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Resum4. Nous pr4sentons une 4tude th40rique de la diffusion multiple d'une lumibre mono-

chromatique par un ensemble de sphbres qui peuvent se d4placer librement dans
un

certain

milieu. Les sphbres possbdent une nonlin4arit4 optique de type Kerr. En utilisant )es m4thodes

diagrammatiques, nous construisons la solution it4rative de l'4quation d'onde scalaire nonlin4aire

qui d4crit le champ de rayonnement 41ectromagn4tique dans le milieu d4sordonn4. On moyenne la

s4rie diagrammatique pour l'amplitude du champ rayonn4 sur toutes )es configurations possibles
des diffuseurs et on montre que i'ampiitude moyenne ob4it £

une
4quation nonlin4aire qui est ie

pendant de l'dquation de Dyson ordinaire. Dans le cas oh )es diffuseurs sont de petite tattle et

n'absorbent pas la lumikre,
nous trouvons des solutions de notre dquation de Dyson nonlindaire.

Ceiles-ci montrent que, £ la suite des effets auto-Kerr et des effets de la r4trodiffusion, le systbme

peut devenir instable. Nous trouvons qu'il est 4galement po>sible de "blanchir" )es diffuseurs.

Finalement l'influence de i'absorption noniindaire
sur l'ampiitude moyenne est analysde.

Abstract. We theoretically study multiple scattering of monochromatic light by
a

collection

of spheres that can freely move in a
background medium. The spheres conta~n an optical

noniineirity of the Kerr type. Employing diagrammatic methods
we construct the iterative

solution of the nonlinear scalar wave
equation that describes the electromagnetic radiation field

inside the scattering medium. The ensuing diagrammatic series for the amplitude of the radiation

field is averaged over all possible configurations of the scatterers. Subsequently, it is proved that

the average amplitude satisfies
a

nonlinear equation that is the counterpart of the usual Dyson
equation. For the case of point scatterers that do not absorb light we obtain solutions of our

nonlinear Dyson equation. They predict that as a result of auto-Kerr and backscattering effects,
the system can become unstable. Furthermore, we find that it is possible to bleach the scatterers.

Finally, the influence of nonlinear absorption
on

the average amplitude is investigated.

1. Introduction.

The subject of multiple scattering of light has
a

long history. Indeed, already in the forties

theoretical studies
on light scattering were

undertaken in which the single-scattering approxi-



546 JOURNAL DE PHYSIQUE I N°5

mation
was

avoided ii]. Nevertheless, today the subject of multiple scattering of light is still

flourishing. For instance,
one may cite the important role that multiple scattering plays in

explaining Anderson localization of light and its attendant effects. The field of research re-

lating to these phenomena came into existence during the mid eighties [2]. More in general,

one can say that since light scattering is omnipresent in nature, multiple scattering of light is

encountered in many branches of modern science. As
an

example, the close relationship with

the theory of radiative transfer may be mentioned.

An interesting generalization of the usual multiple-scattering problem is obtained upon
choosing the optical properties of the scattering medium to be nonlinear. Then these prop-
erties

can
be modified by the electromagnetic field inside the scattering medium. Within the

context of thin nonlinear multiple-scattering problem several new issues
can be put forward.

Optical nonlinearities
are

capable of generating instabilities and phase transitions. One may
investigate how the presence of an optical nonlinearity manifests itself in the

case of multiple
scattering. Phenomenological models [3, 4] on nonlinear scattering media predict that typical
effects such

as
bistable behavior indeed

can
take place. If

one
drops the term nonlinear multiple

scattering, then
one cannot avoid thinking of nonlinear localization of light. Hence,

a
second

issue in the study of a nonlinear scattering medium is defined by the question: "What happens
to the Anderson transition in a random medium that diffuses light if

we add a nonlinearity
to the medium?" [5]. In order to address this and the other questions

a
systematic theory of

nonlinear multiple scattering must be available. It is the purpose of this paper to devise such

a
theory. In the multiple scattering problem that we shall consider, the scatterers are assumed

to behave as nonlinear Kerr particles.
Recently, the problem of nonlinear multiple scattering has been studied [6, 7] in connection

with the well-known [8] enhancement of backscattering of light from a dense collection of moving
scatterers. Although interesting new

phenomena have been reported, it must be observed

that use
has been made of far-reaching approximations. To be specific, for the case that

the nonlinearity in the scattering medium is of the Kerr type [6], the nonlinear part of the

electric susceptibility has been treated as a constant. This corresponds to making the nonlinear

optical properties of the scattering medium independent of the positions of the scatterers.

Furthermore, the influence of the nonlinearity
on

the interference effects that generate the

backscattering peak, has been assessed only up to linear order.

In this article we shall refrain from making the above approximations. The linear part and

the nonlinear part of the electric susceptibility will be treated on an equal footing. Like in

reference [6], the starting-point of our treatment is the standard scalar wave equation describing
the electromagnetic field inside the scattering medium. Of course, in the nonlinear case this

equation contains the cubic term that originates from the Kerr effect. The usual linear theories

[9-12] on
multiple scattering

are
based

on
the iterative solution of the scalar wave equation. If

we wish to stay close to these theories, then we must construct such
a

solution for the nonlinear

case as
well. At first sight, this seems to be a rather difficult enterprise; for each iteration of our

wave
equation the presence of the cubic nonlinearity causes the number of terms to increase

by
a

factor of three. Yet it appears that in the presence of the Kerr nonlinearity one still can

construct the iterative solution of the scalar wave equation. As for the linear case, all terms

contributing to this solution
can

be physically interpreted. In section 2 a
detailed discussion

of the above points will be given.
Once we know how to construct the iterative solution of the nonlinear scalar wave equation,

we can start to calculate physical quantities in the same systematic manner as for the linear

case. In section 3 we shall perform a computation of the amplitude of the radiation field,
averaged over all possible microscopic states of the scatterers. The results of this computation
will be employed in section 4. There

we
shall present an equation for the average amplitude
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that is a direct consequence of the nonlinear scalar wave
equation. For the case in which the

scatterers are noninteracting point particles, we shall obtain explicit expressions for the average

amplitude. On the basis of these, predictions can be made on the behavior of the coherent

part of the light intensity inside the scattering medium.

We close this introduction with the remark that diagrammatic methods will be employed
in the article. The advantage of diagrams is that they allow for

an easy book-keeping. Fur-

thermore, if one formulates equations in terms of diagrams, then they often become more

transparent. Readers who are not familiar with the use of diagrammatic methods in scattering
theory, are referred to the lucid review article by Frisch [9]. Apart from that, we have tried to

schematize the article as much as
possible by giving in each section diagrammatic rules that

summarize important results. Rules that pertain to the analytical calculation of diagrams will

get the label A; rules that pertain to the construction of diagrams will get the label C.

2. Iterative solution of the wave equation,

We start our treatment by deriving a wave equation that describes
an

electromagnetic radiation

field in a medium containing N identical spheres of radius a.
Both the Inedium and the spheres

are nonmagnetic; their electric susceptibilities are given by x and x + xs, respectively. The

spheres possess a nonzero conductivity
a

and hence can support currents. The polarization P

of the spheres is assumed to be
a

nonlinear function of the electric field E. In order to model

thin nonlinear behavior of the spheres
we

shall make use of the Kerr effect.

If the radiation field is purely monochromatic and if we restrict our attention to stationary
states, then we can

write E
=

Eo exp(-iwt) + c-c-, where
w

is the frequency and where the

amplitude ED does not depend on the time t. The Kerr effect causes the third-order electric

susceptibility x~~~(w,-w,w) % x~~~ to be nonzero. Therefore, the polarization of
a

sphere
is P

=
(x + xs + x~~~ ED (~)Eoexp(-iwt) + c-c- The current density inside a sphere can

be expressed
as

j
=

aE. Employing the fact that there is
no

free charge in
our system and

choosing the magnetization to be equal to zero we now obtain from the Maxwell equations the

following result [13]

T7 x (T7 x Eo) + k(n~Eo
"

V(x(~) + x(~) (Eo(~)Eo
,

(2.1)

where x~~~ " xs + ia/w is
a

complex linear susceptibility and
n =

(1+ 4xx)~/2 is the
re-

fractive index of the medium. The potential on the right-hand side of (2.I) is given by
V(r)

=

-4xk(£$j6(a- jr R~.(), with k(
=

w~/c~ and (R~) the positions of the cen-

ters of the spheres
or scatterers. As usual, the symbol 6 stands for the Heaviside step function.

We wish to emphasize that the wave equation (2.I) holds true only if the scatterers are

motionless. In order to explain this
we notice that by (2.I) the amplitude Eo depends

on
the

potential V, which itself is a
function of the positions (R;). Thus, if the scatterers move,

then the amplitude ED necessarily depends
on

the time. This contradicts the assumptions
underlying (2.I). Altogether, for the time being we must assume that the positions of the

scatterers are
fixed.

