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Résumé. — On étudie la dynamique de basse fréquence liée i la tramsition de phase du
deuxi¢me ordre de I’oxalate d’ammonium deutéré, par diffusion cohérente inélastique des neu-
trons. Cette transition est ferroélastique & pression atmosphérique, et conduit 4 une phase mo-
dulée & 5kbar. Dans les deux cas, les expériences montrent que le méchanisme de la transition
est le couplage entre les phonons TA qui se propagent snivant c¢* et sont polarisés suivant a
et un mode de réorientations d’une famille d’ions NDI, Ces derniers sont couplés par des in-
teractions de type ANNNI qui dépendent de la pression. De faibles changements des valeurs
des paramétres entre les deux pressions suffisent a expliquer des comportements statiques et
dynamiques différents.

Abstract . — The low frequency dynamics related to the second order transition which takes
place in ammonium deuterated oxalate has been investigated by coherent inelastic neutron scat-
tering. This transition leads to a ferroelastic phase at zero pressure and to an incommensurate
phase at 5kbar. At both pressures, our experiments show that the coupling between a reorienta-
tion motion of one family of ND4+ ions and the TA phonons propagating along ¢* and polarized
along a drives the transition, the ND;" being coupled through a pressure dependent ANNNI
model. Weak changes in the parameters explain the changes with pressure of the static and
dynamical properties of the transition.

1. Introduction.

This paper reports on the first inelastic neutron scattering experiments performed on ammo-
nium deuterium oxalate Co04DNDy, 1/2D,0 (in short AHOD). This crystal, as well as its non
deuterated analog, AHO, has been already studied by various techniques. X rays measurements

(*) UA. 71,
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[1,2] revealed that in the room temperature phase, (phase I, space group Pmnb (DLS) with
Z = 8), the NHJ ions form two distinct families, both located on the mirror planes, one of
these families being disordered. At zero pressure, AHO and AHOD undergo a second order,

equitranslational, transition which leads to a Plgnll (C5,) structure (phase IT) [3]. A Bril-

louin scattering experiment proved that the elastic constant Csgs dramatically decreases in the
vicinity of this phase transition, indicating a ferroelastic character [4].

Raman scattering experiments {5,6] revealed, in the vicinity of this transition, the existence
of a central peak visible in the B (ac) geometry, the intensity of which increased while its
linewidth decreased close to the transition. These Brillouin and Raman experiments were
interpreted as the result of a strong coupling between the NH} ordering process, and the es
shear deformation. Indeed, each disordered NHI ion has two possible orientations, symmetric
with respect to the mirror plane. These two orientations can be represented by the two values
of a one half pseudopsin, and one of the linear combinations of the four pseudospins existing in
the unit cell generates a spin variable with the Byg symmetry. This variable displays diffusive
dynamics, characterized by the relaxation mode detected in our Raman experiments. This
mode should, by itself, freeze at a temperature T, which, in AHO, turned out to be around
40 K. Nevertheless, this variable is linearly coupled to the es deformation, and this coupling is
strong enough to push the transition temperature up to T, = 146 K, temperature at which the
elastic constant goes to zero. These Raman experiments enabled one of us [5] to analyse the
N H;" individual reorientational dynamics. It was found that this dynamics could be described
by a Markovian process, characterized by a mean life time, 7, in a given orientation, which, in
phase I, was simply governed by an Arrhenius process

T =7, exp(fVs) (1)

Another set of Raman scattering experiments ‘were also performed under hydrostatic pressure
[5,7]. It showed that, below a critical temperature T; = 146 K, and above a critical pressure
P. = 2.6 kbar, the second order phase transition leads to a new phase, called phase III; by
decreasing further the temperature, at constant pressure, phase II was recovered through a
first order phase III - phase II transition. The analysis of these experiments suggested [6] that
phase III could be incommensurate, characterized by a wave vector q, which would depend on
pressure but not on temperature.

This suggestion was confirmed by X ray [8] and elastic neutron experiments [9]: q, was found
to remain parallel to ¢* and to vary, for AHOD, from at most 0.06 c* at P = 2.8 kbar to at least
0.24 c¢* at 8 kbar. From the combined analysis of the ultrasonic and Brillouin measurements
[4,10], and of the Raman data, it was proposed [7] that the phase I - II transition below P, and
the phase I - III transition above P, could be driven by the same mechanism, namely a strong
coupling between the pseudospin ordering and a local deformation: this deformation develops
coherently either as a TA phonon propagating along ¢* and polarized along a (P > P.) or as
its @ = 0 limit, i.e. an es deformation (for P < P).

The present inelastic neutron experiments were undertaken in order to check the validity
of such a prediction. The dynamical consequences of a bilinear coupling between a phonon
system and a pseudospin system are known, from a general point of view, since the pioneering
work of Yamada et al. [11]. They showed that the same mechanism leads to two very different
situations close to the transition depending on the value of wpn7 where 7 is the individual
residence time defined above (Eq. (1)) and wpp is the bare frequency of the modulation which
will eventually freeze below the phase transition. Qur Raman experiments suggested that both
above and below P, an wpp7 < 1 situation would prevail. The present work shows that,
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indeed, the proposed mechanism drives the transition both below and above P, but that, at
least at 5 kbar, and quite presumably above this pressure, one deals with an wpn7 > 1 regime.

The present paper is organized as follows: we briefly review, in section 2, the bilinear phonon-
pseudospin coupling theory to emphasize the shape of the phonon dynamical response function
in the two cases wpnT < 1 and wpnT > 1, and the wave vector dependence of the linewidths
of this response function. Section 3 describes the form of the interaction energy between the
pseudospins that we have been using for analyzing our neutron data. In section 4, we give some
details on the experimental set up, and on the method we have used to analyze the data in order
to extract parameters which should reproduce the principal features of the phonon response
function. These parameters are analyzed in section 5, first on a qualitative basis, secondly
on a quantitative one which shows a fairly reasonable agreement with the model developed in
sections 2 and 3. Finally section 6 summarizes our result, and compares the consequences of
the interaction energy of section 3 with that of an alternative model proposed to describe the
phase diagram of AHOD.

2. Description of the model.

In this section, we shall recall the principal properties of the dynamical model we are going to
use for the analysis of our neutron inelastic scattering data.
The structural data on phases I and II of Kiippers et al. [2,3] show that the oxalate ions

C204H™~ lie in planes perpendicular to the crystallographic ¢ axis, roughly located at z = i—

and z = Z—; they form chains approximately parallel to the b axis, and strongly coupled in these
. . - 1

planes. The two families of NH} ions are located in the vicinity of the planes z = 0 and z = 3

and each NH} lie on one of the mirror planes at z = i— orz = % These ions act as cog-wheels

between neighbouring C2O4H™ planes, and one must conclude from the various experiments
so far performed [4-9] that this cog-wheel motion can only take the form of a relative glide of
two neighbouring planes in a direction parallel to the a axis. Such a motion can be viewed as
a sum of transverse acoustic phonons, propagating along ¢* and polarized along a.

