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AbstracL Rapid changing of the temperature of a liquid in equilibrium with its solid can lead to

instabilities of the interface in two ways : the change in pressure, induced by a temperature
change at the interface, leads to a uniaxial stress which can cause a Grinfeld instability at the

capillary wavelength a temperature gradient is set up which modifies the effective gravity at the

interface. When the effective gravity becomes negative, the interface is unstable at very long
wavelengths. For a superfluid, such as ~He, the situation is more complex. If we ignore surface

dissipation, there is still a small critical temperature gradient across the solid above which the

interface is unstable. However surface dissipation in particular the growth resistance pushes
the instability to huge temperature gradients, ones which cannot be realised experimentally. The

only instability that can be seen is caused by uniaxial stress.

Introduction.

Consider a solid in contact with its melt with the interface perturbed from equilibrium as

illustrated in figure I. If the solid is heavier tuan the liquid, both gravity and surface tension

are stabilising : tuey act to push rue interface back to the equilibrium position. A temperature

gradient across the interface can be destabilising if the liquid is supercooled, the solid

superheated, and the latent heat is positive. The solid would want to grow into colder liquid

uquid
(

Solid

Fig. I. A disturbance of the interface between a solid and its melt.

(*) Present address : Depanment of Physics, University of Nottingham, Nottingham NG7 2RD,
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and so the perturbation would grow. Such an instability should be present for ordinary
liquids.

Such a temperature gradient has been invoked in order to explain instabilities seen by
Bodensohn et al. [I] on the interface between solid and liquid ~He. They report that, when

they cool the liquid, it spontaneously deforms with corrugations of the surface a distance of

about 6 mm apart. This value is close to rue capillary wavelength, 2
gr (y/g Ap )~'~, where y18

the surface stiffness and Ap is the difference in density between solid and liquid,

ps p~. This interpretation cannot be correct because the instability appears at much longer
wavelengths as we shall show. Rather they saw the effect of the Grinfeld [2, 3] instability
caused by rue creation of a uniaxial strain. Such a strain arises partly from the change in the

liquid pressure at the interface : as the temperature drops so the pressure changes so as to

keep on the melting curve. The strain also arises from the thermal expansion or contraction of

the solid. This explanation of the observations of Bodensohn et al. was recently proposed by

Balibar, Edwards and Saam [4].

In this paper we analyse the instability of a solid interface due to a temperature gradient,
For an ordinary material, the temperature gradient is equivalent to a change in gravity, which

can drive a standard Rayleigh instability. The situation is completely different in superfluid
~He. In the absence of surface dissipation, the interface would be unstable if the temperature
gradient exceeds a threshold l mK/cm. However, the presence of surface dissipation

increases the critical temperature gradient by a factor of 105
or more, so that it is impossible

to observe the instability in 4He crystals. A sudden change in temperature can lead to a

uniaxial stain sufficient to trigger the Grinfeld instability; we estimate the size of the

temperature change which is needed.

1. Dynamics of a solid liquid interface in the absence of surface dissipation.

Assume that a d-c- heat current Jo flows through the steady interface, implying zeroth order

temperature gradients Gs=-Jo/Ks, G~=-Jo/K~ (Ks and K~ are the d-c- thermal

conductivities in each phase). The interface is displaced by an amount

(
=

e'~ e~' (1)

The change in liquid pressure at the interface contains an hydrostatic part p~ gi (due to

exploration of the zeroth order profile), and an extra modulation AP~ which drives the flow

through the liquid. If s«ck (c
=

sound velocity), a quasistatic approximation is valid :

AP~ is harmonic, such that AP~
=

e'~~~~~ The equation of motion at interface is then

k AP
L =

k (&pL + PL gf)
= PL IL

=

(Ps PL) f (2)

v~ is the normal liquid velocity at interface, ps and p~ are specific masses. (In writing (2), we

use conservation of matter). Similarly, temperatures at the interface change by amounts

3T~ and 3Ts on each side. Each of them contains a term G( due to exploration of the

zeroth order gradient, and an extra modulation that drives the heat current through liquid and

solid. These heat currents, measured from solid to liquid, may thus be written as

zLJQL= 3TL-GLf -zsJos
=

3Ts-Gsf (3)

where Z~ and Zs are appropriate a.c, thermal impedances for each phase. J~~ and

J~s in tum must ensure energy conservation

J~~ J~s
=

£ps ( (4)
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where £ is the latent heat per unit mass.

