are done for square or
triangular lattice. Some of the calculations of reference [I Ii have been

repeated for a check. The surprising result here, where lip # 0, is the clear maximum in the

n =
2, and n =

3 cases.
This maximum occurs when the bulk correlation length is of the order

of the system size, namely lip~~ m L. The corresponding results for lip
=

0 and h finite are

shown in figure 3. There is scaling also but no maximum this time.

To understand the occurrence of a maximum for the finite lip case, we note that the special

case
studied here, namely C(n, n; I, I), represents the variance of the distribution for the n'th

multifractal moment over the realizations of the disordered lattice. Histograms show that the

relative width of the distribution is very large in the fractal regime lipL~'~ < I, while it is

much smaller in the Euclidean regime lipL~/~ » l. The latter regime is self-averaging, so
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Fig. i. Log-Log plot of the first three multifractal moments, averaged over sample realizations

and normalized to their behavior in the fractal regime, as a function of (~hpL~/~). Each symbol is

associated with a single value of ~hp and several system sizes, namely L
=

15,20,31,40,50,63 for (o)
~hp

=
0.002; (D) 0.005; (o) 0.02; (x 0.04; (+) 0.06; (~h) 0.08; (.) 0.i; (m) 0.15; (o) 0.2. The exponents

used in the normalization were, ~i =
-0.98, ~2 =

-0.82, ~3 =
-0.77, v =

4/3.

the relative width vanishes in the infinite system-size limit,
as

is clear from figure 2. In the

intermediate regime, lipL~/~
m I we suspect that the few samples which have a fractal-type

behavior influence the fluctuations
more strongly than they influence the mean, leading to the

observed maximum in the relative fluctuations. Indeed,
one can check that after dividing out

the fractal scaling behavior L~~~2 from the numerical values of the numerator (fluctuations)
entering the definition (5) of C(2, 2;1,1),

we
do

see a monotonous decrease similar to that in

figure I. However, as we leave the fractal regime, this decrease is not as
fast as the decrease of

the similarly normalized denominator (mean), leading to the observed maximum in the ratio.

It is in this intermediate regime then that the relative fluctuations are largest. The maximum

does not appear in the lip
=

0, h finite case
probably because the physical origin of the finite

correlation length in this case is very different: this length can be varied without changing the

geometry of the network.
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