In view of the analysis of our experimental data, which have been collected on phonons
propagating and polarized in the (010) plane, we shall describe here a dynamical model valid
not only for the TA phonons propagating along ¢* and polarized along a, but for any pseudo
TA phonons propagating and polarized in this plane.

The corresponding phonon free energy is:

Fn= 3 3 0X(@Q@Q(-a) @
q

where q is restricted to the (010) plane and @Q{(q) is the TA phonon normal coordinate. Due
to the special symmetry properties of the non symmorphic Pmnb space group [12], all the
representations are degenerate, in this plane, at the zone boundary, so that w?(q) can fairly
well be represented, for all the wave vectors of interest by:

wi(q) =v* (@) ¢’ 3)

where v (q) is the speed of sound in the q — 0 limit for q parallel to the unit vector g.
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The four equivalent sites on which the disordered NH} ions are located have coordinates

(1)

1 1 1 1
(1) 1 +7I: +€ (3) =7 +77+ oy €+ ¢
@3 e @=3 g+l 44l

4’ 7)’ —4’ 17 2’ 6 2

where 7 is close to :11- and e € 1.

If of (i = 1—4) is the pseudospin variable which describes the NHJ orientation disorder at
the site 7 of the L*" cell of the crystal, oF transforms, under the mirror plane operation which
leaves that site invariant, as the A” {odd) representation of the site symmetry group. Let us
define o;(q) as the Fourier transform of of:

1 .
oi(q) = —= Zo{‘e‘q'(R”"') (5)
N T
where: a . +
a+tc
t1=0,t2=-2—,t3=-2—a,ndt4= ) (6)

Let us furthermore define:

72(a) = 5 91(a) +02(a) + 75(a) + 04(a)]
1

o3(q) = 5 [01(q) + 02(q) — o3(q) — 04(q)]

[l

(7
0:(q) = 5 [01(a) — 02(q) + 03(q) — o4(q)]

74(a) = 5 [01(2) ~ 02(a) ~ o3(a) + a(a)].

One easily verifies [12] that 04(q) transforms under the space group operations, as the Bgg
representation for q = 0, as the 74 representation for q // ¢* and as the 73 representation for
q J/ a*, while o4(q) transforms for the same vectors, respectively as Bs,, 74 and 7. Following
[7], the free energy related to the o4(q) components of the pseudospins is, in the vicinity of
the phase transition:

1 .
Fpo = 2 E k8T — Ja(q)]) ca(q)ea(—q) + higher order terms (8)
q

where kg is the Boltzman constant, and J4(q) the interaction energy constant, the q depen-
dence of which will be discussed in section 3.

Finally, 04(q) and the pseudo TA phonon with the same q, belong to the same represen-
tation, and are thus bilinearly coupled, this coupling describing, in some sense, the cog-wheel
aspect of the problem. As Q(q) represents, in the Fourier space, a quasi-homogenous displace-
ment, the corresponding part of the free energy must be written as:

F.= %zz (ﬁ @.d -Q) [Q(a)ou(—q) — Q(—q)oa(a)] (9)

where d is a second rank tensor and 1 (q) is the displacement vector (normalized to unity)
associated with Q(q); as in the case of the pseudo TA phonon dispersion curve, one expects
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that the algebraic form of equation (9) holds up to the Brillouin zone boundary, i.e. that it

will not be necessary to introduce any other q dependence in 'd . The total free energy is the
sum of equations (2), (8) and (9) and the corresponding equations of motions for Q(q) and
o4(q) may be deduced from:

oF

oF = wzQ(q) m = iw’rkBTO'd(q). (10)

0Q(—q)

In the high temperature phase I, we can, in the mean field approximation, neglect the higher
order terms of equation (8), and we shall neglect any intrinsic phonon damping. The phonon
response function (Q(q,w)@(q,w)*} is then given by

1
e = 2
(u @.d -q)
kT — Ja(q) — iwrkpT

(11)

(Q(q,v)Q(q,w)") = [1 + n(w)]im

w?(q) —w? —

where n(w) is the usual Bose-Einstein factor.
In the following, q will remain parallel either to a* or to c¢*. Then 1 (q) is the unit vector

of the (010) plane perpendicular to q, d is limited to its zz component, and one can write,
to simplify: _ _
d=x.dzZ=%.d X (12a)

Similarly, for these two propagation directions:

S [
v(@) = v = 5 (12b)

where Cys is the elastic constant relative to the es shear deformation and p the mass density.
Finally, it is convenient to write:

Ja(q) = £pTu(q). (12¢)

Inserting equations (12a, b and c) into equation (11), and admitting, as will be the case,
that Ty4(q) has its maximum for q = q,, where q, is along a symmetry axis of the (010) plane,
the transition temperature is given by:

2 a?

% ke (T - Ta(@)

0. (13)

The general shape of the response function (Eq. (11)) has been already discussed e.g. in
the original paper of Yamada et al. [11]. It is nevertheless worth while recalling here the main
effects which are expected to appear in the present case which is characterized by two specific
aspects:

a) the pseudospins couple to an acoustic phonon, and q, may be equal to zero (P < P,
case).

b) The coupling is very strong for, in the hydrogenated case, at P = 0 kbar, the transition
temperature is increased from T, ~ 40 K to T, = 146 K, and the same orders of magnitude

T,
are expected to be found here. 1 — —"1(13)- will thus be, in the whole temperature range, of the
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. 1 - . . .
order of unity (always larger than ~ 5) and it is convenient to rewrite equation (11) under the

form:
* 1
(Q(a,2)Q(a,0)") = (1 + n(w))im 7 (142)
v2¢? — —w?
T ke (1- T8 o)
1
and to discuss the shape of the spectrum in two extreme cases.
a) ¢ and 7 are such that v,q7 < 1.
d? d2kpgTr
D(qw, T, T ~(‘u§—————) 2 _dw q? — w? 15
(a ) ks [T — Tua(q)] ks [T~ Ta(Q)l* (9

D(q,w,T, ) represents, for each q, a phonon, the frequency of which decreases with temper-
ature, (and will, eventually go to zero for T = T; and q = q,) while its linewidth, which is
the coefficient of iw, increases. (The denominator (T — T4(q))® decreases with T, while the
residence time 7 increases enough, for T'r to increase when lowering T').