If one is only interested in a qualitative picture, then the vectorial nature of the electrc-

magnetic field may be ignored. Consequently, one may work with
a

scalar field ~ instead of

the vector field Eo [6, 7, 9-12]. The scalar counterpart of the wave equation (2.I) is found

by making the substitutions ED
-

~ and -T7 x (T7 x -
T7~ in (2.I). For the case

of linear scatterers, I-e- the case x(~)
=

0, a study [14] has been performed in which
a

scalar

approximation has been avoided.
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The scalar wave equation can be cast into an integral form by introducing a Green's function

G(°), defined by
(Vi + k(n~) G(°)(r r')

=
6(r r') (2.2)

Assuming that the scatterers are restricted to a space of volume V [15] we get the following
integral equation for the scalar field ~

il(r)
=

ilhom(r) + /~ dr'G~°~(r r')V(r') x~~~
+ x~~~ lit(r')l~) il(r') (2.3)

The symbol ~hom denotes the solution of the homogeneous wave equation for the field ~. This

equation applies to the case in which the medium does not contain any scatterers; it can be

found by performing the substitution G(°)
-

~ in the left-hand side of (2.2) and setting the

result equal to 2ero. The transition from the wave equation for ~ in its differential form to

the integral equation (2.3) is permitted if the former equation allows for solutions that are

well-behaved at the surface of
a scatterer.

The general solution of (2.2) is given by

G(°)(p)
=

Ida, f(I)e~~°"~'P
~~~~~~~ ~~ ~~~~~

,

(2.4)
4'P 4'P

where f is an arbitrary function, a + b
=

I, and p Hi pi. The function f must be chosen

such that the form (~ ~hom)exp(-iwt) does not generate any incoming spherical waves

at infinity. These unphysical waves are excluded if we require that the right-hand side of

(2A) does not contain exponential factors exp(-ikonp)
as p tends to infinity. To find the

function f from this last constraint we decompose the plane waveq in (2.4) into spherical

waves, using the fact that p » [16]. Then imposition of the constraint leads to the condition

f
=

-ibkon/(8x~). On substitution of this result into (2.4) the Green's function is found to

equal G(°)(p)
=

-(4xp)~~ exp(ikonp). In the following
we

shall
use

this solution for G(°); it

corresponds to the choice f
=

b
=

0 in (2A). By (2.3) it causes the field (~ ~hom) exp(-iwt)
to behave as an outgoing spherical wave at infinity.

The theory presented below is based on the wave equation (2.3) and the result (2A), with

a =
I and f

=
b

=
0. Before entering into the theory

we
shall discuss briefly the point of

energy conservation. For lossless scatterirs the net energy flow through
a

surface S located at

infinity must equal zero. In terms of the field ~ this condition can be written as

II
dSi1. Re(~*iV~)

=
0

,

(2.5)

with i1
a normal vector of the surface. With the help of Green's theorem one indeed verifies that

the solutions of the wave equation (2.3) satisfy the relation (2.5) in the absence of absorption.
Thin assures that energy is conserved.

The objective for the remainder of this section is to obtain the solution of the wave equation
(2.3). To that end, we first move to Fourier space and represent an

arbitrary quantity A

according to A(r)
=

V~~/~£qexp(iq r)I(q), with qi =
2xn;/L, n; an integer (I

= z, y,z)

and L~
=

V. The transformed scalar field 4 is determined by the transformed wave equation
(2.3). This equation has the following form

4(P)
=

4hom(P) + x~~~©~°~(P) £ I(P qi)'(qi)

+~(~ ©~°~(p) £ I(p + q2 qi
q3)4(qi)4*(q2)4(q3) (2.6)

~

qi>q~>q~
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In solving the algebraic equation (2.6) we
shall eIliploy diagrammatic techniques. Since (2.6) is

nonlinear in the field 4 diagrammatic rules and manipulations tend to be more
involved than

usual [17, 18]. Therefore,
we

shall develop the formalism in
a

precise and detailed manner.

In diagrammatic language
we can state the fundament.al equation (2.6) as follows

++ = +- + ~ +

~(2.7)

Equation (2.6) is recovered if we apply the following rules to the diagrammatic relation (2.7):

(Al) Label all lines in a diagram with a wave vector. Always choose the label p for the line

that is connected to the bottom of the diagram. Write down for each line the expression
as

given by Table I. If the arrow of
a

line points in the direction one must go to reach the bottom

of the diagram, then the c-c- of the corresponding quantity must be taken.

(A2) Write down for each dot a factor I(q); the argument q is equal to the sum of the
wave

vectors of the incoming lines minus the sum of the wave vectors of the outgoing lines.

(A3) Write down for each linear vertex a
factor x(~), and for each nonlinear vertex a factor

x(~) IV. Walk from all vertices to the bottom of the diagram and always check the direction

of the first arrow one encounters. If an arrow points in the direction of walking, then the c-c-

of the corresponding vertex factor must be taken.

(A4) Sum over all wave vectors except for the wave vector of the line that is connected to

the bottom of the diagram.

In formulating the above rules we have made use of
a

terminology that is explained in

figure I. Together with rules (Al-A4) the relation (2.7) fully determines the field 4i. Indeed,
if we reverse the direction of all arrows in (2.7) and apply (Al-A4) to the ensuing equation,
then we obtain the complex conjugate of (2.6).

Table I. The relation between diagrammatic segments and the terminology used in the text.

diagrammatic segment with label q physical quantity

field propagator 4i(q)

homogeneous propagator iihom(q)

vacuum propagator ©(°)(q)

average-field propagator 4(q)
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+% field propagator

~ homogeneous propagator

~vacuum propagator

average-field propagator
~

~ linear vertex

nonlinear vertex
~
~ bottom

~
O O

/
, ~

series
~~~~

/ '

o .
~-

o .

Fig-I- The relation between the diagrammatic segments and the terminology used in the text.

The diagrammatic solution for the field propagator (cf. Fig. I)
can

be found by performing

an
iteration of (2.7). For this purpose we introduce

as a new quantity the field propagator of

order
n. By definition, this quantity equals the right-hand side of (2.7), with each field propa-

gator replaced by the field propagator of order
n I, n =

1, 2, 3,.. The field propagator of

order zero is equal to the homogeneous propagator. In connection with these definitions, we

note that
a

field propagator on the right-hand side of (2.7) does not possess a
bottom. Conse-

quently, if such
a

field propagator is replaced by a diagram, then the bottom of the diagram
must be removed. Furthermore,

a
field propagator that corresponds to the field it(p) [4*(p)]

may be replaced only by diagrams that give rise to either the factor i~(°)(p) [©(°)*(p)]
or

the

factor iihom(p) [11(~~(p)]. Thus, before making certain replacements, it may be necessary to

reverse the direction of all arrows of the diagram in question. This corresponds to taking the

c-c- of the analytic expression that is generated by the diagram.

Upon calculating the field propagator of infinite order we get a series of diagrams that

constitutes the diagrammatic solution for the original field propagator, defined in figure i. Some

diagrams of the series can be made visually equal to each other by interchanging the branches

of nonlinear vertices; an example is given in figure 2. We shall call two diagrams of the series

different from each other if we cannot turn them into twin diagrams by interchanging certain

branches of nonlinear vertices. As one can see from rules (Al-A4), the analytic expression
belonging to a diagram is not modified by interchanging in the diagram branches of nonlinear

vertices. Hence, diagrams that are not different from each other correspond to the same analytic
expression.

In the iterative solution for the field propagator we
make the diagrams visually equal to each

other to the degree possible. Next, we sum all of the visually equal diagrams. As we shall prove
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Fig.2. Two diagrams that are generated by iterating (2.7). They can be made visually equal to

each other by interchanging branches at a
nonlinear vertex.

in Appendix A, the resulting diagrammatic solution for the field propagator can
be obtained

on
the basis of the following rules:

(Cl) Construct from the linear vertex, the nonlinear vertex, the homogeneous propagator,
and the vacuum propagator all different diagrams, I.e. diagrams that cannot be made visually
equal to each other. Always start a

diagram with
a

bottom and a vacuum propagator pointing

away from the bottom; always finish
a

branch of a diagram with
a

homogeneous propagator.
At each vertex the number of incoming lines must be the same as the number of outgoing lines;

to link up vertices only vacuum propagators may be used.

(C2) Add all of the diagrams constructed on
the basis of rule (Cl) and put a

coefficient in

front of each diagram. This coefficient must be determined with the help of rule (C3). The

resulting series is equal to the field propagator minus the homogineous propagator, where each

propagator must be attached to a
bottom such that

an arrow never
points at a bottom.

(C3) The coefficient of a diagram equals 2"~~ The symbol
n stands for the total number of

nonlinear vertices of the diagram. The symbol m stands for the number of nonlinear vertices

of the diagram that possess two branches which either are or can be made visually equal to

each other.

Associated with rule (C3),
we

notice that rule (Cl) excludes the occurrence of nonlinear

vertices with three, four, or two pairs of branches that do not differ from each other.

If we apply rules (Al-A4) to the series for the field propagator, then we find that the

transformed scalar field 4 equals a power series in the quantities x(~) and x(~)*, i
=

1, 3. We

shall not discuss the existence or convergence of this series. Instead,
we

observe that each

diagram of the series for the field propagator has
a

straightforward physical interpretation. A

(non)linear vertex stands for a
(non)linear scattering event at some point in the volume V;

a vacuum propagator stands for a
scattered wave that freely propagates between two points

in V; a homogeneous propagator stands for a wave that never has been scattered, and that

freely propagates to a
certain point in V. Therefore, with each diagram one can associate a

specific multiple-scattering process in the volume V. The processes with
n

scattering events

furnish the terms in the power series for it that contain
n

susceptibilities out of the collection
(xl'), x~~~* I

=
1, 3).
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We have
now seen how to determine the solution of the

wave equation (2.6) and how to

interpret it. As we have pointed out earlier, the results derived in this section are only valid

in the case that the configuration of the scatterers is fixed. Nevertheless, these results play an

important role in the next section. There we
shall study the electromagnetic radiation field in

the presence of moving scatterers.

