
HAL Id: jpa-00246722
https://hal.science/jpa-00246722

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symmetry breaking and finite size scaling in
antiferromagnets

P. Azaria, B. Delamotte, D. Mouhanna

To cite this version:
P. Azaria, B. Delamotte, D. Mouhanna. Symmetry breaking and finite size scaling in antiferromagnets.
Journal de Physique I, 1993, 3 (2), pp.291-298. �10.1051/jp1:1993130�. �jpa-00246722�

https://hal.science/jpa-00246722
https://hal.archives-ouvertes.fr


J. Phys. I France 3 (1993) 291-298 FEBRUARY1993, PAGE 291

Classification

Physics Abstracts

75.50E 64.60A

Symmetry breaking and finite size scaring in antiferromagnets

P. Azaria(~), B. De1anlotte(~) and D. Mouhanna(~)

(~) Laboratoire de Physique Thdorique des Liquides()
,

Universitd Pierre et Marie Curie, 4

Place Jussieu 75252 Paris Cedex 05, France

(~) Laboratoire de Physique Thdorique et Hautes Energies(°*), Universitd Paris 7, 2 Place

Jussieu, 75251 Paris Cedex 05, France

Received 12 June1992, accepted 25 June1992

Rdsumd. Nous montrons que l'analyse du comportement h tattle finie du mod+le sigma

non
lin6aire quantique O(3)/O(2) adaptd aux antiferromagn4tiques justifie l'existence d'une

tour d'dtats excitds propos4e pour la premibre fois par Anderson pour expliquer la brisure de

symdtrie des antiferromagndtiques quantiques dans la limite thermodynamique. Nous donnons

dgalement les formules de taille finie pour l'dnergie da fondamental et pour la valeur moyenne

dans le vide du parambtre d'ordre.

Abstract. We show that the finite size scaling analysis of the quantum non
linear sigma

model O(3)/O(2) associated with antiferromagnets justifies the existence of the tower ofexcited

states first proposed by Anderson to explain the symmetry breaking ofquantum antiferromagnets
in the thermodynamical limit. Finite size formulas for the ground state energy and for the ground

state expectation value of the order parameter are
explicitly given.

1. Introduction.

The most famous model for discussing the Spontaneous Symmetry Breaking (SSB) mechanism

in condensed matter physics is the ferromagnetic Heisenberg model. However, ferromagnetism
is almost unique since the order parameter is a constant of the motion. As a consequence, the

ground state is exactly known and is rotationally degenerate: it coincides with the classical

vacuum. In the ferromagnetic state, the symmetry is spontaneously broken by choosing a

particular ground state among the set of degenerate ones.

In the antiferromagnetic model
on

the square lattice, the order parameter is not a constant

of the motion. For any value Nd of the number of spins, the ground state is
non

degenerate and
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is a singlet for the rotation group. In the thermodynamical limit, there is long range order in

the ground state for S > I 11, 2], a result which is believed to hold even for spin one
half [3]. In

quantum systems, the fact that there is long range order does not necessarily imply that there

is symmetry breaking with a non vanishing expectation value of the order parameter. However,
in antiferromagnets, we expect the rotational syrrtmetry to be broken in a "semi-classical" Ndel

state. In contrast with ferromagnets, it could seem difficult to understand how there
can

be

SSB when the ground state is non-degenerate. However, it has been recognized for many

years by Anderson that the symmetry breaking mechanism involves a whole tower of low-lying
excited states that should collapse, in the infinite volume limit, onto the true ground state of

the theory [4]. Since these states are not in general rotationally invariant, nothing prevents
that some combination of them, which for large N will persit a very long time, explicitly breaks

rotational symmetry. The relevance of the tower of state has recently received renewed interest

in discussing symmetry breaking in exact diagonalizations of finite systems [5].
This picture is not particular to antiferromagnets but is corrtmon to many other quantum

systelus which have
a non conserved order parameter. As a prototypical example is the quan-

tum lattice rotator model. This model turns out to be equivalent, when there is long range
order, to the antiferromagnetic Heisenberg model, provided one is concerned with the lowest

part of the spectrum [3]. One may thus learn about the SSB mechanism in antiferromagnets by
studying that of the rotator model. The advantage of the latter model is that since it possesses

