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Rdst~md. Partant d'une suggestion de Khodel' et Shagirtyan (KS), on montre que la description
d'un Iiquide de Fermi en Hartree Fock peut conduire h des rd5uItats trks dtranges quand la portde

de I'interaction est grande. Par exemple, la discontirtuitd de la distribution des particules au

niveau de Fermi est dtalde sur t~ne bande de k flrtie, avec un plateau de I'dnergie des quasi-
particules. En fait, cet dtat est une cons6quence de l'approximation de Hartree Fock. II se prodt~it

seulement pour une attraction, auquel cas ii est masqud par la supraconductivit£. De plus, le

renforcement des collisions entre quasiparticules rend l'approximation de Hartree Fock inutilisa-

ble. Enflrt, l'dcrantage d'une interaction forte et h longue portde ne permet pas d'atteirtdre le seuil

d'irtstabilitd.

Abstract. Following a suggestion of Khodel' and Shagirtyan (KS), it is shown that a Hartree

Fock description of Fermi liquids can lead to very strange results when the interaction has long

range. For instance, the sharp drop of particle distribution at the Fermi level can be smeared over

a finite k-range, with a flat plateau irt the quasiparticle energy. In practice, such an effect appears

as an artefact of the Hartree Fock approximation. The KS effect occttrs only for an attraction, in

which case it is hidden by superconductivity. Moreover, the enhanced quasiparticle collision rate

makes the Hartree Fock approximation untenable. Finally, screening of a strong long range

interaction is such that the instability threshold cannot be reached.

It is a widely accepted belief that treating a Fermi liquid within Hartree Fock approximation

can only result in a standard Fermi Dirac distribution, with a sharp jump of the particle
distribution n~ from I to 0 at a well defined Fermi surface in reciprocal space. Recently,

Khodel and Shaginyan [I] have shown that it is not necessarily so : if the interaction has a

finite range in real space (I.e. V~ localized in k-space), the Fermi surface can «
broaden

» at

T
=

0, the distribution n~ going smoothly from I to 0 in a finite range (ki, k~). In this brief

note, we explore this puzzling result further. Looking at simple limits, we confirm the validity
of the KS result within a normal state Hartree Fock approximation. We sketch a phase
diagram in terms of the strength and range of the interaction. We briefly discuss properties of

such a wild looking state. In particular, we show that the quasiparticle energy is constant

between ki and k~.

We then argue that in practice such a normal Hartree Fock state is not tenable for a number

of reasons.
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(I) Fermi surface broadening only occurs for attractive interaction between particles, in

which case BCS pairing should occur. The ground state is superconducting, with a «
natural

»

Fermi surface broadening albeit very different from the usual one.

(ii) If we ignore the superconducting instability, the flat plateau in e, enhances quasipartide
collisions drastically a Hartree Fock approximation is clearly inaccurate.

(iii) The bare interaction is actually reduced by screening. For long range coupling the

screened interaction never reaches the KS threshold.

As a result, the exotic KS state should not occur under reasonable conditions : Fermi liquid
behaviour is preserved. It remains that the usual Hartree Fock reference state is patently

wrong : it is instructive to know what should happen if it were valid.

1. The normal Hartree Fock state.

At this stage, spin is irrelevant : we discard it and we describe an Hartree Fock state in tennis

of the particle distribution n~. The energy is

E-~N
=

£(f~-~)n~+ ~£V~,n~n~, (I)

k
~kk'

f~ is the kinetic energy, ~ the chemical potential. V~~, is characterized by its range
(k'- k(

= «, and by its strength, conveniently measured as

£ Vkk'
"

U (2)

k'

(U is the interaction energy at zero particle distance). At first sight, U
~

0 means a repulsion :

in practice, it is not that obvious : see section 2. For a contact interaction in real space,

V~~,=V=Cst. yielding the usual Hubbard model. If V(r) has a range p, then

« lip. The renormalized quasi-particle energy is

e~ =

)
=

f~ /1 + j v~~ n~ (3>

The equilibrium distribution at temperature T minimizes E TS, where S is the standard

entropy

S
=

£ [n~ log n~ + (I n~) log (I n~)] (4)

k

((4) measures the configurational freedom in building an intermediate n~). n~ is just the usual

Fermi distribution f(e~).
In practice, cr should be a fraction of k~. Nevertheless, we first look at extreme cases in

order to clarify the physics. If cr is infinite (I.e. a contact interaction) the interaction energy

V~~,n~, is just a constant VN which may be absorbed in the chemical potential ~: the

behaviour is that of a free Fernli gas, as usual. In the opposite case cr -
0 (I.e. a long range

interaction), (I) and (3) reduce to

E I~N
"

£ (fk l~ ) n~ + Un))
~

2

~k "
fk il + Unk.