3. Toward macroscopic results.

In experiments on light scattering the object diffusing the light often is
a transparent cell

that contains
a

macroscopic number of freely moving scatterers. Because of the fact that the

scatterers continuously collide with each other, the signal coming out of the cell randomly
fluctuates in the time. Usually one does not keep track of these fluctuations. Instead, one

measures the time average A(t;T) of a certain quantity A, e-g- the intensity of the light
scattered in a given direction. The arguments indicate that the measurement started at time

t and lasted
a

time T. If the light sent into the cell is
a c-w-

beam and if the experimental
circumstances remain unchanged, then the time average A(t;T) converges to a

fixed value

as T becomes large. This value does not depend on t and for that reason, it always
can

be

reproduced.
If one wishes to describe

a
light-scattering experiment of the above type from first principles,

then
one must descend to the nficroscopic level. Specifically, one must calculate the electromag-

netic radiation field inside the cell for an arbitrary nficroscopic state of the scatterers. Next,
the quantity of interest A must be expressed in terms of this microscopic field. Finally, the fact

that in an experiment time averages are
measured,

can
be accounted for by applying to the

microscopic expression for the quantity A an averaging procedure from statistical mechanics.

The resulting expression does not depend anymore on the microscopic state of the scatterers.

Hence, it can play
a

role in explaining the behavior of the experimental average A(t; T), with

T large.
In the execution of the program outlined above, it is standard [6, 7, 9-12, 14, 19], to work

with immobile scatterers as long
as operations take place at the microscopic level. As we saw

in section 2, this enables one to calculate the radiation field from a wave equation in which the

time does not occur. Obviously, in adopting such
a wave equation one does not consistently

treat the effects due to the motion of the scatterers. In some cases this can cause considerable

quantitative errors [20].
In section 2 we have derived a microscopic expression for the electromagnetic radiation field

in a medium containing N nonlinear immobile scatterers. In view of what has been said -above,

we can calculate from this expression macroscopic quantities that are physically interesting. We

make the simplest choice possible and focus on the average amplitude 4. The bar indicates that

the field ~ must be integrated
over

all configurations (R;) of the scatterers, with
a

probability
distribution pN(R~)

as a
weight. We assume that this probability distribution is normalized to

one and that it is invariant under permutations of its arguments (Il~). Furthermore,
we assume

that the interaction between the scatterers is not affected by the presence of the radiation field,

so that it is meaningful to use a
fixed probability distribution for the calculation of

an average.

In order to compute the transformed average field 4(p),
we

need to average the analytic
expressions that are obtained by applying rules (Al-A4) to the diagrams constructed according
to rule (Cl). These diagrams make up a collection that we shall call 7Zi Let us consider a

diagram Di of 7Zi with d dots. By rule (A2) these dots give rise to a product of d transformed

potentials I. Only via this product the diagram Di depends on the positions (R~). Hence,
the averaging of the analytic expression that is generated by Di boils down to averaging the

aforementioned product. If we neglect effects from the walls of the volume V, then we have



N°5 DESCRIPTION OF LIGHT SCATTERING BY KERR PARTICLES 553

I(q)
=

v(q)p(q), with v(q)
=

-4xk(Fq[6(a- (r()] and p(q)
=

£$~~ exp(-iq.R;). Employing
the last result we see that the average to be calculated is given by

fdR~pN(R~)
f

exp(-iqi Il~~ iq~ Il~~ iqd R~~) (3.I)
V ii;~...;d

Averages of this type are also encountered in the linear
case [11].

The expression (3.I)
can be written as the average of a series of sums such that in each sum

one has either im
=

in or im ~ in, with m ~ n and m, n =
1,2,.. ,d. We take the average

of
a sum S of this series for which precisely k indices of the collection (I;)

are
different from

each other. In the resulting expression we interchange summation and integration, and we

use the fact that integration of pn over I arguments yields pn-i with as arguments those of

pn that survive the integration. Then the vectors (ll~,) become dummy variables, and so
the

summation over the k indices of (I;) gives a simple factor N(N I) (N k + I). For N » I

the average of S now attains the form N~V~/~#k(q[> q[> q[)> where the tilde denotes that

the Fourier transform has been taken. The arguments (q[)
are

equal to the sums of the vectors

(q;) that can be formed in the exponent of S by systematically gathering all terms with the

same vector Jlw.,. The order of the arguments in #k is irrelevant because of the symmetry

property of pk mentioned earlier.

Lastly, we substitute for flk its cluster expansion [9, 21] in terms of the Fourier transformed

correlation functions ()i). After this step the average of S becomes equal to a sum of con-

tributions of the form N~V~/~ji~ji~ jj~, where the I; arguments of ji, are the vectors of

the collection (q() that belong to the same cluster j. Like the functions (ii), the functions

()i)
are completely symmetric in their arguments. We make the common assumption that gi

is
a constant, and that the functions (gi(ri, r2, .ri);1 > 2) depend

on their arguments via

the moduli (ri r; (. As a consequence, we find that #i(qj,q~,
,

qi) is proportional to the

Kronecker delta function 6q~+q~+...+q,,o. For the lowest-order correlation function we get the

explicit result ii (q)
=

V~~/~6q,o, which we shall need later on.

Using the techniques presented in the preceding text, one can
directly evaluate the average of

the analytic expressions that are generated by the diagrarn% of the collection 7Zi Subsequently,

one can obtain an analytic result for the average field 4(p). In practice however, such
a

program cannot be accomplished, because the collection 7Zi contains an infinitely large number

of diagrams. The usual way to cope with this last problem is to derive diagrammatic rules for

the calculation of the average field.

Let us consider the averaging procedure of the analytic expression belonging to the diagram
Di of the set 7Zi Following the literature [9, 17, 18], we

shall perform this procedure diagram-
matically. We number the d dots of Di and divide these numbers into groups of1, 2,..

,

d

elements in all possible ways. For each division of the numbers we draw Di and connect all

dots to a cross, making use of dashed lines. Dots belonging to the
same group are connected

to the same cross. Traditionally, the diagrams obtained in this way are called semi-dressed.

Next, we construct from each semi-dressed diagram
a set of dressed diagrams in the following

way: for each semi-dressed diagram we number the k crosses and divide these numbers into

groups of1, 2,..., k elements in all possible ways. Crosses that belong to the same group are

connected to each other with the help of dashed lines. A cross that is alone in a group we leave

untouched. The total set of dressed diagrams we construct via the above recipe we call E[Dl].
For the calculation of a

dressed diagram we introduce the following rule:

(A5) Apply rules (Al-A4) to the corresponding undressed diagram, and replace I(q) by
v(q) throughout. Multiply the resulting analytic expression by N~ V~/~, where k is the number
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of crosses in the dressed diagram. Each
cross of the dressed diagram belongs to a cluster of

1,2,. ,k elements; crosses of the same cluster are connected to each other via dashed lines.

For each cluster of I crosses we must multiply the summand of the analytic expression by the

correlation function ji(q)~> q)~, q(~). The argument q( is the sum of the vectors which rule

(A2) assigns to the dots that are connected to the cross
/; of the cluster under consideration.

The analytic expression created in applying the above recipe, is the one that must be associated

with the dressed diagram.

We claim the following: application of rule (A5) to the set of diagraius EjDi], and addition

of all resulting analytic expressions provides
us with the average

fl
%

f dR pNE; the symbol
E stands for the analytic expression that corresponds to the diagram Di The verification of

this important statement is
a matter of inspection;

one just has to ascertain that, given rule

(A5), the steps taken under (3.I)
are

completely equivalent to the diagrammatic operations
proposed above,

Clearly, the diagrammatic averaging technique
can

be applied to all undressed diagrams of

the set 7Zl Thus, for each diagram D of this set we can construct the accessory set E[D] of all

dressed diagrams. We
now

add to each other the homogeneous propagator and all of the dressed

diagrams contained in the sets E. In front of each dressed diagram we put the coefficient of

the corresponding undressed diagram as determined by rule (C3). The ensuing diagrammatic
series

we represent by the average-field propagator, displayed in figure I. On account of the

claim formulated below rule (A5),
we can make the following statement: application of rule

(A5) to the series for the average-field propagator yields an analytic expression that is exactly
equal_to the expression that

one
obtains from

a
direct analytical computation of the average

field 4(p).
The above statement demonstrjtes that it is possible to construct a

diagrammatic series

that represents the average field 4. Next, we must devise rules that permit
us to construct

such
a

series in a systematic way, I,e. without making use of the awkward sets E[D]. These

sets namely, contain diagrams that produce the same analytic expression upon using rule (A5).
Hence

,

such diagrams can be made visually equal to each other via interchanges of branches

of nonlinear vertices and shifts of crosses. In figure 3 two dressed diagrams
are

drawn that

correspond to the same analytic expression- Following the terminology of the previous section,

we say that the diagrams of figure 3 do not differ from each other. At this point, let
us remark

that in
a

diagrammatic series for the field Tone
never can make diagrams visually equal to

each other by performing a mere shift of
crosses.