a classical counterpart with
a

well defined Lagrangian, its quantization via the functional in-

tegral is straightforward. Therefore, the SSB mechanism can be investigated by the standard

methods of relativistic quantum field theory.
In this paper we obtain the low energy spectrum of antiferromagnets which follows from a

finite size scaling analysis of the non linear sigma model O(3)/O(2) which is the field theory
associated with the rotator model. More precisely, as our

principal result,
we

confirm the

existence of a tower of state which contains a large number of finite dimensional representations
of the total angular momentum that collapse onto the ground state as I /N~ when there is SSB

in the thermodynamical limit. In addition, we give the finite size scaling for both the ground
state energy and the ground state expectation value of the order parameter which can be

compared with numerical computations.

2. The quantum lattice rotator model.

It has been shown that when the net magnetization vanishes, the long distance physics of

antiferromagnets with local Ndel correlations is described by the O(3)/O(2) quantum non

linear sigma (NLa) model [3]. Let us recall that this field theory is only obtained by means

of coherent spin states which makes its derivation non trivial [6]. On the other hand, the

rotator model gives a natural way to cast the partition function into
a

functional integral. The

lattice regularized version of the NLa model is therefore that of quantum rotators interacting
with nearest neighbour interaction. A way to understand this result is to imagine that after

a
sufficiently large number of iterations of some Renormalization Group transformation (by

blocking, say) the Heisenberg system becomes equivalent, at some scale A~~, to Nd quantum

rotators with Hamiltonian in spatial dimension d:

HN
"

A~~ IL (d +
Pfl l~»Q(~)l~

i

(1)

~

~

~,»

where Q is the orientation of
a rotator and where L(~) and x are

its angular and inertia

momenta. Finally, p is a
stiffness constant. On

a
Bravais lattice with basis n~, p =

(I,.., d),
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the expression for the potential term reads:

j>~a(~) j2 =
A2 ja(z + n~A- i) a(~)j2 (2)

Note that A~~ is the lattice spacing of the rotator model which is not simply related to

the lattice constant of the Heisenberg model. The total angular momentum LT
"

L~ L(~)
corrtmutes with Hamiltonian (I) and is

a constant of the motion,
a

fact which is reminiscent

of rotational invariance. From the classical point of view, the ground state of (I) is obtained

with LT
"

0 and Q(~)
=

Ho and is degenerate. However, since the order parameter QT
"

N~d£~ Q(~) does not commute with HN and is not a
conserved quantity, these classical

states are not stable under quantum corrections. The true quantum ground state of (I) is of

a totally different nature: it is non degenerate and rotationally invariant [4]. As is the case

for the antiferromagnetic Heisenberg model, it is thus difficult to imagine how the rotational

syrrtmetry can be broken.

However, as is well known, one expects that for suitable values of the parameters entering
in (I), the rotational symmetry will be broken in the N- oo limit. Arguments leading to the

above conclusion rely on the mechanism of SSB which is familiar to quantum field theoreti-

cians. In the infinite volume limit, the syrrtmetry is broken at the classical level by choosing
a

particular classical ground state. Quantum corrections
are then taken into account in

a
semi-

classical loopwise expansion of the O(3)/O(2) NLa model. Then, depending
on

the values of

the couplings and
on

the dimension d, the semi-classical ground state may retain its symmetry
breaking nature or not. In real systelus, large but finite, this semi-classical SSB mechanism

does not give an intuitive insight into the mechanism that, at the quantum level, allows the

syrrtmetry to be broken.

Let us see
qualitatively what

we expect to happen. Consider Hamiltonian (I). When px is

small, we expect that, at any scale larger that some finite value (, the rotators will be decoupled.
The effective Hamiltonian will consist in

~-

(NA~~/f)d independent rotators with
an

inertia

of order I + O(I IN). Thus, there will be a gap in the spectrum and no syrrtmetry breaking.
However, for a sufficiently large value of pX, the individual rotators are tightly bounded so

that, at large scale, the whole system behaves
as a

single rotator with effective inertia x~n o~

Nd. Therefore, the system will be described by the effective Hamiltonian:

~2
HeR

"
EON + 1/2 # (3)

It describes the angular part of the fluctuations of QT, whose modulus is equal, at leading
order in N, to some field renormalization ZQ~. With the eigenstates of (3), we can form

a

continuous set of rotationally degenerate semiclassical wave packets:

(i~N >"
~

CJm (ii'~l > (~)

J,m

in which QT has
a

definite orientation. Of course, these states are not eingenstates of (I) but

in the infinite volume limit they will be (quasi) degenerate with the true ground state of the

theory, and one may expect that any infinitesimal symmetry breaking perturbation localizes

the system into
one of these states. It is important to notice that for such

a
phenomenon to

occur, it is necessary that there exists a whole tower of states which contains, when N
- oo,

an infinite number of finite dimensional representations of the rotation group in order to fix

the orientation of QT with no uncertainty.
As seen, the possibility of SSB in the N

- oo limit relies
on

the properties on
the low-lying

spectrum of Hamiltonian (I) for
a large but finite system. In the following, we shall investigate

the finite size properties of (I) by means
of the NLa model.
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3. The quantum non
linear sigma model.

Finite temperature and ground state properties of the rotator model
can be investigated by

means of the imaginary time Feynman path integral. Correlation functions and thermodynam-
ical quantities can be evaluated by functional averaging with Boltzmann weight wN "

e~~N

where SN is the Euclidean action associated with Hamiltonian (I):

SN
=

A~~ /~dr
X

~~))~+P ~(6~Q(~ (5)
o

~

r
~,~

Now Q (z, r) is
a

classical variable subject to the constraint (Q(~ =
l. Action (5) is nothing

but
a

lattice regularization of the O(3)/O(2) NLa model in d + I dimensions. This theory
is renormalizable in a double expansion in e =

d I and in the coupling constant. We thus

expect that the long distance, long wavelength properties of (5) are
described by the continuous

O(3)/O(2) NLa model with action:

S
=

I /~~ di
/ d~z (0tQ(~ + (0~Q(z)(~]

,

(6)
2C

o Ld

where
we have rescaled the time dimension with the dimensionful spin wave velocity c =

/&
and where the linear size of the system is L

=
NA~~ When fl and N goes to infinity, the latter

model is known to have
a

phase transition, analogous to that of the d+ I classical ferromagnet,
from disordered to ordered phase with SSB characterized by < Q(~, r) >= Z~/~lio, where ho

is some unit vector and Z < I. Therefore, for suitable values of the coupling p/c, and for

d > I, there is SSB for the rotator model (I) at zero temperature when N
- oo. In this phase,

according to the Goldstone theorem, there
are two massless modes, with

a
long wavelength

relativistic spectrum wk "
ck. Being granted that there exist parameters for which there is

SSB when N
- oo one can

investigate the finite size properties of (I) in this regime by means

of the field theory (5).

3, I RENORMALIzATION. The renormalization group properties of (5) or equivalently of (6)
stem only from the ultraviolet or short distance behaviour. They are insensitive to the presence

of the infrared cut-off L or flc. The one loop recursion relation for the coupling entering (6) is

[3]: ~
~~ ~~~ ~ ~~ ~~

'
~~~

where g =
(c/p)A~~~ is the dimensionless coupling and Kj~

=
2~~ ~ir~/~r(d/2). The spin wave

velocity does not renormalize, as is the case for both L and flc. The scaling equations for the

dimensionless "slab thicknesses" in both space and "time" directions, N and T
=

flcA~~,
are

trivial since they follow from dimensional analysis:

~~
=

N (8)

~)
=

-T. (9)

At T and N equal to infinity, apart from the g =
0 fixed point, there is

a nontrivial fixed point

g =
g*

=
2(d I)/Kd for d > I which governs the phase transition from

an ordered phase at

small g to a quantum disordered phase for larger g > g*.
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Equation (7) has solution with:

g~e~(d-I)A
~~~~

go
~~ ~-(d-I)A) '

~~~~

9

where go is the value of the coupling at the scale of the lattice spacing A~~ The last equation
defines three regimes for the asymptotic large I behaviour:

-when go < g*, g(I) behaves
as

g(I)
=

e~(d~~)~go/(I go/g*) + O(e~~(~~~)~) as I h very

large. As seen, g(I) flows toward the trivial infrared fixed point g =
0 which ensures the

existence of a
well defined spin wave phase with long wavelength renormalized coupling:

(llR
"