(5)
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Each k value behaves on its own.

Such a limit cr -
0 calls for some comment. If cr were identically zero, I.e. V~,

=

U3~,,
then the problem would be trivial. The interaction energy would be a constant N (N I ) U/2

(non extensive), and the Schr6dinger equation would be that of free fernlions. What we have

in mind here is a limit where cr « k~, yet much larger than the level spacing
~

l/N in k space.

The summation in equation (2) should cover a large number of k' states in such a way as to

introduce the average occupancy n~. Yet cr should be small enough that n~ varies little on that

scale. In this way, we retain a thern1odynamicalIy extensive problem, with a finite range of

interactions in real space.

The ground state depends critically on the sign of U, as shown in figure I. When U is

<
0, the energy is minimal for either n~ =

0 or n~
=

I : a sharp
«

first order » transition occurs

~§ ~'~~ ~§

~~~~ ~k=k2
/

k=kF
i

i

j

k<kF ' i

i

'

'
=ki

i

i

Fig. I. The ground state energy as a function of n~ for an interaction with
cr =

0.

at some k
=

kF. We recover the usual Fermi distribution. In the opposite case U~ 0, the

minimal energy corresponds to an intermediate n~ in a finite range of k, ki
<

k< k~ the

Fermi discontinuity is smeared at T
=

0, a conclusion that looks crazy at first sight. The result

is simply

n~
=

~~ ~

,
e~ =

0 (6)
U

(ki and k~ correspond to those values of f~ for which n~ is respectively I and 0). Equivalently,

one may obtain (6) through a graphical solution of the coupled equations for n~ and

e~

e~
=

f~ ~ + Un~

n~
=

f(e~)
=

0(- e~).

fi~k nk/
~@

~/ @§
A' /

' /
' ik"P ik-P /
~/

~
O Ek E

Fig. 2.-A graphical construction of the ground state distribution n~ for an interaction with

cr =0.



446 JOURNAL DE PHYSIQUE I N° 4

;
.

:
: [
: i
: j i

: : i I

: ; i

Fig. 3. The quasiparticle energy e~ as a function of k for either a filled state (nk
#

I or an empty state

(n~
=

o).

The solution is shown in figure 2. When U is
~

0, the plateau in e~ is obvious. When U is
<

0,

there are two stable solutions in the intermediate range, with a first order jump from one to

the other at k
=

k~_ Still another interpretation is shown in figure 3, which shows the

quasiparticle energy, ~ + e~, for either n~ =

0 or n, =
I. The heavy lines correspond to those

states which are consistent at T=0. When U<0, there are two solutions between

ki and k~, one of which minimizes the energy. When U
~

0, there are no solutions between

ki and k~. we are forced to look for an intermediate n~.

The graphical construction of figure 2 is easily extended to finite temperatures, as shown in

figure 4. The results are even more appalling.

' nk nk/

' fi ~
@§

'

/
/

' /

o Ek o E~
T T

Fig. 4. Graphical construction of n~(T) at finite temperatures.

When U
<

0, a finite discontinuity remains in n~ at low enough temperatures, up to a

critical T* at which n~ recovers the usual smooth behaviour. This is a mystery.

When U~0, the plateau in e~ broadens over an energy range ~T (see Fig. 5).

Everything is smooth but, still, a finite number of states (roughly between ki and

k~) are packed in an energy range ~

T, leading to a dramatically high density of states.~~
i"~

ii

ii
ii
ii

ii

ii
ii

ki k2 k

Fig. 5. The quasiparticle energy ek at finite temperatures.
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In both cases, the usual Fermi liquid picture breaks down. Even if the Hartree Fock

approximation is invalid (which it is !), the physical behaviour should depart drastically from

usual models.

Of course, the limit
cr =

0 is unphysical, and we should look for the effect of a finite cr,

which will
«

blur
» momenta on that scale. The effect will be small as long as