As to get rid of the sets E, we reduce the previously obtained series for the average-field
propagator to a

series of dressed diagrams, all of which
are

different from each other. Thus, in

the series for the average-field propagator we make diagrams visually equal to each other to the

degree possible. Next, we sum
all of the visually equal diagrams. In performing the reduction

we
only need to consider dressed diagrams out of the same set E. The reason is that dressed

diagrams which correspond to different undressed diagrams cannot be made visually equal to

each other. This implies that
we can find the completely reduced series for the average-field

propagator minus the homogeneous propagator in the following manner: firstly, in each set

E[D] we systematically discard diagrams that do not differ from all other diagrams of the set;
the total collection of dressed diagrams we then get is called 7Z4. Next, we

add all of the dressed

diagrams of 7Z4 and put the correct coefficient in front of each diagram. This coefficient we

shall determine below.

The reduction of a set E[D] leads to a
diagrammatically unique result only if for each group

of diagrams that do not differ from each other, we specify which diagram to retain. However,
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Fig.3. Two dressed diagrams from
a set £. They

can
be made visually equal to each other by

interchanging branches at a
nonlinear vertex and shifting

crosses.

it is not necessary to reduce the sets E[D] in a unique way: no matter how we reduce these

sets, we always end up with the same
collection of analytic expressions as soon as rule (A5) is

applied. This collection is also obtained if we construct from the set 7Zi all different dressed

diagrams and subsequently, apply rule (A5) to these diagrams. This is why
we shall say in the

following that
a

realization of the set 7Z4 is found by dressing the set 7Zi in all different ways.

For the set Ri itself, we are free to assume
that the following statement is true: if in the set 7Zi

two branches of a vertex are not visually equal to each other, then these branches differ from

each other in the sense of the previous section. Below we shall make
use

of this assumption.

What remains to be done, is the evaluation of the coefficient that a diagram of the set 7Z4 has

in the completely reduced series for the average-field propagator. Thus, focusing on a
certain

dressed diagram Di,i of the set E[Di],
we must answer the question how many diagrams this

set contains that can be made visually equal to Di,I Conversely, one can also look for the

number of diagrams in E[Dl] onto which Dl,I can
be mapped. Possible operations

on Dl,I
consist of interchanges of vertex branches combined with shifts of crosses. All diagrams of the

set E[Di]
are

built from the same undressed diagram Di and accordingly, Di must be visually
invariant under any mapping of Di,i onto another diagram of E[Di]. Let us check then which

operations leave Dl invariant and how many they are.

We number the dots and the homogeneous propagators of the diagram Di of the set 7Zi

The resulting diagram we call D(~~ The vertices of D(~~ we name after the labels of their dots.

We employ the convention that if
a vertex branch moves, then the labels of this branch

move

as
well. Suppose now that we perform in Di~~ two interchanges of vertex branches,

one at the

vertex vi and another at the vertex v2. Because of the above convention, it is irrelevant in

what order we perform these two interchanges: the final diagram is always the same. With this

observation in mind, we now
define vertex operations tl

on D(~~ by specifying at which vertices

interchanges of branches take place, and which branches are interchanged. We emphasize that

two vertex operations tli and tl2 always commute with each other: the diagrams tlitl2[D(~~]
and tl2tli lDi~~] are visually equal to each other.
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We are in search of vertex operations that map D(~~ onto a
diagram that differs from D(~~

only by the position of the labels. Such vertex operations we shall call syInmetry operations.

We perform in D(~~ an
interchaiige of branches at the nonlinear vertex v;, and

we
call the new

diagram Dj'~. Let us suppose that this interchange is not equivalent to a mere
relabelling of

the diagram D(~~ To see the implications of this, we walk in Dj'~ from the bottom to the

vertex vi. At this vertex we can turn right, turn left or go straight
on. For at least one of

these cases we meet a
branch that is not visually equal to the corresponding branch in D(~~

Together with the assumption we
made above, this implies that the two branches in question

are
different from each other in the

sense
of the previous section. This state of affairs cannot

be changed by performing in Dj'~ interchanges of branches at vertices other than vi. Thus,
we

conclude that the symmetry operations on D(~~ are
generated by interchanges of branches that

are
visually equal to each other. By definition,

a vertex possessing such branches is of type I;
in the other case the vertex is of type 2.

Already in section 2 we
observed that at most two branches of

a
nonlinear vertex can

be

visually equal to each other. This implies that for each symmetry operation on D(~~, the number

of interchanges of branches at a
given vertex can be zero or one: two interchanges of visually

equal branches at the
same vertex compensate each other. If the total number of type-I vertices

in Di is ni,I
=

1, 2, then for the diagram D(~~ the number of different symmetry operations
with s vertices simply is ((~) Hence, the total number of different symmetry operations for

this diagram amounts to 2"1 -1. By applying these to Di~~ we find a set (Di~~))([ of undressed

diagrams that all have
a

different labelling, and all become visually equal to Di if the labels

are removed.

We are now in
a

position to count the number of diagrams in E[Di] that
can

be made

visually equal to the diagram Di,I As
a first step, we

label the diagram Di,i in exactly the

same way as performed for the diagram Di~~ The new dressed and labelled diagram we call

Di~/. Next, we
perform in Di~/ all 2"1 -1 symmetry operations that exist for the diagram

Di~~. In each diagram that we~ have created now, and also in the diagram D[~/, we carry out

the following program: first we omit all labels, and then we perform shifts of irosses in such a

way that the diagram
we

consider becomes visually equal to a diagram of the set E[Di]. This

program always can be executed, because the set E[Di] contains all dressed diagrams that can

be constructed from the diagram Di Lastly, for the set of dressed diagrams we now have got,

we
systematically discard diagrams that are visually equal to another diagram of the set. After

these steps we end up with
a set of diagrams that we shall call S[Di, II Referring to previously

made remarks,
we

observe that this set precisely contains those diagrams of the set E[Di] that

do not differ from the diagram Di,I For the sake of clarity
we remark that the diagram Di,i

belongs to the set S[Di,i]. By definition, the number of diagrams contained in the set S[Di,i]
is equal to p.

Evidently, our task is to determine the number p. Let us dress all diagrams of the set

(Di'~))$[ in such a way that, apart from their labelling, these diagrams become visually equal

to the diagram Di,I The ensuing collection of dressed diagrams we shall denote as
(Di~())$(.

For each diagram of this collection
we

check which dots
are

connected to a
certain'cross,

and which crosses are linked up by means of dashed lines. After this, we write down the

corresponding divisions into groups of the dot labels and of the cross labels, respectively. A

cross bears the label (ii12 ii), where (I; )j~i
are

the labels of the dots connected to the
cross.

Let us perform vertex operations such that the labelling of all diagrams (Di'())([ becomes

equal to the labelling of Di~~ The ensuing set of dressed diagrams we
denotj by (Di)))$[.
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We observe the following: by performing a shift of crosses we can make each diagram of the

set S[Di,i] visually equal to a
diagram of the set (Di)/ )]([ without labels; two diagrams of the

set (Dii))$[ that possess the same division of labels, can be made visually equal to each other

by perfirming
a

shift of crosses. For completeness,
we

remark that
a

division of labels consists

of
a

division into groups of the dot labels and a division into groups of the cross labels. Two

divisions of labels are the same
only if both the divisions into groups of the dot labels and the

divisions into groups of the cross
labels are equal to each other.

From the above observations one infers that the number p equals the number of different

divisions of labels that one finds for the set (Di(( ))([. Let us suppose that each division of labels

occurs t times in the set (Di~())([. This number t is independent of the fact which division
we

consider, because it is only ietermined by the manner in which the diagram Di,i is dressed.

Thus, we can write p.t
=

2"1 and consequently, p =
2"i~~, with t

=
2~,m

=
0,1,. ,ni

Consider the t diagrams of the set (Di(()]([ that possess the same division of labels as the

diagram Di~/. For these diagrams we perform vertex operations such that their labelling
becomes th~

same. The resulting diagrams can be made visually equal to each other by
performing shifts of

crosses.
This implies that the diagram Di,i Possesses 2~ 1 different

symmetry operations.

In what precedes,
we have demonstrated that the set E[Di] contains 2~i~~ diagrams that

do not differ from Di,ii this number includes the diagram Di,i itself. In the original series

for the average-field propagator, given just below rule (A5), each
one

of these 2"i~~ diagrams

possesses a
coefficient 2"~, where n2 is the number of type-2 vertices in Di,I Hence, the

coefficient that the diagram Di,i must get in the completely reduced series for the average-
field propagator, is equal to 2~~~, where

n = ni + n2 h the total number of nonlinear vertices

in Di,I This concludes our discussion on the evaluation of the coefficient that a diagram of

the set 7Z4 has in the completely reduced series for the average-field propagator.

As a
last point, we remark that nonlinear vertices to which three homogeneous propagators

are attached, always possess two branches that are visually equal t6 each other. In other words,
such vertices are of type I. We assume

that
a given diagram possesses mi vertices of the above

type; we shall call them (vi). Furthermore, we assume
that the diagram possesses 2~~ -1

different symmetry operations for which no interchanges of branches take place at the vertices

(v[). Then, the total number of symmetry operations that
we can perform

on
the diagram,

amounts to 2~i+~? l. As
a

result, the diagram has in the completely reduced series for the

average-field propagator a coefficient that does not depend on the number ml Thus, the trivial

statement that in calculating this coefficient
one can

ignore the vertices (v[) is in accordance

with the prescriptions that
we

have devised above.