We now assume that there is no surface dissipation. Then 3Ts
=

3T~
=

3T (no Kapitza

resistance). In the absence of capillarity, 3p~ and 3T must remain on the phase equilibrium

curve,

3p~
=

~~~
3T

=

~~~ ~~
3T. (5)

dT T(ps PL)

From (3) and (4) we find 3T. Using (2) and (5) we obtain the required dispersion relation

~ ~~ ~ ~ ~~~ ~~~
k

~
Zj + Zj

~~
PL dT K~ Z~ ~ KsZs

~
~~~

The generalization of (6) to more complex situations is straightforward. If we want to include

capillari~y, we must add to (5) the standard Gibbs correction. p~ g is thus replaced by

p~ g + yk2~
L~

= p~ g (k> (7>
s ~

where y is the surface energy (as usual, gravity is overtaken by capillarity as k increases). In

order to include su~fiace dissipation, we must allow for different temperatures at the interface,

3T~ ~ 3Ts, the growth being driven by the difference (~1~ ~ls). This will be done in the

next section.

We rust consider a normal liquid, with finite thermal conductivities in both phases. We

assume ps ~ p~ the liquid is on top such as to ensure mechanical stability. Jo is oriented

from solid to liquid : Jo
~

0 implies that the liquid is supercooled. The thermal impedances are

diffusive (in a quasistatic approximation which holds near threshold) :

Z[~= K~k Zj~
=

Ksk.

The dispersion relation (6) reduces to

°
- PL ~ + ~Ps PL)

I
Ii +

I ~
~p~~~[+ ~~~

~~1°~~ li~ (8)

When Jo
=

0, the Rayleigh waves are damped at low frequency by thermal dissipation (this
limit is seldom achieved in practice). The effect of the d.c. heat current is just to replace g by

an effective gravi~y

2 Jo dp~
~~~ ~

PL(Ks + KL) dT
~~~

From now on, g is meant to be the combination g (k ) defined in (7). The interface undergoes a

standard Rayleigh instability if g~~~ becomes negative, which occurs for J larger than a critical

heat current

Jc
= PL g

$ "~ "~
(io)

(J~ depends on the wave vector k through g (k)). Note that J~ is positive : heat must flow into

the high temperature phase in order to destabilise the interface. The situation would be
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reversed for water : the solid is then on top of the liquid, and J~ is negative once again, heat

flows into a supercooled liquid.
The result (8) for

«
normal

»
liquids is fairly obvious. It is not quite so for superfluid

~He. In that case, the d.c. conductivity K~ is infinite (I.e. G~
=

0) the thermal gradient exists

only on the solid side. The a.c. thermal impedance Z~ is monitored by thermal inertia of

second sound,

zji
=

c~ Ml
~

(ii)
s

where C~ is the specific heat per unit volume of the liquid and Mu the second sound velocity.
Carrying (11) into (6), we find

s2 lj dp~ 2 T/p~ Jo s dp~
~ ~~ ~ ~ ~~~ ~~~

k
~

dT u( C~ + sKs Ml C~ + sKs
dT

~~~~

Jo is no longer equivalent to a mere change in effective gravity. For small s, we can expand
equation (12) in a power series in s. The terms in s and s~

are small. Neglecting them we get
the dominant terms

~2
PL g + (Ps PL) j (I + B )

=
0 (13)

where

B
=

~ ~~~ ~

(14)
PL dT C~ Ml

B describes the
«

thermal inertia
»

due to second sound in the liquid, Its behaviour as a

function of T is shown in figure 2 ; it is dominant at high temperatures,

B

i

oi

~ Temp K
~

Fig. 2. The parwneter B(T) for superfluid ~He.

Equation (13) describes a purely oscillatory mode with s imaginary (= iso), The terms

which have been neglected describe the damping (or growth) of the mode. Putting

s =

iso + 3s we get, after simple algebra,

3s
=

) ~~ ~~~
(15)

Mu C~

where

Jc=PLg(k>~$ «s~~
~

(16)
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is the critical heat current. For Jo larger than J~ the mode is unstable and it grows
exponentially since the real part of s is positive. Equation (15) is very similar to the expression

(10) obtained for a normal liquid with no second sound ; the main difference comes from the

factor B/(I + B). But the nature of the instability is different : it occurs at finite frequency

so instead of zero frequency.
The instability appears first when g (k) is minimal, I-e- at k