cr<3 =k~-ki=
~

(7)
VF

where v~ is the bare Fermi velocity. In such a case, and for U
~

0, momentum blurring is not

enough to bridge the gap in figure 3 : n~ is forced to sit benveen 0 and I in the ranje
(ki, k~), except may be near the edges. Since 0

< n~ <
I implies e~ m

0 (energy must be

stationary), a rigorously flat plateau in e~ remains, despite momentum blurring. Such a flat

plateau necessarily has sharp edges, ii and k~, beyond which n~ is exactly 0 or I. These

conclusions are completely independent of the shape of V~~.. they are forced by energy

minimization.

Mathematically, one must solve the integral equation

~k ~
fk il + £ V~~, n~>

k'

with the constraints that

e~
=

0 if ki<k<k~

n~ =
I if k

<
k1 (8)

n~ =

0 if k
~

k~

The constraints (8) also determine ki and k~, which must be obtained self consistently. It so

happens that an exact solution may be found in a specific case which confirms the above

general discussion. Let us average V~~, over the directions of k and k', thereby defining an « s-

wave »
matrix element17 (k, k') that depends on the moduli k, k'. Then

U=pv~lv(k,k')dk' (9)

where p is the bare density of states at Fermi level (we assume for simplicity that p and the

quasiparticle velocity v~
=

3f~/3k are constant in the relevant range near Fermi level). We

then try a shape

p v~ V (k, k' )
=

~
exp

~ ~'
(10)

2 cr cr

(I.e. the Fourier transform of a Lorentzian). (8) is a Wiener Hopf system for which standard

techniques are available. The results are shown in figure 6 :

(ii The quasiparticle energy e~ does have a flat plateau, with an intermediate n~, in the

range

~
~

~~ ~
'

~~
~

~~ ~ ~
(li)

3
=

~
~

2 VF
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k2 k

12 k

Fig. 6. The ground state panicle distribution n~ and quasiparticle energy e~ for
« # 0 with the model

interaction (9).

(kF is the Fermi momentum in the absence of interaction). The plateau shrinks for

cr # 0 and disappears at a critical cr*
=

U/2v~. we recover a usual Fermi liquid.

(ii) n~ displays discontinuities at ki and i~. it is not clear whether they are artefacts due to

the cusp in V at (k(
=

0.

(iii) e~ is smooth at ki and k~, with a zero slope matching to the flat plateau. These results

are slightly modified if one allows for a dispersion of u~ (especially the symmetry with respect

to k~) but the general structure is unchanged. Since we are going to argue that such a state

is unrealistic, it seems hardly justified to go into details of that analysis : it is briefly sketched

in appendix B.

One may draw a phase diagram in the (U,
cr space, which separates regular Fermi liquids

from the KS state. The threshold for the KS instability is reached when the
«

Fermi liquid
»

quasipartide energy

~~
"

~k + I ~kk' ~k' (l~)

k'

k'j «kF

develops an horizontal inflection point. Detailed values depend on the shape of V~~, but

the overall picture can be obtained by qualitative arguments. In the limit cr « k~ considered

previously, the interaction term in (12) drops by U in a range Ak cr hence a drop in

velocity U/cr. de(~/dk vanishes when cr
= cr

* U/v~. We recover the previous estimate. In

the hypothetical case cr » kF, we could expand V~~, as

V~~> # Vo(1- ~~ l'~~ +' (13)
tT

The k~
term in (13) renormalizes the quasiparticle effective mass. The net Fermi velocity

vanishes if

NVO i
j~- (14)

cr m

The corresponding diagram is sketched in figure 7(1). In practice, only the region
U/E~ w I looks reasonable. The instability condition U

» cru~ may then be written in a more

(1) Actually, the bifurcation may be more complicated if one allows for dispersion in uk since the

inflection point does not necessarily appear at k~. It may be that, at first, a «
hole

»
is dug inside the filled

Fermi sea k