It is now
possible to present the following rules for the computation of the average field

4(P)~

(C4) Construct from the set of undressed diagrams that is found on the basis of rule (Cl), all

different dressed diagrams, I-e- dressed diagrams that cannot be made visually equal to each

other. An undressed diagram is dressed by dividing the d dots of the diagram into groups of

1, 2,
,

d elements. Subsequently, each group of dots must be connected to a cross.
Lastly, the

k crosses must be divided into groups of1, 2,.
.,

k elements. Crosses belonging to the same

group must be linked up. All connections must be made with the help of dashed lines.

(C5) Add all of the dressed diagrams constructed on the basis of rule (C4) and put a cc-

efficient in front of each diagram. This coefficient must be determined with the help of rule

(C6). The resulting series is equal to the average-field propagator Ininus the homogeneous
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x, x--x
'

FigA. The dressed diagram D2,I

propagator, where each propagator must be attached to a
bottom such that an arrow never

points at a
bottom. If

one
applies rule (A5) to the- diagrammatic series for the average-field

propagator, then
one

obtains an analytic expression for the transformed average field $(p).
(C6) The coefficient of a dressed diagram equals 2"~~. The symbil

n
stands for the total

number of nonlinear vertices of the diagram. The form 2~ -1 is equal to the number of

different symmetry operations that the diagram possesses. To count the number of different

symmetry operations of a
diagram, one must employ the following criteria: if we shift crosses in

a
suitable way, then

a
dressed diagram must be visually invariant under

a symmetry operation;
two symmetry operations

are
equal if they correspond to interchanges of vertex branches at

the
same vertices.

It may be instructive to apply the rules of this section to the diagram D2,1 that is drawn in

figure 4. By rule (A5) this diagram stands for the following analytic expression:

N~V~~~~
lX~~~l~lX~~~l~ ©~°~(P) £ ©~°~(qi)©~°~(q2)iS°~ *(q3)©~°~ *(q4)©~°~ *(q5) X

qiq~...qio

4hom(q6)4hom(q7)410m(q8)4hom (q9)410m(qio)v(qi q6)v(q2 q7)v(q8 q4) x

v(qio qs)v(P + q3 qi q~)v(q4 + qs q3 q~)#i(P + q4 + qs qi q~ q~) x

#2(q2 + q8 q4 q7> qi + qio q5 q6) (3.2)

The diagram has two nonlinear vertices, both of type I, and it possesses one symmetry oper-
ation. This operation consists of two interchanges of vertex branches that do not differ from

each other in the corresponding undressed diagram At each nonlinear vertex one interchange
must be performed. By rule (C6) the coefficient of the diagram D2,1 is equal to 2.

On the basis of rules (C4-C6)
we can construct in

a
systematic manner a diagrammatic

series for the average-field propagator. As
we

shall show in the next section, this permits us

to derive an exact equation for the average-field propagator.

4. Nonlinear Dyson equation.

It is well-known [9-12] that for the
case

of linear scatterers the average-field propagator satisfies

a Dyson equation. Our objective is to show that the same is true for the nonlinear case. To
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achieve this, we first must discuss how a dressed diagram
can

be factorized. Consider
a

dressed

diagram Dm,n of the set 7Z4. This set must be constructed on the basis of rule (C4). Suppose
that the diagram possesses a vacuum propagator that is the only link between two parts A and

B of the diigram Thus, if we cut this propagator, then the diagram Dm,n breaks up into two

pieces A and B. It is
now

possible to write down the following diagrammatic identity

~,
~

A' B =
',

j~,
(4.1)

where at the left-hand side the diagram Dm,n is displayed. For the calculation of the diagrams
at the right-hand side of (4.I)

we employ the following rules:

(A6) Consider
a

dressed diagram for which some homogeneous propagators have been
re-

placed by dashed arrows, such that each vertex still possesses an
equal number of incoming

and outgoing lines. This diagram must be calculated with the help of rule (A5), which itself

relies
on

rules (Al-A4). While using rule (Al)
we must not associate any expression with a

dashed arrow; while using rule (A4) we must not perform a summation over a wave vector that

labels a dashed arrow.

(A7) The multiplication of two diagrams with the help of the multiplication sign © yields
an

analytic expression that must be obtained
as

follows: first
we

evaluate the analytic expressions
belonging to the two diagrams that are

multiplied to each other. In the process of doing this,
the vacuum propagator and the dashed arrow

flanking the sign ©, must both be labelled with

wave vectors. Let us call these two vectors p and q, respectively. We now
multiply the two

analytic expressions by each other, choose p=q, and sum over q. This provides us with the

desired analytic expression.

We formally apply rule (A6) to the diagrams A and B on the right-hand side of (4.I). The

resulting analytic expressions we call A(p, q) and B(p), respectively, where the vector p labels

the vacuum propagators that are connected to a bottom, and where the vector q labels the

dashed
arrow of the diagram A. By rule (A7) we see that the right-hand side of (4.I) stands

for the analytic expression £q A(p, q)B(q). This analytic expression is precisely the one that

belongs to the diagram Dm,n. Thus, if we respect rules (A6-A7), then
a vacuum propagator

keeping together two parts of
a

dressed diagram may be cut in the way as shown in (4.I). Notice

that we must perform the cut at the dot lying closest to the bottom of the diagram. Finally,

we
remark that rules (A6-A7) allow us to strip a

dressed diagram of all of its homogeneous
propagators by performing factorizations in a

similar vein as shown above.

For a given line of a dressed diagram
one cannot argue about the question whether the

cutting of this line
causes

the diagram to bleak up into two pieces. Let
us now

consider
one

by one the lines of a diagram, perform a factorization (4.I) whenever this is possible, and

continue until no lines are left that can be cut. This reduces a diagram to a unique product
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of homogeneous propagators and irreducible parts. By definition, it is never possible to cut a

line in an irreducible part. Let
us assume that, while reducing the diagram Dm,n, the cutting

of the line li induces the possibility of performing
a

factorization (4.I) at the line 12. This line

runs between the dots di and d2. Our assumption implies the following: if one does not cut the

line hi then
one can walk from the dot di to the dot d2 via a route that avoids the line 12. The

route includes the line li, because if we cut this line, then the route does not exist anymore.

From the last statement we see that it is not allowed to cut the line li But this contradicts

our assumption. Thus, we come to the conclusion that in performing
a

factorization (4.I) for

a
certain line of Dm,n, we

do not create new factorization possibilities. In other words: of the

factorizations that must be carried out for the complete reduction of Dm,n, each one can be

performed first. Below we shall refer to this statement.

In order to obtain the collection I of all different irreducible parts we
completely reduce all

diagrams of the set 7Z4> and gather their irreducible parts. In the ensuing set we
systematically

discard the irreducible parts that do not differ from all other elements of the set. This provides

us
with the collection I. Each branch of an element of the set I terminates in a

dashed arrow,

except for the branch that is connected to the bottom. The total number of dashed
arrows

in
an

irreducible part is equal to 2k +1, k
=

0,1, 2,.
,

where k dashed arrows point in the

direction one must go to reach the bottom of the irreducible part. Let us multiply in the set I

all of the dashed arrows by
a

homogeneous propagator. We perform the multiplications in such

a way that after use of the identity (4.I) each vertex still possesses an
equal number of incoming

and outgoing lines. This provides us
with the collection 7Zi~~ of all different dressed diagrams

that consist of only one irreducible part. Thus, by stripping in the set 7Zi~~ all diagrams of

their homogeneous propagators, we
find

a
realization of the set I.

Let us add all of the irreducible parts that belong to the set I, and that possess 2k +1

dashed arrows. In front of each irreducible part we put the coefficient that we get by applying
rule (C6) to the irreducible part. The resulting series we

shall call S)~~ The diagrammatic

representation for the series S)~~ can
be found in figure I. In the series S)~~ we

multiply
all of the dashed arrows by an average-field propagator. We perform the multiplications in

such a way that after use of the identity (4.I) each vertex still possesses an
equal number of

incoming and outgoing lines. We have now created
a

series of dressed diagrams in which all

branches terminate in an average-field propagator, except for the branch that is connected to

the bottom. We perform the above program for all series S)~~. Next, we add to each other the

homogeneous propagator and all of the resulting series. The diagrammatic series that is found

in the end, is shown at the right-hand side of the following equation

(4.2)

+oo. ~



N°5 DESCRIPTION OF LIGHT SCATTERING BY KERR PARTICLES 561

,+

F+-~'->

~
,+

,Fi~~~)
A§

Fig.5. The two irreducible parts that we retain when considgring point scatterers.

This relation constitutes
an exact equation for the average-field propagator: it is

a
direct

consequence of the wave equation (2.3). If we choose the nonlinear susceptibility x~~~ equal to

zero, then the relation (4.2) reduces to the well-known Dyson equation [9-12], which is valid for

the case of linear scatterers. Equation (4.2) is the nonlinear counterpart of this linear Dyson
equation. In Appendix B we present the proof of (4.2).

Already for the linear case it is questionable whether the Dyson equation generates solutions

for the field 4 that can be given in terms of well-known functions [22]. In order to find

approximate analytical expressions for the average field ~,
we

follow the literature [6, 7, 9-

l2, 14, 19, 20, 23], and make the assumption that the scatterers are point particles which do

not interact with each o(her. Then there exist no correlations between the scatterers, and

so the higher-order correlation functions (ji11 > 2) vanish. As a consequence, we can discard

diagrams in which crosses are linked to each other. We assume that the point scatterers occupy

a finite fraction 4xa~N/(3V) of the volume V. This implies that for
a -

0 we can discard

diagrams in which
a cross is linked to more than one dot. Altogether, in the right-hand side of

(4.2) we only retain the two irreducible parts that are drawn in figure 5. We apply rule (A5)
to the ensuing truncated Dyson equation, use the result of section 3 for ji> and move back to

coordinate representation. This leads to the following relation for the average field 4

4(r)
=

ilhom(r)
tY /~ dr'G~°~(r r') x~~~

+ x~~~ 14(r')l~) 4(r')
,

(4.3)

with
tY =

16x~k(a~N/(3V). The coefficient tY remains finite if the radius a becomes small.