Furthermore, at each temperature, this linewidth varies as ¢2, as long as the voqr < 1
approximation remains valid, this damping remaining relatively modest (see b)

b) voqr > 1

D(q,w, T, ) may now be approximated, in the vicinity of w = v,q, by

2 - 2 ;122
D(q,w,T,7) = (vg d [T — Ta(q)) ) . id%g ,

" kp [T - Ta(q)) voq7T kgTwTr et (162)

which shows that the phonon frequency practically does not change from its high temperature
value, v,¢s The phonon linewidth can thus be approximated by

dz
Fawamy = Sk Tr (16b)

indicating a ¢-independent linewidth which might decrease with decreasing temperature, and
is always much larger than the value obtained in a).
Nevertheless, in the vicinity of w = 0, wr € 1 and one must write:

Al @ ], dsTr R
Dlq,w,T,7) = { [ ° kp[l - Td(Q)]] ks [T — Ta(q)]? } 1 (a7)

This represents a Lorentzian central peak, the intensity of which diverges for q = q,, T = T,
while its width decreases (critical narrowing effect).

In summary, through their coupling to the pseudospin diffusive dynamics, the phonons
always become damped (or acquire an extra damping if they were already damped) and the
wave vector dependence of this damping changes according to the regime. Nevertheless, the
main effect of the pseudospin ordering is the appearance, in addition to the normal phonon
resonance, either of soft modes on some part of the acoustic phonon branch or of a central




Ne3 INELASTIC NEUTRON SCATTERING OF CzO4DND4,-;—D20 335

peak. This was briefly discussed by Rowe et al. [13], in another context, and making use of a
partly different model.

As we shall see in section 5, our experiments have revealed both types of behaviour. At
zero pressure, we shall be in case a) for some of the considered wave vectors, both because
qo = 0 and because 7 is relatively short. Conversely, at 5 kbar, q, is finite, and = has, at each
temperature, a larger value than for P = 0. All our experiments will thus be characteristic
either of case b), or of an intermediate case more reminiscent of case b) than of case a).

3. A model for the pseudospin interaction energy.

A very important feature of the AHOD structure is the quite short value of the lattice parameter
¢ with respect to both a and b. For instance, at room temperature, we have found, at zero
pressure

a=1234 =1134 c=69A4,

values quite similar to those obtained by Kippers [2] for AHO. Let us assume that the in-
teraction between two ND} pseudospins can be monitored by the relative distance between
their N atoms and, for the sake of simplicity(), that ¢ (see Eq. (4)) is equal to zero. Then the

5+3l
b 2 2 ’

. b .
four distances % +3 —(25 + —| and |¢| turn out to be approximately the same. They

2

Fig. 1. — The four types of interactions. Only the interaction between pseudospin (1) and: pseu-

dospin (2) differing by ~ %P—, (A type); pseudospin (3) differing by ~ R:;—E, (B type); pseu-
a-tc

dospin (4) differing by ~ , (C type); pseudospin (1) differing by ¢, (K type) are shown here,
while, in the actual calculation, all the + and — signs, their possible non equivalence, and all the
interactions generated by the space group operations have been taken into account.

(1) This approximation has not been made in actually computing J3(q).
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represent respectively the distances between one given pseudospin and
- its four nearest neighbours (see Fig. 1) located in the plane perpendicular to ¢ with the
same value for z;

~ its four nearest neighbours, in each of the two planes, with z differing by :}:—;-;

— its nearest neighbour, in each of the two planes, with z differing by +c.

Furthermore, these distances are clearly smaller than any other N-N distance between dis-
ordered ND} ions.

A lengthy but straightforward calculation shows that, when limiting the interactions of one
pseudospin to the different pseudospins enumerated above, for q parallel to the (010) plane, one
gets, using equations (5) and (7) to transform the pseudospin interaction energy into Fourier
space variables:

Ji(d)=—Acos X ~Bcos Z+C cos X cos Z ~ K cos 27 (18)

with:

X =q. Z=q. (19)

vl m
N O

In this expression:

A is the sum of the interaction constants between one pseudospin and its four nearest neigh-
bours which belong to the plane with the same value of z. (Interaction between pseudospins
(1) and (2) or pseudospins (3) and (4));

B is the sum of the interaction constants between one pseudospin and its four nearest
neighbours which are in the same mirror plane and in planes differing by :L-% {pseudospins (1)

and (3) or pseudospins (2) and (4));
€' is the same sum for the four pseudospins which belong to different mirror planes, with z
differing by :tg— (pseudospins (1) and (4) or pseudospins (2) and (3));

Finally, —K is the interaction constant between one pseudospin and its nearest neighbour
with z differing by ¢ or —c.

Let us briefly comment on equation (18) and its physical meaning. First, for P = 0 kbar,
the phase transition is ferroelastic, which means that the maximum of J4(q) takes place at
q = 0. This implies that:

C—-A>0;, C-B>4K > 0. (20)

Conversely, for P > P,, the phase transition takes place for q = q, where q, is parallel to
c*. This is possible only if:
C—A>0;,4K>C—-B>0. (21)

Secondly, for q parallel to a*, Z = 0 so that the dispersion of J4(q) is only related to C — A.
Similarly, for q parallel to ¢*, J4(q) reduces to:

Ja(g) = —C+(C - A)+(C - B) cos Z — K cos 2Z q/ c*. (22)

This means that the four effective coefficients of the theory are C — A, which describes the
dispersion along a*, C, and finally C — B and K which describe the dispersion along c*. It
is the competition between the values of these two last parameters which will decide for a
ferroelastic or an incommensurate low temperature phase (cf. Eq. (22)).

The preceeding results have an obvious meaning. What has been developed in this section
is an ANNNI model [14] with competing interactions between the nearest and the next nearest
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planes: the nearest plane interaction is of the “ferro” type (C' — B > 0) and the next nearest
interaction of the “antiferro” type (—K < 0). One expects that pressure influences the ratio
(C—-B)/4 K, which is not unlikely because the lattice is rather soft along the ¢ axis (Cs3/C11 ~
0.35, Ca3/Ca2 ~ 0.20 [10]). The experimental evidence that the incommensurate phase exists
only above a critical pressure P, implies that this ratio decreases with increasing pressure. Due
to the coupling with the TA phonon, the dynamics we are going to probe, in the following, will
be that of a compressible ANNNI model.