=

0. We can readily calculate

the critical temperature gradient using the data of Grilly [5] taken on the melting curve, and

using estimates of second sound velocities and other quantities from the tables of Brooks and

Donnelly [6]. The result is shown in figure 3. Below 0.78 K the latent heat is negative so that

the critical temperature gradient is negative also. The largest magnitude for the temperature
gradient is 0.93 mK/cm. Changing the temperature of the liquid by a few mK could have a

destabilising effect if this were a complete description of the system. But we have ignored
surface dissipation : we have ignored both the resistance to growth at the interface which

leads to a difference in chemical potentials across the interface, and we have neglected the

Kapitza resistance which gives rise to a discontinuity in the temperature across the interface.

At first sight this neglect appears to be correct for surface dissipation leads to terms

proportional to s in the dispersion relation. For normal fluids these dissipative processes do

not influence the threshold of instability, only the rate at which the instability develops. But

for superfluid systems, s is mainly imaginary. The instability due to heat currents comes from

a competition between terms in s and in s~ in the dispersion relation. Consequently any term

which is of order s can strongly affect the stability of the interface.

~
E-

w
a
t

° Temp K
~

Fig. 3. -The critical temperature gradient for solid ~He if there were no surface dissipation.

2. The effect of surface dissipation.

Let us first neglect Kapitza resistance. The thermal balance at interface is the same as before.

But we allow for a resistance to growth : a finite velocity ( requires a chemical potential bias

(per unit mass)

JIL J1s =
A~

=

~
(17>

a
is a growth coefficient. (For ~He, it is usually written as m~ K~, where m~ is the atom mass :

K~ then has the dimension of a velocity). (17) implies that the liquid pressure departs from the

phase equilibrium curve p~(T), by an amount

Ap~=
~~~~ ~ (18)
ps-p~a
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The dispersion relation (13) acquires an extra term

~~~~j
j (19)

s- ~

which is dissipative and stabilizing. Such a contribution should be compared to the other

dissipative terms in (6).
For normal materials, the dispersion relation reduces to (8). (19) competes with the bulk

dissipation due to Ks and K~. The ratio of surface to volume dissipation is equal to

k/k*, where

k*
=

~~~ ~~~
T

~~~ ~
" (20)

p~ p~
dT Ks + K~

Under typical conditions, k* is of atomic scale Ilk * if of order the phonon mean free path in

either phase). On a macroscopic scale, surface dissipation is completely negligible as

compared to bulk dissipation.
The situation is opposite for superfluid ~He. Then (19) should be compared with the term

J~ S dp~

u( C~ dT

in (12). The ratio of surface to volume dissipation is

ldT j2
(Ps -PL) B~ «s

$
Ps

~~~
l +B T

" ~~~~

where B is defined in (14). Using values of
a

given by Bodensohn et al. ill, we find this ratio

much larger than I at «high» temperatures (above 0.8K) : it is about 105 at 0.8K,

6 x
10? at 1.2 K and 4 x 109 at 1.6 K. The critical heat current and temperature gradient are

accordingly pushed up by a factor ~10~,
up to 10 K/cm, a number beyond reach of any

experiment. We conclude that surface dissipation is here largely dominant : it precludes any

surface instability driven by Jo.
As the temperature goes down, the Kapitza resistance becomes significant : one must rely

on coupled equations for the mass flow through the interface 3
= p s

(, and the energy flow

3~. These are conveniently written as [3]

3
= ps a (A~I+ A

~~

~ (22)

AT
=

R ~i~ Al

in which 3~
=

3~ Ml is the heat current, AR, AT are discontinuities across the interface, R

is the Kapitza resistance and A is a cross coefficient that specifies how entropy is shared

between solid and liquid. For a given pressure 3p~ the interface temperature 3T~ and

3Ts should be calculated according to these new boundary conditions [3]. The result is

equivalent to a shin of a, which becomes

j i
psRZ~(TS~-A)~+RZS(TSS-A)~+Z~ZS£~

j~
a

~
T R+Z~+Zs

~~~~
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In the absence of surface dissipation (R
=

0, a =
co ),

i ps
Z~ZS£~

~ T (Z~+Zs)

which is just the bulk dissipation embodied in the first term in the bracket of (6). The genuine
surface dissipation involves the excess to Ho, I.e. an effective a~~r.