The integral equation (2.3) directly generates the above result if we use the following ad hoc

recipe: first
we

take the average of (2.3) and thin
we completely factorize all averages. It is

important to observe that the solutions of (4.3)
can be found on the basis of rules (C4-C6)

only if we sum an infinitely large number of diagrams.

We focus on the
case that the volume V is the halfspace

z > 0. For the electromagnetic
field in absence of the scatterers we take a plane wave of amplitude A that propagates in the

direction 6z. Accordingly, we put tvhom(z)
=

Aexp(ikonz) Owing to the symmetry of the

problem, the average field 4 does not depend on the coordinates z and y. This enables us

to perform in (4.3) the integration over
these coordinates. In doing the integration we must

employ the equality G(°)(p)
=

-(4xp)~~ exp(ikonp) that was derived in section 2. In order to

ensure that the integration gives a
finite result one must replace the product ken by the form

ken + i~,~
=

0+ This corresponds to making the background medium slightly absorbent.
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Eventually, the equation for the field 4 attains the form

4(z)
=

Ae'~°"~ +
~ /~ dz'e'~°"'~~~l

(x(~) + x~~~ (4(z')(~) 4(z') (4A)
on o

For the linear
case x(~)

=
0 this integral equation has been studied in the literature [19].

It is natural to try as a
solution of (4A), with

z > 0, the plane wave
~p(z)

=
B exp(ikefrnz).

We take the effective wave number kern real, so that the modulus of the wave ~p(z) does not

depend on the coordinate
z.

If we
systematically replace the average field 4 by the plane

wave

lvp, then the relation (4A) provides us with the constraints (ko + kern)B
=

2koA and ke~n
=

(k(n~ + ax(~) + tYx(~) (B(~)
~~~ The last constraint forces us to choose the susceptibilities x(~)

and x(~) to be real. The sign of the root is determined by the fact that for tY =
0

one must

have ke~
=

ko.
We choose z < 0 in (4.4), and systematically replace in the right-hand side the average

field 4 by the plane wave ~p. We then find the plane-wave solution for the average field 4

in the halfspace z < 0. It is given by 4(z)
=

~hom(z) + lvback(z), where ~back(z)
=

(B
A) exp(-ikonz) describes a plane wave that propagates in the direction -dz. The expression
for the wave

~back(z) meets the requirements that energy should be conserved, and that the

field 4(z) should be continuous at z =
0.

The amplitudes A and B are related to each other via the equation

~y~(1), ~~(3), j /~j
2A

=
B I + I + j + jB

,

(4.5)
on on

where
we have chosen A to be real and positive,

so that B is real and positive
as

well. We

used the notation
u =

u'+ in",
u a

complex number, and u',u" real. Equation (4.5) is the

result of combining the two constraints
on kern and B that we

derived earlier. To study the

amplitude B of the plane
wave

~p
as a

function of the amplitude A of the incoming plane

wave, we invert the curve
A(B),

as given by (4.5). For x(~l' > 0 the curve
B(A) always has

a positive slope, and for A
- cc its behavior turns out to be B

~-

A~/~ This result should

be compared with the corresponding result for the linear case, which appears to be B
~-

A.

Let us now choose the nonlinear susceptibility x(~l' negative. Then the relation (4.5) may

be used only if the amplitude B satisfies the condition
tY (x~~~'( B~ < k(n~ + tYx(11' For

x(~l' < 0 the curve
B(A) and the line B

=
A always intersect each other. At the point of

intersection the relation 4(z)
=

tvhom(z) holds for all values of the coordinate z, so that the

average field 4(z) is completely unaRected by the presence of the scatterers. This bleaching
of the scatterers is also predicted within the framework of phenomenological theories [3, 4].
Furthermore, for x(~l' < 0 there always exists a point on the curve

B(A) at which the derivative

(dB/dA( becomes infinitely large. As a
result, the system may become unstable if we increase

the amplitude A. Upon following the curve
B(A) from the origin and choosing tYx~~~' < 2k(n~,

we first meet the point of bleaching and then the point of instability.
The possibility that the system undergoes abrupt transitions

or
becomes bleached, arises

from the interplay between the autc-Kerr effects and the backscattering effects. The prefix
'auto' refers to the fact that

a wave which has been scattered via a nonlinear scattering event,

can in its turn cause such events elsewhere. We can neglect autc-Kerr effects in the relation

(4A) by inserting at the right-hand side for the intensity (4(z')(~ the form (4L(z')(~. The

symbol 4L(z) denotes the solution of (4.4) for the linear case x~~~ =
0. After this step, we get

a linear integral equation for the average field 4. Clearly, such
an

equation cannot give rise to

the interesting effects that are predicted by (4A) itself. Let us now put in (4.4) the propagator
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exp(ikon (z z'() equal to zero for z' > z. This corresponds to the complete exclusion of

backscattering effects. With this approximation, we find instead of (4.5) the trivial result

A
=

B. Altogether, we see that in order to acquire a
trathful picture of the behavior of the

average field 4,
we must take into account both autc-Kerr and backscattering effects.

Up to now, we have limited ourselves to the case of non-absorbing scatterers. If the quantities
x(~)" and x(~)" differ from zero, then it is not obvious whether there exist solutions of (4.4) in

terms of well-known functions. Hence, for the study of the case of absorbing scatterers, we shall

make use of the two above-mentioned approximations. We start by neglecting backscattering
effects in (4A). Next, we calculate the solution of the resulting equation for the linear case

x(~)
=

0. One finds 4L,NB(z)
=

Aexp(iie~nz), where the effective wave number is given by
ie~n

=
ken + tYx(~)/(2kon), and the

new
label stands for 'no backscattering'. This result

we

use
in eliminating the autc-Kerr effects. The integral equation that is obtained finally, can

be

solved in a systematic way by applying Laplace transformation. The transformed average field

is given by 4(u)
=

-I ff dzexp(iuz)4(z), u" > 0.

Laplace transformation of our integral equation leads to the following relation for the trans-

formed average field

~~~~ u+~e~n
k$~~~~Rn)~~~~~~~~~~~

~~'~~

The solution of this equation can be found iteratively. After transforming back
we