In equation (18), the four interaction comstants A, B, C and K have been introduced
on a phenomenological basis. They represent, in fact, physical effects which have, at least,
two different origins. First, each disordered ND} ion is in a general lattice position for all
orientations, and thus has no reason to fully keep its tetrahedral symmetry. Indeed, a small
dielectric signal related to the NDJ reorientation dynamics has been detected by Albers et al.
[16], (see Sect. 6) which indicates that each pseudospin orientation is related to a weak dipole
moment. This results in a direct interaction between the pseudospins. A second and no less
important origin is related to a direct interaction (Van der Waals, H bonding...) between a
ND} ion and the neighbour oxalate ions. Eliminating the relative motion between these two
types of ions leads to an effective interaction between pseudospins which is unfortunately very
difficult to estimate.

4. Experiments.

4.1 DATA COLLECTION. — Inelastic neutron scattering experiments were performed at the
ORPHEE Reactor (L.L.B., Saclay) with the triple axes spectrometer 4F1 located on a cold
source. The sample was mounted either in a closed cycle displex cryostat or in a high pressure
cell, for measurements at atmospheric pressure and at 5 kbar respectively. Data were taken as
a function of temperature with a 0.1 K stability. Constant k; = 1.55 A" scans allowed us to
measure phonons in neutron energy gain with a flat analyser.

Both monochromator (vertically bent) and analyser were of pyrolytic graphite (PG(002)).
A beryllium filter was used on incident k; to avoid second order contamination. Horizontal
collimations on incoming and outcoming neutrons were such that, for most of the data, the
energy resolution was ~ 0.04 THz. (The mosaic spread of the sample was approximately of 24').
In order to measure the dispersion curves of the transverse acoustic modes which correspond
(for ¢ — 0) to the Css elastic constant, the sample was oriented with a scattering plane defined
by a* and ¢*. At atmospheric pressure, we also performed one measurement in the (100)
scattering plane. This allowed us to study the transverse acoustic mode which propagates
along c¢* and is polarized along b, a mode uncoupled to all the spin variables.

4.2 SPECTRAL PROFILE ANALYSIS. — Each spectral profile was analysed with the help of
programs existing at the L.L.B. They are able to describe a profile as a sum of damped
oscillators and of Lorentzian curves centered around a given frequency. As a consequence
of the analysis performed in section 2, the spectrum was considered to be the sum of three
separate terms:

a) The dynamical response of a damped oscillator: as usual, this function was described by:

— (14 n{wNm F*(Q)
SPh(Q:“’) = (1 + ( ))I (wgh(Q) . iwrph(Q) _ wz) (23)

where hQ = Fi(ke — ki) and Aw are respectively the momentum and energy transfer of the
scattering process, n(w) the Bose-Einstein factor, which, in most of the energy range, can be
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) kT . .
approximated by e F(Q) is the static structure factor, wgh(Q) the (temperature dependent)

phonon frequency and I'y,,(Q) its damping parameter, equal to its FWHM for underdamped
phonons.

b) A Lorentzian central peak representing the spin reorientation dynamics for some temper-
ature and frequency range. This peak is expressed as

5uQue) = (1 + ) i () (29

where I',(Q) is the HWHM of this central peak and Ip,(Q) its intensity at
w=0.

¢) A §(w) peak, which takes into account the incoherent elastic scattering processes. This
mechanism is always present in the experiments and should be essentially temperature inde-
pendent.

All our data were systematically fitted, taking into account resolution effects. This was
achieved by computing the total response function (sum of the three terms listed above) con-
voluted with the resolution of the spectrometer. Least square refinements of the raw data
provided, for each temperature and wave vector, Ir,, I'r, wpn, [ph, F(Q), as well as the Dirac
peak intensity and we verified that, for each q, the latter did not depend on temperature, as
expected. Let us finally note that even though we used a good energy resolution, we could not
avoid, for very small momentum transfer, contamination effects arising from the nearby Bragg
peak.

4.3 EXPERIMENTAL RESULTS.

4.3.1 Atmospheric pressure results. — The mode which propagates along ¢* and is polarized
along b is not coupled to the pseudospin variables. It was thus expected to be temperature
insensitive, and to have a narrow linewidth at any temperature. This last point is well exam-
plified in figure 2 which shows the corresponding data at 166 K for ¢ = 0.2 ¢* and q = 0.3
c*. The line width of the phonon is indeed quite narrow (e.g. 0.044+ 0.005 THz at q = 0.2 ¢*

(018 A7H).

In the (010) scattering plane, the two purely transverse acoustic modes propagating along
¢* and a* have been observed near the (400) and the (002) Bragg reflections, respectively.
The two branches have been obtained at different temperatures in the range 300 K — 166 K.
The results demonstrate that they have the same behaviour. In figure 3, we show some data
relative to the mode which propagates along ¢* at q = 0.1 ¢* (0.09 A” 1) The phonon is
clearly seen to soften when the temperature decreases from 252 K to 172 K and it becomes
overdamped near the phase transition. (I' = 0.43 £+ 0.04 THz at 172 K). The central part of
the scan (w = 0) is the elastic incoherent response of the crystal. The full line indicates the
result of a least square fit following the procedure explained above, and does not contain any
Lorentzian contribution.

This softening is further examplified in figure 4 where are represented as a function of
temperature, the square of the phonon frequencies for approximately equal values of q along

c* and a* for the two cases: q = 0.05 ¢*, and 0.1 a* (q ~ 0.05 A—l) andg=0.1c*and 0.2 a"
(a~01471).
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Fig. 2. — Neutron scans at P = 0 kbar and 7' = 166 K for q = 0.2 ¢* and q = 0.3 ¢* in the (100)
plane, exhibiting the narrow TA phonons polarized along b.
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Fig. 3. — Neutron scans at P = 0 kbar and q = 0.1 ¢* at various temperatures for a scattering vector

in the (010) plane, exhibiting broad TA phonons polarised along a. The full line is the convolution of
the instrumental resolution function with a damped oscillator plus a §(w = 0) incoherent elastic peak.

4.3.2 5 kbar results. — High pressure was generated in an aluminium alloy cell with helium
as pressure medium. Pressure is determined with a precision of + 10 bar. As at atmospheric
pressure, the measurements were performed on the purely transverse acoustic branches of the
(010) plane as a function of temperature, limiting here the range from 200 K to 138 K which is
the phase I-III transition temperature. Many data were collected in the vicinity of q = 0.17 ¢*
where the satellite will eventually appear below T¢, in order to analyse properly the dynamics
of the transition.