<

k~, eventually evolving into the smooth drop between kj and k~.



N° 4 FERMI LIQUIDS WITH A FINITE RANGE INTERACTION 449

KS state

Fermi liquid

o

Fig. 7. The phase diagram for U
»

O.

transparent fashion using the angle averaged interaction V. The latter has a maximum

i7~ at k
=

0 (Fig. 8). From (9) it follows that U
~

pu~ V~
cr. The threshold for instability thus

corresponds to

pV~~1 (15)

V

o

Fig. 8. -Tile angle averaged particle interaction.

I.e. a strong coupling regime (the range cr is hidden in V~ at given Ul.

We will see shortly that such a KS state is unrealistic for a number of reasons. Nevertheless,
it is interesting to comment on its physical implications if it happens to exist.

(ii In the KS normal state, a finite entropy So, given by (4), persists down to

T
=

0. It accounts for the freedom in choosing the filled states among all those between

ki and k~.

(iii The compressibility is unaffected : the KS singularity is attached to the Fermi level, and

it moves along as the chemical potential ~ changes. As a result, d~/dN is the same as for a

free Fermi gas (a similar situation occurs in the mass renormalization due to electron phonon
interactions). We show in appendix A that the whole response function X (q,

w
) is unchanged

when cr =

0.

(iii) One would expect the low temperature specific heat to be dramatically affected by the

flat plateau in e~. Strangely enough, this is not so When cr =

0, the specific heat is the same

as that of a free Fermi gas, as shown in appendix A. (Note that the standard wisdom

according to which a linear specific heat is the signature of a Fermi liquid is simply wrong !).

When cr # 0, this conclusion remains valid as long as T
~ cry ~

(the range in V~, is negligible

on the thermal scale). What happens when T< crv~ is not clear : the low temperature



450 JOURNAL DE PHYSIQUE I N° 4

behaviour can only be worked out numerically. KS claim that the specific heat behaves as

/
a most surprising result. Anyhow, the issue is semantic, as the actual ground state is

superconducting, with a finite gap A the specific heat is exponential.
Strangely enough, the KS state does not seem to affect thermodynamical properties.

2. Superconducting pairing.

We now restore spin. The quasiparticle energy should be written in the usual way

~k« "
fk il + £ ~k'«'l~'0 ~k

k'
~«« (16)

k'«'

Vo is the Hartree term, which is of no interest to us since it is only a shift in the chemical

potential : we discard it. Range effects can only occur in the Fock exchange term. But within a

Hartree Fock approximation, that term has a minus sign. Consequently, U
~

0 implies an

attractive interaction, while a repulsion would imply U
<

0. In the latter case, the strange
behaviour at finite T remains, with its mysteries. On the other hand, the KS

«
normal state »

for U
~

0 is hidden by superconductive pairing, a feature that will necessarily appear as soon

as the particles attract. The above discussion must be taken afresh within a BCS

approximation : the coherent ground state will be non degenerate, and the zero temperature

entropy will disappear a welcome improvement.
Specifically, we write the ground state as

$i0)
"

fl [Uk + Vk Cfll C~k II 'V~C)

k

Since the phase is locked, we take u~ and v~ as real. We define the averages

~k " ~Cf« Ck«)
"

~(

Xk "
~C-

k I Ckl )
" "t ~k

"

~

The ground state energy is then

E ~N
=

£ 2(f~ ~ n~ £ V
~~,

[n~ n~, x~ x~, (17)

k kk'

Note the change of sign as compared to (Ii. In (17), we recognize the usual Fock and

Bogoliubov terms. It is clear that a finite x; will lower the energy if V~~,
<

0 (I.e. for an

attraction).

Minimization with respect to n~ yields the usual BCS formulation

k
"

~k il + £ ~kk" ~k'

~' (18)
~k

"

I '~'kk" ~k'

k'

~ ~
~)

'
~~ ~i~