obtain the

average field 4 in terms of an integral. It is given by

~~~~ /c ~~

u

) Rn
~'

~'
~ ~~i~~' ~~~~~/~~~

l'
~~ ~~

with C a contour u" > 0, and in(tY;7; z) the usual degenerate or confluent hypergeometric
function [24]. One should recognize that the intigrand in (4.7) is a meromorphic function.

Then the evaluation of the integral boils down to the calculatiin of residues. After summation

of all residues
we

end up with the result

4( A 'I ~X~~~ '~(~ (i 2i"
nzj~ ~~~ ~ ~~~~ ~

2x(1)" ~ ~~ (4.8)

By partial integration one can explicitly verify that (4.8) indeed satisfies the integral equation
that corresponds to (4.6).

The result (4.8) is useful, because it gives us some idea how absorption modifies the solutions

that we obtain for the case of non-absorbing scatterers. Let us
choose in (4.8) the susceptibilities

x~~~" and x~~~" equal to zero. We then find 4(z)
=

Aexp[it[~nz +

itYx(~l' A
(~

z/(2kon)]. This result is also found upon making the substitution x(~l'
-

x(~l'+ x(31' (A(~ in the expression for the field 4L,NB(z), with x(~)"
=

0. However, if we

perform in the expression for the field ~L,NB(z) the substitution x(~l'
-

x(~l'+ x(~l']A(~,
x(~)"

-
x(~)"+x(~)" (A(~, then we do not recover (4.8). We thus see that for the nonlinear case

the inclusion of absorption not only affects the effective wave numbers, but also changes the

analytical structure of the solutions for the average field 4.

In this article, we have given
a

systematic description of multiple scattering of light by
nonlinear Kerr particles. All of the assumptions underlying our formalism

are well-known,
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and are used in theories on linear scatterers as well. In fact, we
have demonstrated that the

standard diagrammatic methods for the description of multiple scattering can
be fully extended

to the case in which the scatterers possess a Kerr-type nonlinearity.
Our treatment is based on the nonlinear wave equation (2.3). It determines the amplitude

tV of the scalar radiation field for a
fixed configuration of the scatterers. Starting from (2.3) we

have evaluated the average of the amplitude lV over all possible configurations of the scatterers,

We have expressed this average tV in terms of
a

diagrammatic series. Detailed rules have been

formulated how to construct the series, and how to compute the diagrams it contains. By
completely factorizing these diagrams we have derived

a Dyson equation for the average field

#. In diagrammatic form this equation is given by (4.2). We emphasize that in order to

arrive from the wave equation (2.3) at the Dyson equation (4.2), it is not necessary to make

any assumptions. The price to be paid for this manifests itself in the fact that (4.2) contains

nonlinearities in the average field 4 of arbitrarily high order. For the case of point scatterers

our Dyson equation becomes tractable, and allows us to obtain solutions for the average field
4. These solutions predict that as a result of the combined action of autc-Kerr effects and

backscattering effects, the average field 4
can

exhibit a striking behavior that is not present
for the linear case. Furthermore, it appears that as compared to the linear case, the influence

of absorption on the field 4 is much greater.
In this paper we

have only obtained explicit results for the average amplitude of the radiation

field. From this quantity the coherent part [19] of the intensity of the icattered light can be

calculated. Obviously,
as a next step one can apply the techniques developed in sections 2 and

3 to the square (tV(~. The resulting diagrammatic series can be used to calculate the incoherent

part of the intensity. In this way one can acquire a complete picture of how the well-known

[8, 11, 12] linear behavior of the incoherent intensity is modified by the presence of a Kerr

nonlinearity. A more ambitious program consists in deriving from the aforementioned series

a
nonlinear Bethe-Salpeter equation for the average intensity (tV(~ of the radiation field, On

the basis of such an equation it may be investigated [23] whether an Anderson transition can

occur in a nonlinear scattering medium.

Appendix A.

Proof of rules (C1-C3).

In section 2 we have discussed in which way one can solve the diagrammatic relation (2.7) iter-

atively. In this Appendix we
shall prove that the corresponding series for the field propagator

can be reduced to the series of diagrams that is constructed on the basis of rules (Cl-C3).
In the following we use the symbol an to denote the field propagator of order n; this quantity

is defined in the main text and is equal to a series of diagrams. The field propagator of infinite

order am is equal to the field propagator itself. Consider the diagrammatic expression for the

field propagator that is found from rules (Cl-C3), and dispose of diagrams with more than
n

dots. The resulting series of diagrams we call rn, n =
0,1,2,.. For later use, we remark

that the series rn+i Tn only contains diagrams with n + I dots.

To allow for a short notation we introduce the sign 11, n =
0,1, 2,.

.,

the meaning of which

is the following: let Si and 52 be two series of diagrams; in Si we dispose of all diagrams
with more than

n
dots; the ensuing subseries of Si

we
call §I, I

=
1, 2. If the series Ii

cad

be reduced to the series §2> then we write Si 1 52. Reduction takes place via interchanges of

vertex branches and additions of visually equal diagrams.
Using the new notation we put the statement (a): Qn+i l- an, n =

0,1,2,. This

statement can
be proved with the help of induction. Repeated use of (a) gives Qn+; 1 an,
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m m

m

Fig.6. The series of diagrams that is called fl in the text.

n =
0,1,2,.

,

j
=

1,2,3,.. Upon taking j to infinity
we arrive at the statement (b):

am 1 an,
n =

0,1, 2,. Our task is to prove the statement (c): an 11 Tn, n =
0,1, 2,.

From this statement namely, it directly follows with (b) that am ill Tm. The last relation

constitutes a
short formulation of the statement that we made at the beginning of this Appendix

and that we wish to prove.

In order to demonstrate that the statement (c) is true we shall use induction. By performing

a
few iterations of (2.7) one can see that (c) holds true for n =

0,1. Let us now assume
(d):

am il Tm; employing this assumption (d)
we must prove (e): am+1 ~~~ Tm+I We start

by applying the definition of the field propagator of order m + I, so that we obtain am+i in

terms of am. Together with this result the assumption (d) provides us with the statement (f):

am+1 ~'~~ II. The symbol II stands for the series of diagrams that is displayed in figure 6. In

this figure
a

line with
a

label m and three arrows pointing away from a dot, stands for the series

of diagrams Tm with all bottoms removed; a line with
a

label m and three arrows pointing at

a dot, stands for the same series but with the direction of all arrows reversed. If we are
able to

prove the statement (g) II ~'~~ Tm+i, then with (f) the correctness of (e) immediately follows.

Combination of the statement (a) for n = m with the assumption (d) yields the statement

(h): am+i ~l Tm. From (h) and (f)
we obtain the statement (I): II11 Tm. This statement

tells
us

that by discarding in II all diagrams with
more than m dots,

we create a
subseries of

II that
can

be reduced to the series Tm. Thus,
we need to consider the subseries A of II that

we create by discarding in II all diagrams that do not have
m + I dots. In order to prove the

statement (g) we must show that the statement (j) A ~'~~ Tm+i Tm is true.

First we concentrate on diagrams and forget about the coefficient that a diagram has in a

series. Consider an arbitrary diagram Di of the series Tm+i Tm; this series only contains

diagrams with m + I dots. Upon walking away from the bottom of Di, the first vertex that we

encounter is either of the linear type or of the nonlinear type. In the former case the branch of

the vertex can be made visually equal to a bottomless diagram of the series Tm; in the latter

case the same is true for two branches of the vertex, and the remaining branch
can

be made

visually equal to a
bottomless diagram of Tm with the direction of all arrows reversed. We

thus see that for each diagram Di of the series Tm+i Tm there exists
a

diagram in the series

A that can be made visually equal to Ill On the other hand, if
we construct from vertices and

propagators all diagrams of the series A, then we never violate the prescriptions formulated

in (Cl). Moreover, the series Tm+i Tm contains all different diagrams with m + I dots that

can be constructed via rule (Cl). We thus see that for each diagram D2 of the series A there

exists
a

diagram in the series Tm+i Tm that can be made visually equal to D2.
We now make each diagram of the series A visually equal to a

diagram of the series Tm+i -Tm
and subsequently,

we sum all of the visually equal diagrams. The resulting series of diagrams

we call I; obviously, one has A ~'~~ l. In view of thi above findings we observe that the

diagrams occurring in the series I
are precisely those that occur in the series Tm+i Tm.

Now suppose that for the series I the coefficient in front of a
diagram is always equal to the
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coefficient thht we obtain by applying rule (C3) to the diagram. In that
case we may write

I
=

Tm+i Tm and, as a consequence, we arrive at A ~'~~ Tm+i Tm.

To be able to determine for the series I the coefficient in front of
a

diagram,
we

make the

following observations: from figure 6 we see that, apart from the homogeneous propagator,
each diagram of A consists of a bottom, a vacuum propagator, a first vertex, and branches of

this vertex, the number of which is one or three. Each of these branches is
a

diagram of the

series Tm with the bottom removed and, in some cases, the direction of all arrows reversed.

Accordingly, the coefficient that a diagram has in A, can
be found as follows: calculate via

rule (C3) the coefficients of the branches of the first vertex and multiply these by each other.

Consider a diagram of A with
a

first vertex that is of the linear type. The above statement

shows that the coefficient this diagram has in A, can be calculated by using rule (C3) directly

on the diagram. The same is true for a
diagram of A with

a
nonlinear first vertex possessing

two branches that do not differ from each other. Consider now a
diagram of A with

a
nonlinear

first vertex of which all branches differ from each other. The coefficient that this diagram has

in A, can be calculated by applying rule (C3) to the diagram and dividing the result by two.

Consider
a

diagram fir of I with
a

first vertex that is of the linear type. Only
one

diagram
of the series A can be made visually equal to fill the reason is that two diagrams of the series

Tm are always different from each other. With the above observations in mind, we now may
conclude that for the series I the coefficients in front of the diagrams with

a
linear first vertex

can be found by applying rule (C3) to these diagrams. The same statement holds for the

diagrams of I with
a

nonlinear first vertex possessing two branches that do not differ from

each other. Consider now a diagram i$2 of I with
a

nonlinear first vertex of whicli all brandies

differ from each other. There exist exactly two diagrams in the series A that can be made

visually equal to fi2. Both these diagrams possess the same coefficient in A. They can be

made visually equal to each other by performing
an

interchange of branches at the nonlinear

first vertex of one of the diagrams. Altogether, the coefficients of the diagrams of I with
a

nonlinear first vertex of which all branches differ from each other, can be Sound by applying
rule (C3) to these diagrams.

In conclusion,
we

have demonstrated that the relation I
=

rm+i rm is true; hence, the

relation A ~'~~ rm+i Tm is true as well. From this equality the correctness of the statement

(e) directly follows, and so our induction proof is finished.

Appendix B.

Proof of the nonlinear Dyson equation.

For the evaluation of the average-field propagator we can use either rules (C4-C6)