Figure 5 displays the data for g = 0.1 c*. At this pressure, the fitted results demonstrate that
the phonon frequency remains temperature independent (wpn ~ 0.27 THz) while its damping
slightly increases with decreasing temperature. At the same time, a central response is shown
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to develop with decreasing temperature. Its profile has been fitted by a Lorentzian fu
the half width at half maximum of which decreases while its intensity increases. These)
may be compared to those of figure 3: in particular, one sees that, 15 K above the transiti
atmospheric pressure, the mode has softened to 0.16 THz (7" ~ 182 K) and the w = 0 res
is only the 6 elastic incoherent response; conversely, at 5 kbar and 143 K, i.e. 5 K only
the transition, the mode frequency is still 0.27 THz but the w = 0 part of the scan has no

a 6 profile.
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Fig. 5. — Same as in figure 3 at P = 5 kbar. A Lorentzian central peak has been added to the in
herent peak and the damped oscillator before convolution with the instrumental resolution functio
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5. Discussion.

5.1 QUALITATIVE DISCUSSION. — Let us first proceed to a semi qualitative discussion of the
experimental results by comparing the parameters obtained for the damped oscillator and for
the central peak to the predictions of the model analysed in section 2, first at zero pressure,
then at 5 kbar.

5.1.1 Zero pressure results. — As mentioned at the end of section 2, at zero pressure where
the phase transition takes place at the Brillouin zone center, one expects that for low q values,
the TA phonons both for q / ¢*, u / a and for q // a*, u // ¢, will show typical soft mode
behaviours: the phonon frequency decreases markedly when T decreases towards the critical
temperature 7. and no central peak is detectable while, at each temperature, the phonon
FWHM, increases as ¢2.

The first two results are clearly demontrated by figures 3 and 4, and the straight lines of
figure 4 show that the squares of the phonon frequencies do not follow, in the whole temperature
range, a (T — Ter) law; this is in agreement with equation (15), in which the first term of the
r.h.s. has an hyperbolic dependence on temperature.

We have plotted in figure 6, 1/I'(q), the square root of the FWHM of the phonons for various
values of q // ¢* at T = 242 K, 198 K and 180 K. As expected from equation (15), for small
values of q, v/I'(q) is linear in ¢, the full curve having a downwards curvature, indicating that
the v,97 < 1 condition is less and less fulfilled with increasing ¢. Furthermore, as 7 is expected
to increase with decreasing temperature, this condition should be limited to shorter values of
g when the temperature decreases.

P=0kbar
0.9
0.8 QP
0.7 * Q)
0.6 % * X
Eo,s— < X
r20.4 ¥
0.3 X T=180K
i X ¥ T=198K
02 ¥ O T=242K
04 O
0.0|Illliltllrllll]llIl[llTl[llll_IlllI]Illlllll
00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
{al

Fig. 6. — /Tpn(q) versus ¢ (in |¢*| unit) for q // ¢* and P = 0 kbar at T' = 242 K, 198 K and 180 K.
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This last effect is also apparent in figure 6: the domain of validity of the law /T'(q) ~ ¢ is
practically limited to q < 0.1 ¢* at T' = 180 K while it extends, at least, up to q = 0.2 ¢* at
T =242 K.

5.1.2 5 kbar results. — The shape of the response function is quite different from the zero
pressure case, as was already apparent when comparing figures 3 and 5: at 5 kbar, no softening
of the damped oscillator can be detected in the neutron data fit in the vicinity of q, = 0.17 ¢*,
where the incommensurate satellite will eventually appear below T¢; conversely, at each wave
vector, a central (w = 0) peak develops with decreasing temperature.

These two results clearly appear in figures 7 and 9. A plot of the damped oscillator frequency,
wph, versus T is shown in figure 7 for q = 0.15 c*, 0.17 ¢* and 0.20 c* respectively. In each
case, this frequency is essentially constant within experimental uncertainty, exhibiting in fact
a small frequency increase with decreasing temperature which is beyond the approximations
considered in this paper. The (w = 0) intensity of the central peak, I, is reported, for the same
values of q, in figure 9a while the corresponding HWHMSs of this Lorentzian peak are shown
in figure 9b: as expected, the central peak intensity increases with decreasing temperature,
tending to diverge for q = q, and T = T, while its linewidth decreases, and tends to zero in
the same limit, in agreement with equation (17).
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TIK]

Fig. 7. — wpn(q) versus T at P =5 kbar for ¢ = 0.15 ¢*, 0.17 ¢* and 0.20 c*.

The model analysed in section 2 also predicts the damped phonon linewidth to be, at each
temperature, wave vector independent in the v,g7r 3> 1 regime (Eq. (16b)), and this result
should be more valid, the larger the g. Figure 8 on which I'yy, is plotted versus q for T = 198 K,
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152 K and T' = 138 K, is, from this point of view, rather disappointing. It shows both a large
scattering of the results (see, e.g., the two low temperature values) and no real tendency to
saturation for large q, even if one is very far from the T’ ~ ¢? regime of the P = 0 kbar results,
and if the damped oscillator linewidths are, as anticipated, much larger at P = 5 kbar than at
0 kbar for each value of q and T.
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Fig. 8. — I'pn(q) versus ¢ at P =5 kbar for T = 198 K, 152 K and 138 K.
5.2 GLOBAL FIT OF THE DATA. - The previous results show that the parameters obtained

by the fitting procedure of section 4 qualitatively behave as predicted by the model in section 2,
indicating the validity of the pseudospin acoustic phonon coupling hypothesis. Nevertheless
our fitting procedure has treated each temperature and each wave vector independently. Due
to the weak intensity of many spectra, this technique introduces large statistical errors: for
instance, in figure 9, the intensity of the central peak at 138 K is higher at q = 0.15 ¢* than
at q = 0.17 c*, contrary to what is expected. This prevents those parameters to be further
analysed with the help of the various expressions derived in that section. In order to test more
carefully the validity of our model, we have, in a second step, proceeded to a global fit of all
the data pertinent to a given pressure. Considering that the spectral profiles, as obtained in
section 4, represent a first approximation of the global phonon response function (Eq. (14)),
we have looked for the values of v,, d, T¢(q) and 7(T) which give an overall best fit to the
spectral profiles collected at different wave vectors and temperatures for a given pressure. Due
to equations (1), (13) and (18), this yields at 0 kbar, seven independent parameters: 7, and
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Vo which define r(T), A, B, C and K which characterize T4(q) and, finally, v,, the sound
velocity. At 5 kbar, the number of independent parameters reduces to six, as A, B and K are
coupled through

C - B =4K cos qo.-;- (25)

while q, = 0.17 ¢* is experimentally determined.

The global fits have been performed using all the spectra collected at a given pressure. In
both cases, these spectra correspond to q along a* and c*, sampling more closely the vicinity
of qo (= 0 at 0 kbar or 0.17 ¢* at 5 kbar). 39 spectra were used at both pressures with
temperatures ranging from 295 K to 163 K at 0 kbar, and from 198 K to 136 K at 5 kbar.