~~~~El
=

xl
+

Al.

These equations are valid for any V~~,. For a short range interaction (in real space),
V~~, is nearly constant, equal to V up to a cut off e~ cru~ » A : we then recover the usual
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BCS situation. The gap A is practically constant near the Fermi level, and the quasipartide

energy E~ has the usual hyperbolic shape with a minimum at k~. A and the critical temperature

T~ have the usual exponential behaviour in terms of pV.

The solution is qualitatively different for long range interactions. Again, we consider first

the extreme case cr =

0. Then the energy (17) reduces to

E ~N
=

£ (2(f~
~ ) n~ + Un~ [2 n~ 1]) (20)

k

where U
=

£ V~,
~

0. (20) is similar to (5), with different coefficients due to the pairing

k'

terms. Minimization with respect to n~ is straigthforward. In a finite range ki, k~,

2j~ f~j + u

nk # ~ ~/

e~ =

~~

~

~
+
(

(21)

A~
=

~
+ e~j

~

e~j ~ E~
=

~

2 2 2

ki corresponds to n~
=

I, k~ to n~
=

0, according to

f~,
= J1

~/,
f~~ = J1 +

)
(22)

At both points, A~ =
0. Outside that range, A~ is identically zero. These results are illustrated

in figure 9.

nk

-3U O U ( _p
2 2 k

-fl~ ° ) -P

Fig. 9. The particle distribution and quasiparticle energy in the superconducting ground state for

« =
0.

n~ drops smoothly from I to 0 in a finite range (ki, k~). Such a behaviour is familiar in

superconductors : the new feature is the existence of sharp boundaries. The distance between

these boundaries,

3
=

k~ ki
=

~ ~
(23)

UF
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is proportional to the interaction strength, twice as big as in the
«

normal
»

KS state. The

striking feature is the flat plateau in E~, which actually is obvious in (18)

UA
~~~ ~~~

2 E~
~~~~

The change in the Fock energy e~ exactly compensates that of A~, and the superconducting
quasiparticles are dispersionless in a finite range 3. The resulting density of states is

considerably enhanced.

The description (21) is easily extended to finite T. For instance, (24) is replaced by

A~ E~
A~

=

U th (25)
2 Ek 2 T

from which we infer the critical temperature T~
=

U/4. (Note that 2 A
=

4 T~ in that limit).

Above T~, we recover the KS state but the thermal blurring of the plateau is very large.
Using (A.5), we find that the density of states is enhanced by a factor

Un~(I n~)
+ (26)

which is at most a factor 2 there is no spectacular effect.

Let us now restore a finite range cr. The structure in k space is blurred on that scale. The

edges ki and k~ in the gap are smoothed, and the quasiparticle energy acquires a small

dispersion, as shown in figure lo. In order to estimate that dispersion, we write the gap
equation (19) as

2 E~ x~ =

£ V~~, x~, =
U [x, cr ~x(' + ]. (27)

k'

Ek

_°w Ak

~@ ~ j ~k~P

Fig. 10. The quasiparticle spectrum for a small finite range «.

According to (27), the dispersion in E~ should be of order cr~u)/U, very small for small cr.

Everything is now smooth, but the quasiparticle density of states at T
=

0 is still large (albeit

finite). As T grows this enhancement disappears.
It is instructive to express the zero temperature gap A in terms of the parameters «,

17~ of figure 8 (which characterize the angle averaged interaction). We have shown that

U
=

pu~ cri~. One may put the results for small and large cr together by writing

A
=

~uF W lPv~] (28)
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For pi
~

« l, q~ is just the usual BCS exponential. In the opposite limit p v~ » I (but still with

cr « p~, US E~),
q~

is linear, yielding A
=

U. The above result thus appears as the strong

coupling limit of BCS, in the unusual case where cr
is small.

In the end, superconductive pairing destroys the most spectacular effects of the KS state.

This is due to the presence of a single interaction kemel V~~, in (17). The latter feature is

specific of the Hartree Fock approximation. If higher order manybody corrections were taken

into account, the effective scattering kemels would be different in the particle-particle and

particle-hole channels, with an interaction energy

I ~~~~ ~k ~k' ~@ ~k ~k'i

kk'

If gll~ were positive and g~~~ negative, a normal KS state would hold for small enough cr. In

practice, it seems unlikely that renormalization could change signs. More modestly, if the

value of g~ is reduced compared to gi the critical temperature is lowered : large KS effects due

to the exchange interacfiion might persist above T~.

3. The effect of quasipartide collisions.

We retum to the normal state. A mean field Hartree Fock picture necessarily ignores particle
collisions, whether in the standard Fermi liquid or in the exotic KS situation. These collisions

enter through an imaginary self energy, which in the lowest order is given by the diagram of

figure Il. The corresponding lifetime
r =

I/r for the quasiparticle k is given by

r
=

2 w
£ V( 3 [e~

~ ~
+ e~

~
e~ e~] n~ [I n~ ~] [l n~

~ ~
(29)

qp

k+q

k P

P-q

Fig. II. The lowest order diagram contributing to quasiparticle lifetime.