or the Dyson

equation that we proposed in section 4. It is our goal to prove that both options are equivalent
to each other. To that end, it is sufficient to show that the iterative solution of the Dyson
equation (4.2) can be reduced to the series for the average-field propagator that is found from

rules (C4-C6).
In order to be able to formulate our proof we

introduce some new
definitions and conventions.

Consider the diagrammatic series for the average-field propagator that is constructed on the

basis of rules (C4-C6). In the main text we demonstrated that each diagram of this series

can be uniquely factorized into
a

product of irreducible parts and homogeneous propagators.
We discard all diagrams that consist of more than

n
irreducible parts. The ensuing series of

dressed diagrams we call Tn,
n =

0,1, 2,. diagrammatically this series is represented by
an

average-field propagator (cf. Fig. I) bearing the label
n.



N°5 DESCRIPTION OF LIGHT SCATTERING BY KERR PARTICLES 567

By definition, the series of dressed diagrams fin equals the right-hand side of (4.2), with each

average-field propagator replaced by the series fin-i,
n =

1, 2, 3,. The symbol Do stands

for the homogeneous propagator. In replacing the average-field propagators on
the right-hand

side of (4.2) by a
diagram,

one must pay attention to the fact that these propagators do not

possess a bottom. Furthermore, one has to respect the requirement that a vertex always must

possess an equal number of incoming and outgoing lines.

Lastly, we introduce the sign i~, n =
0,1, 2,.

,

the mea~ing of which is the following: let Ii
and 52 be two series of dressed diagrams; in Ii

we dispose o(all diagrams consisting of more

than n
irreducible parts;~the ensuing subseries of 5i

we call Ii, I
=

1,2. If the series 51
can

be reduced to the series12, then
we

write Ii i~1i2. Reduction takes place via interchanges of

vertex branches, shifts of crosses, and additions of visually equal diagrams.

The first part of
our proof proceeds along the same lines as the proof given in Appendix A.

With the help of the statement (a) fin+i i~ fin,
n =

0,1, 2,.
,

we observe the following: if
we

succeed in proving the statement (b) fin I lfn,
n =

0,1, 2,..., then
we indeed can show that

the nonlinear Dyson equation may be used for the calculation of the average-field propagator.
For the proof of (b) we shall use induction. From the earlier made remarks concerning the

relation between the sets I and 7Zi~~, we conclude that (b) is true for n =
0,1. Let us now

assume
that (c) flm i~ lfm is true. Using the assumption (c)

we must prove the statement (d):

flm+1 ~~~ Tm+I

We apply the definition of the series flm+i, and
use the assumption (c). This gives the state-

ment (e): flm+1 ~~~ fl. The symbol fl represents the series of diagrams that must be obtained

as follows: draw the right-hand side of (4.2), and attach to all average-field propagators the

label m. We remind that an average-field propagator bearing the label m stands for the series

Pm. If we combine (e) with the statement (f) fl ~~~ lfm+i, then we arrive at the statement

(d). Thus, we need to prove the statement (f). For that purpose we
introduce the series I,

which is found by discarding in fl all diagrams that do not consist of
m + I irreducible parts.

The statement (f) h a direct consequence of the statement (g) 1~'~~ lfm
+i

lfm, because

from (a) and (c) we find El lfm. It is important to notice that, like the series I, the series

Tm+i Tm only contains diagrams with
m + I irreducible parts.

In proving the statement (g) we concentrate on diagrams first, and forget about their coeffi-

cients. Consider an arbitrary diagram Vi of the series llm
+i

llm. We perform factorizations

of the type (4.I) such that the diagram 01 becomes a product of certain dressed diagrams
and the first irreducible part; this is the irreducible part the vacuum propagator of which is

connected to the bottom of Vi We remind thAt the factorizations which must be carried out

for the complete reduction of a dressed diagram, can be performed in arbitrary order, as we

proved in the main text. Thus, the above program always can be executed. Altogether,
we now

have got an irreducible part the dashed arrows of which are multiplied by dressed diagrams in

the sense of (4.I). Each of these dressed diagrams
can

be made visually equal to a
diagram of

the series lfm> with in some cases the direction of all arrows reversed. The irreducible part can

be made visually equal to an element of the set I. Clearly, the corresponding operations
can

also be performed in the diagram Vi itself. We thus see that for each diagram Vi of the series

lfm+i lfm there exists a diagram in the series I that can be made visually equal to Vi. To

prove the reverse, let us construct from vertices and propagators the undressed counterparts of

the diagrams of the series I, and let us dress these diagrams in the same manner as performed
for the series I. Then we never violate the prescriptions formulated in rules (Cl) and (C4).
At the same time, we

observe that the series lfm+i Pm contains all different diagrams with
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m + I irreducible parts that can be constructed via rules (Cl) and (C4). Indeed we see that

for each diagram 02 of the series I there exists a diagram in the series lfm+i Pm that can

be made visually equal to 02.

In the series I
we make diagrams visually equal to each other to the degree possible. Next,

we sum
all of the visually equal'diagrams. The ensuing series we shall call I. Suppose now,

that in this series the coefficient in front of
a

diagram is always equal to the coefficient which we

obtain by applying rule (C6) to the diagram. Together with the above observations,
we

then

arrive at the statement
$ ~~~ lfm+i Pm. From the last result the statement (g) immediately

follows.

Consider the diagram 0 of the series I. We wish to evaluatqthe coefficient that the diagram
0 has in this series. Because of the definition of the series I, the diagram 0

occurs in the

series A as well. We write D as the product of its first irreducible part I and certain dressed

diagrams. By definition, these dressed diagrams are the branches of I. The coefficient that

the diagram 0 has in the series I equals p =
2~'~~'fl; 2">~~J In this expression n'(nj)

stands for the number of nonlinear vertices of the irreducible part I (of the branch j of I).
The number of symmetry operations for the irreducible part I (for the branch j of I) amounts

to 2~'- (2~? 1). Each diagram of the series A that can be made visually equal to 0,

possesses the coefficient p in the series I. Thus, the coefficient that 0
possesses in the series

~
equals p.q, where q is the number of diagrams in the series I that can be made visually equal
to 0, the diagram 0 itself included. Clearly,

we must concentrate on the evaluation of q.

Two dressed diagrams never can be made visually equal to each other if the first irreducible

parts of these diagrams
are different. The first irreducible parts of two diagrams of the series

Tare always different if they are not visually equal to,each other. Hence, only a diagram il' of

the series I for which the first irreducible part is I, can be made visually equal to the diagram
0. The corresponding vertex operation is

a symmetry operation of the irreducible part I. To

prove this, we label the dots and the homogeneous propagators of the diagram 0', and use the

same conventions as in section 3. Let us perform a vertex operation tl on
0'. As remarked in

section 3, vertex operations commute and so we may write tl
=

tl2tli The operation tli(tl2)
stands for the part of the operation tl that pertains to the vertices of the irreducible part I

(of the branches of I). If tli is not a symmetry operation of the irreducible part I, then the

operation O cannot map the diagram d onto the diagram 0. Suppose now, that tli is
a

symmetry operation of the irreducible part I. Furthermore, suppose that the diagram tlifli']
cannot be made visually equal to the diagram 0 by shifting with crosses, so that tli is not a

symmetry operation of il'. Then, in the diagram tljlil'] at least one branch of the irreducible

part I cannot be made visually equal to the corresponding branch of the diagram 0 by shifting
with crosses. The branches in question are diagrams of the series Pm (or of the series Pm with

the direction of all arrows
reversed). Two diagrams of this series that are not visually equal to

each other, are always different. Consequently, we see that there does not exist
an operation

02, such that the diagram tl201[il'] becomes visually equal to the diagram 0. We arrive at

the following conclusion: suppose that the diagram l$' of the series I
can be made visually

equal to the diagram 0; then there always exists
a symmetry operation of the irreducible part

I that maps the diagram 0'
onto the diagram 0.

The above reasoning demonstrates that it is possible to evaluate the number q in the following

way: we perform in 0 all symmetry operations that exist for the irreducible part I, and we

include in the ensuing set 0 itself. Next, we perform shifts of crosses in such a way that

each diagram becomes visually equal to a diagram of the set I. Finally, in the set of dressed

diagrams we now have got, we
systematically discard diagrams that are visually equal to
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another diagram of the set. After these steps we end up with a set of diagrams that we shall

call SI[@. This set of diagrams precisely contains those diagrams of the series I that do not

differ from the diagram 0. Consequently, the number of elements of the set SI[@ is equal to

the number q.

We assume that the set of the 2~'-1 symmetry operations of the irreducible part I contains

k operations that are symmetry operations of the diagram 0
as well. Then each diagram of

the set SI[@ possesses k symmetry operations that correspond to interchanges of branches

only at vertices of the first irreducible part I. This observation
can be proved via

a
reasoning

similar to the one held in section 3. It implies the equality q.(k +1)
=

2~' From this relation

we see
that the number k + I is even. We now arrive at the conclusion that in the series I

the diagram 0
possesses a

coefficient that is given by p.q =
(k + 1)~~2~'fl; 2~>~~J We must

prove that the same coefficient is found by applying rule (C6) to the diagram D.

Let us find an expression for the number of symmetry operations of the diagram 0. We

label the dots and homogeneous propagators of this diagram and perform
a vertex operation

tl. As
was

argued above, it is possible to perform first the part tlj of tl that pertains to the

vertices of the irreducible part I. If tli is not a symmetry operation of I, then the operation tJ

certainly is not a symmetry operation of the diagram 0. Furthermore, via exactly the same

argument as presented above, one even can prove that if tli is not a symmetry operation of

the diagram 0, then the operation tl certainly is not a symmetry operation of the diagram 0.

We now assume that tli is
a symmetry operation of the diagram 0, and we write tl

=
tl2tli

The operation 02 stands for the part of the operation tl that pertains to the vertices of the

branches of the irreducible part I. The operation tl is
a symmetry operation of the diagram

0 only if the operation tl2 is a symmetry operation of the branches of the irreducible part
I. An operation on a given branch leaves all other branches untouched, and so we can make

(fl; 2~i) choices for the operation tl2. All of these operations can be performed either

in combination with each symmetry operation al or directly on the diagram 0 itself. As a

result, the total number of symmetry operations that exist for the diagram 0, is found to be

equal to (k + I) (fl; 2~>) 1. Lastly, we observe that the total _number of nonlinear vertices

of the diagram D is given by n'+ £; n;.

With the help of the above results we can calculate the coefficient of the diagram 0
as

generated by rule (C6). We find the same result as above. This concludes our induction proof
of the statement (b).
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