The seven parameters resulting from these global fits are given in table I for both pressures.
Our results are also graphically displayed in figure 10 which represents T4(q) for q // a* and
q // ¢* at 0 kbar (Fig. 10a) and 5 kbar (Fig. 10b) while the residence time, 7, is plotted versus
T for those two pressures in figure 11. Let us comment on the values of these parameters.

Table I. — Values of the parameters entering into the acoustic response function at P = () kbar
and 5 kbar. 7, is in pcs, V,, A, B, C and K are in Kelvin, -~ is in THz, where v, is a sound

velocity, and ¢ is the lattice parameter in the ¢ direction.

0 kbar 5 kbar
To |0.05 % 0.02 [0.035 = 0.012
Vo| 302483 | 398451
Al 39420 53 + 20
B| -60+20 | —90+30
C| 67+20 68 + 22
K| 24413 46 + 8
L S 3.4
[+

For zero pressure, Ty(q = 0) is reasonably close to its hydrogenated value (T4(q = 0) = 40 K)
[6]; similarly, the barrier energy V; is 302 K for AHOD instead of 320 K for AHO, 4nd the
individual residence time, 7, measured at 250 K is 0.17 pcs in AHOD instead of 0.15 pes in
AHO. The values relative to the NH} or NDJ reorientations are thus comparable for AHOD
and AHO at zero pressure, which is already a satisfactory result as the techniques used here
and in [5] are quite different.

Another important test of our model consists in comparing the 0 kbar and 5 kbar values of
the different parameters. They turn out to be, as expected, in agreement. The speed of sound,
9, differs by less than 10 percent between these two pressures, and the different parameters
describing the various interactions between the pseudospins are only moderately affected by
the application of pressure. Furthemore, for both pressures, there is clear dependence of Ty(q)
on q for q J/ a*. Nevertheless, as is apparent in figures 10a and b, these small changes, and in
particular the larger increase of K with respect to C — B, are sufficient to shift the maximum of
Ta(q) from q = 0 at zero pressure to q = 0.17 ¢* at 5 kbar. This does not affect substantially
the value of the maximum of Ty(q) : the 5 kbar pressure is too close to the critical pressure P,
to make an important change on the maximum value of the interaction constant.
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Fig. 9. — I1(q) (a) and Ty,(q) (b) versus T at P = 5 kbar.
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Another important aspect, is the increase of both 7, and V,, with pressure. As expected, it
reduces very much the T — q domain in which, for the TA phonon, wpn7 < 1. For instance,
for q = 0.1 ¢*, while this condition is always fulfilled at zero pressure, it is only fulfilled, at
5 kbar, above 180 K, and it is never the case, at this pressure, for q = 0.17 ¢*. This explains
the large difference appearing, for instance, between the spectra shown in figures 3 and 5.

Let us finally note that the analysis which we performed has been based on extremely severe
conditions: for instance, a linear dispersion relation for all the acoustic phonons considered here
may be an over simplification, as well as the total independence of the corresponding speed
of sound on temperature. The quality of the global fits could have been largely improved by
taking such effects into account, as well as by adding an intrinsic acoustic phonon linewidth
due to the orientational disorder existing in AHOD. As the major objective of this paper was
to test the effect of applying pressure on the coupled phonon-pseudospin statics and dynamics,
we have decided to stick to the minimum of meaningful parameters, the various uncertainties
coming from their increased number making more hazardous any quantitative discussion.
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Fig. 11. — Residence time 7, versus temperature for P = 0 kbar and 5 kbar.

6. Summary. Discussion. Concluding Remarks.

In the present paper, we have analysed a neutron inelastic coherent scattering experiment
performed on AHOD, at zero pressure and at 5 kbar, in the high temperature disordered phase.
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This experiment was designed to test the validity of a model for the series of phase transitions
which take place in this crystal. This model explains these transitions as the result of a linear
coupling between one specific linear combination of the pseudospin variables describing the
orientational disorder of some NDJ ions on the one hand and a transverse acoustic phonon on
the other hand. This phonon either propagates along ¢* and is polarized along a, for P > P,
or is its ¢ — 0 limit, i.e. the es deformation, for P < P..

We have shown that this model correctly explains the data collected in our experiments
both above P. (5 kbar experiments) and at zero pressure. The static change from a zone
center transition to a normal-incommensurate transition has been described as the result of an
ANNNI model i.e. a competition between nearest neighbouring planes of NDJ with ferro-type
pseudospin interactions and an antiferro-type of interaction between second nearest planes. A
weak evolution of these interactions with pressure is sufficient to change the transition from a
ferroelastic to an incommensurate one.

As for the dynamics of the transition, it is governed by the individual pseudospin reorien-
tation motions. As could be anticipated from steric hindrance considerations, the application
of pressure increases the residence time of the individual NDJ ions at the bottom of their
orientational well. Consequently, the dynamics changes from a soft mode behaviour at zero
pressure to a hard mode plus a dynamical central peak description at 5 kbar, the acoustic
phonon frequency being hardly affected by the approach of the phase transition. The only
effect on the TA phonons is, in this case, an increase of their linewidths, due to the linear
coupling to the pseudospin dynamics.

Recently, Poon [16] proposed a somewhat different mechanism to describe the series of phase
transitions which take place in AHO or AHOD, based on an original idea of Heine and Mc
Connell [17-18]. Noting, from dielectric measurements performed by Albers and Kiippers [15]
on AHO, that the zz component of its dielectric tensor, €,;-(T), exhibits above T, at zero
pressure, a Curie-Weiss behaviour with a Curie temperature of approximately —20 K, Poon
concluded to the existence of a “mode” with B3, symmetry, which would freeze by itself at
such a temperature. He also noted that, along ¢*, both Ba; and B3y representations give rise
to the same 7, representation. Following the ideas of [18], the By; “mode” which actually
freezes at (0 kbar, and the B3, mode are 90° out of phase and couple, along c*, through a
coefficient the leading term of which is proportional to ¢. Those modes could be the set of two
deformations which realize a compromise of the free energy when an incommensurate phase is
formed [18]. Poon proposed that, among these two soft modes, the frequency of the Bs, mode
would decrease with increasing pressure, while the Bag mode would not depend on pressure.
He showed that, within such a model, the application of pressure would lead to a normal-
incommensurate phase transition with a vector q, parallel to ¢* above a critical pressure. The
present results, though they do not rule out some aspects of Poon’s mechanism, are not in
favour of most of the points made in [16].