In the usual limit
cr ~ k~, V~

=

V is nearly constant. One can break the integrals over q and p
into energy and angle integrations. The latter provide only numerical factors : qualitatively

13
£~ k)d(p(d(p-q(d(k+q(~C jde~de~ ~de~~~ (30)

~~

N

p is the density of states (
~

k(~ ~/u~ where d is the dimension). At low temperatures, we

recover the usual result for thermal quasiparticles

3~2r~~T2 (31j

(31) is a standard feature of Fermi liquids.
Consider now the long range case cr «k~ in the normal «Fermi liquid regime»

U
< crv~. the Fermi velocity is not changed much by interactions. We expect a crossover

when T~ crv~. Above that crossover, the energy change in the b-function of (29) is
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«v~, much smaller than T. The number of relevant q values in (29) is «
,

while the

number of p values is pT (controlled by the occupation factors in (29)). As a result

V/W~pT
~f 2 kF d-I

l~ T (T W WV
F

(32)
~UF ~UF W

(remember that U Vo cr~. In the opposite limit TM cru~, an extra factor T/cru~ enters, due

to the occupation factors. We thus obtain

r

~~ ~~ ~~~~~ ~ ~ ~~ ~ ~~
(T « cm ~) (33)

Vi ~UF ~ ~F ~F

We recover the usual T~ behaviour, with a coefficient modified by «. The unexpected result is

the dependence r
~

T when T
~ cru~, due to a simple counting argument in the golden rule

(29). Even if such a range of temperature is not very realistic, that result should be kept in

mind.

We now tum to the KS state, occurring when U~ cru~. Then the Fermi velocity is

drastically renormalized : the bare u~ is replaced by an effective b~
=

3e~/3k. The density of

states is corrected accordingly (p l/b~ ). In all our results (31)-(33), u~ should be replaced by

@~. the collision rate is considerably enhanced. At T
=

0, the flat plateau in e~ implies an

infinite 11 At finite temperatures, the plateau broadens over an energy range T, and

@F = UF
(

(34)

Then ris finite but hopelessly large, l/T in the whole range of temperature. These results

make no sense. The origin of the difficulty is apparent if we assume that all momenta in

figure11, k, p, k + q, p q, lie within the plateau of e;. Then energy conservation is

automatically guaranteed, and the 3-function is infinite. In such a case, the transition

probability is meaningless. We should instead consider that the quasiparticle k is coupled to a

degenerate configuration (hole p, particles (k + q) and (p q ii, with a matrix element

V~. These states repel, with an energy splitting V~. Since there is a continuum of excited

configurations, a broad spectrum appears. The spectral density A (k,
e =

Im G (k,
e should

display a broad structure instead of the usual narrow peak (2).

In practice, the whole KS formulation breaks down. If we allow for particle broadening, the

plateau in e~ does not make sense anymore. What is needed is a self consistent description, in

which spectral broadening of A is included in the internal propagators in figure I I. This is a

formidable task which at the moment appears out of reach. It is not clear whether the strange
KS state would survive such a more elaborate fornlulation. But one thing is sure : the result

should have nothing to do with ordinary Fermi liquids. Quasipartide broadening has become

the central issue, not a marginal complication at low temperatures.

4. The effect of screening.

Until now, we have argued that the KS nornlal Hartree Fock state was an oversimplified

(2) The situation is somewhat reminiscent of I-dimensional Fermi liquids when one considers

scattering of particles on the same side of the Fermi surface. Then momentum conservation implies

energy conservation : all excited configurations available lo the particle k are degenerate with it. That

situation was considered long ago by Dzyaloshinski and Larkin [2] as expected, A (k,
e

has an elliptic

broadened shape, completely different from the usual Lorentzian line shape.
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picture. Nevertheless, properties were clearly anomalous when cr <
k~, cru~ <

U. It remains

to be seen whether such conditions can be achieved in practice. We now show that, even

allowing for arbitrary bare parameters cr and U, screening will change the interaction so much

that the condition U
< cru~ cannot be met under standard conditions.

In calculating the quasiparticle energy (16), we ignored the Hartree ternl, which was

absorbed in ~. We are allowed to do that for the average interaction, but not for fluctuations.

Indeed, time dependent fluctuations of the Hartree tennis are responsible for the RPA

screening of V~, described by the diagrams of figure 12. Due to that screening, V~ should be

replaced everywhere by

V~
V~

=

(35)
+ V~ X

k+q ~j ~

x

~ ~i

Fig. 12. Definition of the RPA screened interaction.

where x is the density-density response function as modified by the Fock term alone. For a

repulsion, V~ ~
0, screening would reduce the interaction. For an attraction, i7~ is enhanced,

leading to a charge instability if (V~ x ~
l (the system collapses when [Vo[ Xo ~

l).