~~~>'ifl~(I()~
~~~~

In two dimensions, this defines the Josephson correlation length:

(j
=

Ii)
,

(12)
P R

that separates the long-distance spin
wave

behaviour from the critical regime.
-When go =

g*, the system is scale invariant and
we

have of course
g(I)

=
g*.

-Finally, for go > g*, there exists a
length scale e~m.*

=
((go g* )/go)~~~~~~~~ above which

the recursion equation (7) ceases to be satisfied. This defines the correlation length in the

disordered phase: (
~-

A~~e~m.* For length scale I such that I « I « lmax the system is

critical and
we

have g(I)
~- go as long as I is not too large.

4. Finite size scaling.

4.I THE TOWER oF STATE. We now consider a finite lattice with I < N < fl. Starting
with action (5),

one can integrate out all the spatial degrees of freedom until
one

arrives at an

effective one
dimensional action S~n. Clearly,

we end up with
a quantum mechanical effective

problem with effective Hamiltonian describing the lowest part of the spectrum of (I). We

expect of course that this effective Hamiltonian is given by (3) when go < g*. To this end
one

has to iterate the recursion relations I
~-

In N times until the spatial part of (5, 6) vanishes.

Since the theory is renormalizable, we
should end up with an effective one-dimensional action

of the saute form as
the time dependent part of (5) and hence with

a
one-body quantum rotator

model. Let
us

do this at one loop order.

In order to integrate out the spatial degrees of freedom, it is convenient to introduce the

following decomposition for the fluctuations: Q(~, i)
=

R(~, t)Q(t) where R(~, i) is in the coset

O(3)/O(2). We have, R(~,i)
=

exp(ia(~(~,i)) where the la's
are generators in Lieo(3)

Lieo(2) and the fields (~(~,i)
are subject to the constraint: J~~ d~z (~(z,1)

=
0 in order

that the Fourier components (~(k,w) do not contain the quantum mechanical mode k
=

0.

Expanding R to order (~ and integrating over ( in (5), we obtain at leading order in N:

~~~ ~~~~~ ~ ~~~~~~A~lnN))
~~~

~~~
'

~~~~

where g(In N) is the dimensionless coupling, solution of the scaling equation (7) at scale

I
=

In N. In the first term of (13), which is the one loop quantum correction to the classical
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ground state energy, ho (k) is the inverse lattice bare propagator. On the square lattice Ao(k)
=

2(2 £~
cos k~n~), the sum being performed over the first Brillouin

zone of the lattice.

Action (13) defines the effective quantum Hamiltonian H~n of Equation (3) with:

EON
=

CA £fi@, (14)

k

and
p~i-d