I I Ps R [Z~(TS~ ) + Zs(TSS A )]~

(
«

~
T(R + Z~ + Z~) Z~ + Zs

~~~~

The thermal corrections to (24) become important below 0.6K. But they are somewhat

uncertain as the values of R and A are not obvious. One possible choice is that of Andreev and

Knizhnik [7], who assume an interface completely impenetrable to phonons I.e.

a =

R
=

co, A
=

0. In the long wavelength capillary limit, s =

k~~i k
~

0, it seems more

reasonable to assume

Z~«R«Zs

in which case

=
+

~
(TSS A )~ (25)

"eff " T

In any event, thermal corrections can only enhance surface dissipation : any instability is

pushed up to very large heat currents, well out of reach of experiment.

3. The effect of a Grinfeld instability.

It was shown by Grinfeld [2, 3] that a non hydrostatic stress near the interface could drive a

melting instability a melting freezing wave relinquishing some of the bulk elastic energy.
Assuming a one dimensional geometry in which the strain u~ =

0, the instability is monitored

by the difference «~ «~~. It can be described as an additional term in g(k), which becomes

g(k>
=

g +
Yk~ 2 ~k

~~ ~~ ~~
~~~ (26)

~
=

(tr~ tr~~)~ ~'

E

(E is Young's modulus, « is Poisson's ratio). While gravity and capillarity are stabilising, the

elastic term leads to an instability if g~~~w 0.

In the absence of a heat current, the instability appears at the capillary wave vector

k~
=

~~~ ~~~ ~ ~~~

(27)
Y

when p exceed a threshold

Pl= lgY(Ps-PL>i~~~ (28>

When p exceeds p),
one faces the usual wavelength selection problem.
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Assume now that a d-c- heat current Jo is applied to a normal material (with finite

«~, «s). g is replaced by

Jo
g 1--

c~

where J~ is given by (10). The thermal and elastic instabilities compete : the corresponding
phase diagram is shown in figure 4. Note that the wave vector at threshold changes as

Jo increases,

k~
=

~~~ ~~~ ~
l

~~~

=

~~
(29)

Y
c

Y

i~/1]

Fig. 4. The stability diagram for a normal liquid as a function of heat current and uniaxial strain,

denoted by the parameter p given by equation (26).

As Jo increases, the instability moves to large wavelength. Conversely, one could apply a heat

current in the reverse direction and cause a decrease in critical wavelength, enabling more

waves to appear across a sample.
Such a simple picture no longer holds for ~He, since Jo only acts on damping of the wave.

The Grinfeld instability is not affected by a d.c. heat flow ; it always appears at the capillary
wavelength (27).

We now examine how these conclusions apply to the experiments of Bodensohn et al. [I].

They applied a sudden decrease in temperature to the liquid, thereby setting up a heat flow,

but also a non hydrostatic stress in the solid. The difference («~ «~~) arises partly from

thermal expansion in the x and y directions (in a vessel which we assume free of expansion),
partly from the change in liquid pressure p~ needed in order to remain on the phase
equilibrium curve. Mechanical equilibrium implies 3 «~~ =

3 p~, leading to a non hydrostatic

stress if we impose the constraint 3u~
=

3u~
=

0. More precisely, we may write

Ea
s

dT + « da
~~d«~

=

where a~ is the thermal expansion coefficient. We thus find

~~~~~ ~~>
E«

s
dT ~i j 2 «> dPL

-

(j~2j) dp~(i gi (30)

Here we have introduced the dimensionless parameter gj
=

Eas(dT/dp~)/(1- 2 «) which

expresses the relative importance of thermal expansion. For typical materials gj is small, but
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g

Temp K
~

Fig. 5. The variation of gj with temperature.

for helium it is of order unity for temperatures about I K. The variation of gj with

temperature is shown in figure 5. Here we have used the estimates given by Balibar et al. [4]

of E
=

3.05 x 10~ ergs/cm~ and « =

0.33.

The threshold for the Grinfeld instability is therefore a pressure change, dp~, given by
Balibar et al. [4] :

~
E(I ~r) (Ps PL) gY

~31)~~~
"

(l + ~r)(1- 2 tr>~ (l gi)~

~ i
E

~
~ 01 ',

6. - he

We can the pressure change either or
through

a small

temperature,
AT. Provided we work away from the

region
where gj = I we

small. In this way we find the
variation

in AT
hown in 6. Above I. I K it

generate the Grinfeld
instability

by changing the temperature.
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