Let us first note that Albers and Kiippers measurements agree with the model developed
here: as was already shown in [5], the four pseudospins contained in the high temperature unit
cell generate, at q = 0, four variables belonging to four different irreducible representations.
One is in the By, representation, which dynamics has been studied in [5] and in this paper; a
second is in the Bg, representation and is responsible for the results reported in [15}; a third
is in the B1g representation, active in Raman spectroscopy and its dynamics was also detected
in [5], while the last, A, representation is silent in all these techniques. Each of these variables
has its own freezing temperature, in agreement with [16], though their dynamics are diffusive,
and not propagative as suggested by Poon.

Nevertheless, as can be inferred from section 3, the interactions between these modes at any
point in the Brillouin zone have the same origin as the q dependence of J4(q), namely the
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individual pseudospin interactions. Each of them varies with pressure, as we have seen in the
present study, and one cannot assume that the pseudospin variable originated from the Bg,
representation is more pressure sensitive than any other.

One may also analyse, within the interaction model developed in section 3, what would
be the effect of taking into account Poon’s type of coupling. In the language of section 2,
04(q) is the variable which transforms as B3, at q = 0, and the calculation which leads to
equation (18) can be extended to include in the pseudospin free energy o4(q), o4(q) and their
linear coupling. If, following [16], one eliminates, in an adiabatic approximation, the o,(q)
variable, and considers that the o,(q) freezing temperature is well below the temperatures
used in the present experiments, (an approximation which agrees with the numerical values of
Tab. II) one ends up (cf. Annex A) with an additional term in Js(q) which reads:

BI2 2

o ain2 =
WeT 2= 5T

(1 —cos 2Z) (26)

where B’ is an interaction constant similar to B but related to a difference of energy between
pseudospins. The mechanism considered by Poon gives thus, as could be anticipated, a contri-
bution analogous to that given by the interaction between the pseudospins separated by Zc,
the only difference being its additionnal weak temperature variation. But no term propor-
tional to cos Z, and/or to cos X, can be obtained from such a mechanism, and such terms are
necessary to produce the maximum along ¢*, and the dispersion along a*. Our experiments
cannot rule out a term like equation (26), which is at variance with (or in addition to) the
mechanism represented by the interaction constant K, though the coefficient B’, which is a
difference of interaction energies, is presumably smaller than the coefficient K which is a sum
of such interaction energies.

Let us finally remark that, in the present paper, no attempt has been made to look at
the dynamics of the system in the incommensurate phase. Some of us have recently studied
it, in AHOD, by Raman spectroscopy [18]. This gives information only for the q = o wave
vectors but generates spectral profiles of much better accuracy, and also allows one to study
the pseudospin dynamics related to the q = o, Bz mode. The results of both techniques are
in good agreement, and the trends found in this study when passing from zero to five kbars
have also been confirmed.
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Appendix.

In the interaction energy model described in section 3, there exist two types of energy terms.
The first one contains the interactions between pseudospins separated, either by ¢, or by

™~ (:i:E + —g—) : in both cases, the interaction between one ND} and each of its neighbours can
be deduced from one of them by space group operations. One can verify that, in such a case,



350 JOURNAL DE PHYSIQUE I Ne3

the interaction energy diagonalizes, whatever is q, into the four variables 04(q), 0s(q), o.(q)
and o4(q) given by equation (7).
The second type is related to the interactions between one psendospin and its neighbours

o o b .
contained in planes differing by =~ :i:E. There, the space group operations do not transform one

. . b,. .
pair of pseudospins (e.g. separated by ~ at ) into the four pairs separated by ~ (:l:% + %) ,
. . . b
but only into two of them, and the same is true for the pairs separated by ~ ;-c

For general values of q, the interaction energy does not diagonalize any longer into the four
pseudospin variables.
When one restricts q to the (010) plane, the only coupling which remains between the

pseudospin variables is related to the non equivalence between the interaction energies of two

. b - .
pseudospins separated by ~ -2*- € and ~ € Let us call 2B’ the difference between the two

interaction constants (while 2B is their sum). Group theory easily shows that, in this (010)
plane, o4(q) couples only to 0.(q) and o3(q) to o.(q). If one restricts the free energy to the
two first variables, one finds after an easy but lengthy calculation:

Fpo = 3 3 [(kT ~ Ja(@)) sa(a)oa(~a)
q

+ (k8T — Ja(a)) 0a(a)a(—q) 4D
~ (Jaa(@)oa(q)oa(—q) +c.c.)]
where Jg(q) is given by equations (18) and (19),
Jo(q) = Acos X + B cos Z+C cos X cos Z — K cos 22, (A.2)
Jod(q) = iB'sin Z, (A.3)

A, B, C and K being defined below equation (19).

Equation (A.3) shows that the coupling between o,(q) and o4(q) disappears for q // a* in
agreement with the fact that the two variables belong respectively to the i and 73 represen-
tations in this case.

In the adiabatic approximation considered by Poon, one writes:

oF
——— =0 A4
00.(—q) (A4)
which gives a linear relation between ¢4(q) and o,(q). Neglecting |/,(q)| with respect to kgT,
and eliminating ¢,(q) through equation (A.4), equation (A.1) simplifies into

’ sin2
= % (IcBT —Ja(q) - E—z—TZ) oa(q)oi(—q). (A.5)
q
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Revue de livres

Three hundred years of gravitation

S. W. HAWKING et W. ISRAEL Eds.
{Cambridge University Press, 1987) 684 p., £ 45.00, $ 69.50.

L’année 1987 a vu la commémoration du tricentenaire de la parution des « Principes mathématiques
de la Philosophie Naturelle » d’Isaac Newton, en latin évidemment. Il était donc judicieux de réunir en
un volume de bonne taille des essais mélant I’histoire a la recherche contemporaine qui pour de
nombreuses raisons — discutées par différents auteurs a remis 1’étude de la gravitation au premier
plan. Lecteur de bonne volonté mais nullement averti j’avoue, aprés avoir feuilleté & de nombreuses
reprises les quelques sept cents pages, &tre en difficulté pour en donner un compte rendu honnéte tant la
matigre est dense et riche. Cependant nul ne peut ignorer ce sujet majeur et je suis slir que quiconque
ouvrira le livre trouvera matiere a apprendre et a réfléchir. Il convient méme briévement d’énumérer les
tétes de chapitres — chacun écrit par une autorité incontestable. Sans leur rendre la justice qu’il
conviendrait, parcourons la table des matiéres.