As shown in appendix A, X is the same as for a free Fermi gas when cr =

0. Since we are

interested in V~ for q~ cr, the limit cr =

0 may not be appropriate. Still, an estimate

X P seems reasonable (3). The whole issue is to compare p [V~] with I.

In the limit q =

0, we have (disregarding long range Coulomb effects)

u u kF ~~

~~~~pV0
~ P p~

~UF ~

In order for long range anomalous effects to appear, we would need pvo» I : charge
instabilities have appeared long before (4).

Admittedly, these arguments are somewhat handwaving. Nevertheless, they leave little

hope of observing any KS behaviour. A strong, long range interaction does not survive

screening. One could look for anomalous effects when cr ~

k~, U » E~ but in that case,

anything can happen : a mean field approach is meaningless.
In conclusion, the anomalies predicted by KS do not seem to be realistic, except may be

under very pathological conditions. Nevertheless, it is useful to know what would happen if

they were to occur indeed, it is quite a surprise that a plain Hartree Fock solution can be

that non trivial.

(3) The ground state energy involves a dynamically screened interaction for
w # 0 : for a rough

estimate, that complication may be ignored.
(4) Strictly speaking, the KS condition would be met very close to the charge instabilities, when

io is large and the enhancement restricted to small q : such a situation is rather artificial.
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Appendix A.

From the entropy (4) we infer the specific heat

as 3n~ n~
C~

=

T
=

T £ log (Al)
3T

~

3T nk

n~ is the usual Fernli function of e,, hence

3n~ n~ I n~ ) 3 e~ e;
$ T 3T T

~~~~

Finally, when cr =

0, e~ is given by (5) yielding

be, U dn~
$ dT

~~~~

Putting (A2) and (A3) together, we obtain

3n~ nk I n, ) ek
j A4)$ Un~(I nk)

+
~

Using the same trick, we can calculate

3n~ n~(I n~ u~

$ Un~ (I n~
~~~~

~
T

an, 3n~
Hence ~ and ~ obey the simple relation

3 3

3n~ e~ 3n~ j 3n~ n~

$ Tu~ 3k u~ 3k
~°~

l n~
~~~~

Inserting (A6) into (Al), and noting that

£
=

pu~ ldk
~

we finally obtain

a~ ~ 2 ~2
C~

=

pT dk (log =

pT. (A7)
3~ ~ 3

The integral reduces to one over dn from 0 to I, irrespective of its k-dependence : the specific
heat is always that of a free Fermi liquid. When cr # 0, the equation for n~ is an integral
equation. One cannot relate 3n~/3T and 3n~/3k simply, and (A7) does not hold

C~ may be more complicated.
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Consider now the density response function X. The single bubble approximation yields

X0(~, ")
~

£
~

'~~ )~~
~

"

£ X0k (A8)

k k+q k k

If we use for e~ the Fock quasiparficle energy (3), we must allow for vertex corrections in

order to maintain a conserving approximation. The relevant diagrams are shown in figure 13.

k+q kl+q

~ ~i

Fig. 13. -A conserving approximation to the density response function X.

In general, the corresponding Bethe Salpeter equation is an integral equation. In the limit

cr =

0, it reduces to an algebraic equation, with the solution

X(q, " )
"

£ ~) (A9)

k
+ Xok

(k is conserved from one bubble to the next). Using (5), we obtain

~
k'~~

~'~~ ~

W

~~~~~

For small q, we may expend (A10) as

X "

lP df~ ~'~ ~ ~ (Al1)
3f~ q vi

~

w

The angular integration yields the usual Lindhard function, and the integration over

f~ gives I, irrespective of the form of n(f~).

Appendix B.

For simplicity, we assume that the density of states and Fermi velocity are constant in the

range of interest ki, k~. The equation to be solved is then

l~~n(k')dk'e~ '~~~''~"
=

f(k)
kj (Bl)

2 ~VF (k k, )/«f(k)= (k~-k)- ore
U

(The second term in f(k) comes from the occupancy n~ =

I below ki). k~ is the original Fermi

wavevector f~~ = ~.

We apply to (Bl) the operator I cr~
~~

We thus obtain
3k

2 ~nk =
f(k) ~~f"(k)

=

~

~/~ (k~ k ). (82)
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Inside the range (ki, k~), n~ has the same linear shape as in the case cr =

0 :

nk =

~~~ / ~~
(83)

Carrying (83) back into (Bl), we adjust ki and k~ so that the integral equation is satisfied. We

thus obtain equation (11).
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