~~~ ~~~~~
Acg(In )~

~~~~

One may wonder how equations (14) and (15)
are modified by the inclusion ofhigher order loop

corrections. For x~n, since the theory is renormalizable, these corrections only affect, to leading
order in I/N, the scaling equation (10) that defines g(I) and therefore the value ofthe physical

renormalized parameter (p/c)R. On the other hand, while our one loop calculation cannot

calculate the exact value for the ground state energy per spin, eN, the difference 6N
" em eN

is given at the leading order in I/N by the one loop result:

>N
=

AC
Ill

4@ j ~4T)
(16)

~

The reason for this is that the leading I IN behaviour of 6N depends only on
(0Ao(k)/0k~ (k=o,

which does not renormalize since c does not renormalize.

We now focus on the d
=

2 case. Our first finite size formula for the ground state energy is:

bN
=

Ac
$,

(17)

where 6 is a numerical constant which depends
on

the lattice [7, 8]. On the square lattice
we

have b
=

1.438.

Let us look now at the asymptotic behaviour for x~n. Here again we have to distinguish
between three cases:

when go < g*, we
have from (11):

Xen " XR
N~, (18)

where xR "
A~~(p/c~)R. This is the scaling expected from our qualitative discussion in

section 2.

Therefore, the expression of the energy for the first excited states of (I) is:

~'~' ~°~ ~ ~)~ji~~' ~~~~

For < @, the latter equation defines a tower of states that collapses onto the ground
state faster than the first magnon states (whose energy scales as I IN).

When go "
g*, the system is at its critical point and one has x~n =

Nx*. The predicted
scaling for the tower of state is:

Ei,m
=

EON +~)~/~ (20)

In this case, the tower of state collapses onto the ground state together with the first magnon

states since the system is critical. Note that this result is independent of tie dimension d.

Finally, for go > g*, it is tempting to extend our
analysis when N « At. In this region,

one
should observe the critical scaling (20) with x* = xo. However for larger values of N, the

low g expansion which is at the basis of (13) fails. We expect that, in this region, the low lying

states consist in massive vector like excitations [9].
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4.2 THE MAGNETIzATION. As seen from (13), the first excited states of (I)
are described

by the effective Hamiltonian (3) that describes the orientation of the order parameter QT with

wave
functions 3§m(fl, #), where fl, # are the polar angles For I <

@, the modulus of QT is

fixed, at leading order in I IN, to a constant value Z~/~ < l in the subspace of the tower of

state (19) in fact, for finite N, we may have different values of ZN,i,m in each state (I, m) of

the tower of state. However, we expect (but we have no
proof) that ZN~i~m "

Z + O(I/@)).
Here Z~/~ is the field renormalization constant calculated in the N

- oo limit of the NLa

model with renormalized coupling (II). It is given by:

Z
=

lim < QT~ >p~N
,

(21)
fl,N-m

which is the ground state expectation value of the order parameter. Let us now investigate the

finite size scaling of:

ZN
" < QT~ >p~N (22)

We obtain at one loop order:

where £j is the sum over the Brillouin zone of the lattice except k
=

0 and g(In N) is given
again by (7). In dimension d

=
2, when go < g*, ZN has a non vanishing value when N

- oo

given at one loop by:
2x ~2 ~ i

z
=

i -<JA£ m /m (24)

where fj is given by (12). For finite N, ZN is known to satisfy the scaling equation [10]:

z~
=

zf()),
(25)

where f is a function that can be obtained from the low g perturbative expansion. Using (25)
it is easy to obtain:

fl'l
-

ifJA

Ill jm -i~~i jml(26)
At leading order in N we have:

ZN
=

Z(1-7 ~~~l, (27)
N

where 7 depends
on

the lattice [7] and is given by:

~ l~f« ~ ~~~
~# ~~ ~~)2 ~#l~~~~

On the square lattice we
have: 7 =

-0.6208.
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5. Symmetry breaking and concluding remarks.

We have shown that, when go < g*, there exists a tower of state which contains I
~-

@
representations of the rotation group SO(3) and collapses onto the ground state faster than

any other excited states. To -break the syrrtmetry, the orientation of the order parameter has

to be fixed. In a
large system, it is possible to superimpose the

~-

@ states of the tower

of state to obtain a wave packet in which QT has
a

definite orientation. In this symmetry
breaking state, the mean value of QT will be equal to Z~/2Iio + O(I IN ), where ho is some unit

vector, with uncertainty of order O(I IN) [11]. In real systems, large but finite, we are lead

to imagine that the environment acts on the system as a
perturbation with energy scale To of

order I/xN~ « To « c/N which mixes the first excited states and allows for SSB. Numerical

methods could provide a test for this scenario.

All our finite size formulas may be applied to the non frustrated antiferromagnetic model

since its low energy physics is identical to that of the rotator model provided there is sufficiently
N4el order. If

one sees, by some exact diagonalization method, the tower of state described by
(3) with the correct degeneracy and scaling, at least for < @ and if the scalings (18), (19)
and (27) are observed one will be able to conclude that there is SSB in the thermodynamical
limit. In addition, the long distance spin wave

phase will be well described by the
non

linear
a

model with long wavelength renormalized couplings pR and c that can be obtain directly from

exact diagonalization methods with the help of (18) and (19). To conclude let us recall that the

key ingredient that allowed
us to draw

a
consistent picture of the finite size behaviour of the

antiferromagnetic model was the existence of
a

renormalizable relativistic quantum field theory
that describes its low energy physics. The same work

can
be done on the more controversial

frustrated antiferromagnetic model on the triangular lattice. In this case, the long distance

physics is expected to be described by a NLa model with an order parameter in SO(3). We

expect that in this case the effective Hamiltonian that describes the tower of state will be that

of a quantum symmetric top instead of a rotator [12]. The observation of a corresponding tower

of state in exact diagonalization will give evidence for syrrtmetry breaking with Ndel order [5].
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