L’ouvrage s’ouvre par une introduction historique de Hawking, un essai sur la « philosophie
naturelle » de Weinberg, et une €tude de Penrose sur la théorie corpusculaire de la lumiére de Newton
qui se poursuit par des spéculations sur la mécanique quantique, 1’objectivité et la relativité générale.
Les articles de Cook et Will sur les aspects expérimentaux sont passionnants en ce qu’ils révélent
combien il est difficile, encore aujourd’hui, de mettre & I’épreuve la relativité einsteinienne mais aussi
bien les hypothéses fondamentales de la gravité newtonienne et j’avoue avoir découvert avec surprise
que la constante de la gravitation n’est connue qu’avec une précision relative de 10-4. T. Damour
consacre un long essai aux trés difficiles problémes qui se posent pour mettre en ceuvre des calculs en
gravitation et en relativité générale tandis que W. Israel donne un exposé historique détaillé sur la
matiére noire et 1’évolution des idées sur la topologie et la physique des trous noirs dont Blanford décrit
les aspects expérimentaux. K. Thorne présente un panorama des essais — infructueux i ce jour — de
mettre en évidence le rayonnement gravitationnel. La formation des galaxies est un sujet majeur en
cosmologie discutée par Rees. La dernitre série d’articles est plus spéculative, qu’il s’agisse du réle
possible des « cordes cosmologiques » (Vilmkin), du modele d’inflation cosmologique (Blau et Guth,
Linde), de la cosmologie quantique (Hawking) ou de la théorie des supercordes comme modéle unifié
des interactions (Schwarz). Le dernier article, plus technique, de Crnkovic et Witten discute de la
quantification en théorie de jauge et en relativité générale.

Aprés un tel menu on se persuade sans peine de I’ampleur du sujet dont la collection d’essais donne —
ce me semble — un excellent panorama, et qui pourra servir de guide & qui désire approfondir I'un des
multiples aspects. D’abondantes bibliographiques qui concluent chacun des chapitres seront trés
certainement trés utiles ! En revanche, ’absence d’index général est regrettable. Dans le genre des
ouvrages qui réunissent des auteurs variés, celui-ci parait trés réussi, sans compter qu’il rend pleinement
hommage a I'un des plus grands physiciens, expérimentateur, théoricien et méme mathématicien de
génie.

En refermant le livre, on comprend pourquoi I’édifice dont Newton a posé les fondations suscite
toujours un intérét majeur et combien il reste a faire pour que la gravitation universelle s’accommode
avec la géomsétrie de notre univers, des échelles les plus grandes, quelques milliards d’années lumiéres,
aux plus courtes, cette mystérieuse longueur de Planck de quelques 10-3° cm. Recommandons sans
hésiter des « trois cents ans de gravitation » aux chercheurs, astrophysiciens et physiciens, aux étudiants
et méme au public averti le plus large.

C. ITZYKSON (Saclay).
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Schrodinger - Centenary celebration of a polymath

par C. W. KiLMISTER, Ed.
(Cambridge University Press, 1987) 251 p., £ 12.50, $ 22.95.

La personnalité de Schrodinger, né & Vienne en 1887 et mort & Alpbach dans le Tyrol en 1961, et la
marque qu’il a laissée sur la physique du 20° siécle justifiaient amplement la célébration d’un centenaire
dont ce volume porte témoignage.

Qui s’intéresse a la personnalité d’un homme hors du commun et 4 sa vie mouvementée, lira avec
intérét I'introduction de Kilmister, éditeur du recueil, I’exposé de Flamm sur les influences qu’il a
subies, en particulier celle de Boltzmann, et I’histoire des relations entre Schrédinger et E. de Valera qui
I’attira en Irlande et créa pour lui le célébre institut de Dublin, dans la description qu’en donne McCrea.
Une biographie récente due & W. Moore et publiée par la méme maison présente évidemment une vue
plus approfondie de la carri¢re d’un scientifique exemplaire.

Le mot anglais « polymath » qui figure dans le titre et qu’on traduirait par « esprit encyclopédique »,
convient bien & Schrodinger. Ceci est reflété par la diversité des contributions.

Le livre s’ouvre par une étude de Dorling sur 1’interprétation de 1’éguation de Schrodinger, équation
d’onde qui dans I’esprit de son auteur tentait de donner un contenu plus concret aux abstractions de la
mécanique des matrices de Heisenberg, Born et Jordan. On sait que Schrédinger — comme Einstein —
eut ce destin étonnant d’un créateur qui ne parvint jamais a se réconcilier avec 1’interprétation
probabiliste et les discontinuités qu’introduit 1’observation. Il n’est donc pas surprenant que l’article
consacré a ce sujet par J. Bell — & son tour disparu — s’ouvre par une citation caractéristique de
Schrodinger datant de 1952 et qu’on me permettra de reproduire : « If we have to go on with these
damned quantum jumps, then I’'m sorry that I ever got involved. »

C. N. Yang nous rappelle le role de I'arbitraire de phase des fonctions d’ondes complexes de la
mécanique quantique que Schrodinger, dans la série de ses six articles mémorables de 1926, tentait
vainement d’éviter (en considérant en particulier des situations stationnaires). On sait quel parti Weyl
puis Yang plus tard tirérent de cet arbitraire qui devait donner naissance a I’invariance de jauge.

Le role de I’équation d’onde en physique atomique et moléculaire, voire en physique des solides, est
capital, qu’il s’agisse de la stabilité de la matiére (Thirring), de la dynamique dans un contexte
biomoléculaire (Karplus), des réactions chimiques (Fukui), de la chimie quantique (Buckingham).

On trouvera d’autres illustrations du développement de la mécanique quantique dans 1’article de
Lewis sur la condensation de Bose (reflétant les intéréts de Schriodinger pour la mécanique statistique),
de Salam qui présente un panorama de la physique des particules, de Kibble qui décrit le rdle de la
topologie en cosmologie, de Seaton sur les effets quantiques en astronomie, pour arriver a ce qui est
peut-étre la limite extréme lorsqu’il s’agit de la « fonction d’onde de I'univers » (S. Hawkins).

Ceci est I’occasion d’évoquer des travaux de Schrodinger qui n’eurent pas le succés espéré, comme
ceux sur I’optique non linéaire (J. McConnell) ou sur les théories unifiées qu’il poursuivit sans résultat
immédiat en paraliele avec Einstein (O. Hittmair).

L’une des grandes originalités de Schrédinger fut de s’intéresser trés tot a la biophysique. Son livre
« What is Life » eut une profonde influence — que décrivent Pauling et Perutz (ce dernier un peu
critique) — sur une génération entitre.

De cette rapide description, on retiendra que les actes de ce colloque présentent un grand intérét pour
mesurer la postérité€ d’un des plus grands physiciens du siécle. IIs trouveront naturellement une place sur
le rayon des bibliothéques consacré a 1’évolution des idées scientifiques et leur lecture est vivement
conseillée a tous les étudiants, enseignants et chercheurs.

C. ITZYKSON (Saclay).



