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Abstract. Numerical and analytical solutions at low temperature are presented for the

replica symmetric order parameter equations of the Hopfield neural network model with in-

teractions between all the spins. We find that these equations give weak reentrant spin glass
behaviour at T < 0.023. This is sitnilar bellaviour to that found for the replica symmetric solu-

tion of the SK spin glass [4] although in that
case the reentrant phase is much larger. It is also

known from what is believed to be the true solution for the SK spin glass that this reentrant

behaviour is unphysical so, by analogy, we believe it is unphysical for neural network models.

Even so, the maximum value in replica theory of ac, which measures the storage capacity of the

Hopfield model, is to be found at ac(T
=

0.023)
=

0.1382. This is slightly higher than the zero

temperature value of ac(T
=

0)
=

0.1379.

1. Introduction.

Since the work of Hopfield in 1984 iii, which showed the analogy between a simple neural

network model and spin glass models in statistical mechanics, replica symmetric theory (see [2]
for

a
review) has been applied to this model to find its thermodynamic properties [3]. Although

this technique
was

found to give spin glass reentrant behaviour in the case of the SK spin glass
model this behaviour was not seen in the Hopfield neural network model. We know, in the case

of the SK spin glass, that this reentrant behaviour is unphysical because the symmetry broken

solution can be calculated in this case [5]. This solution is believed to be exact and does not

show any reentrant behaviour.

In the next section of this paper we
will derive

an
equation which, when solved simultaneously

with the order parameter equations derived by Amit et al. [3], gives the phase transition line

between the memory phase and the pure spin glass phase. Using
an appropriate numerical

technique we will then solve these equations to find the phase transition line. In the same

section we shall also present analytical solutions of these equations to first order in T.
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2. Equations for the memory to spin glass phase boundary.

The order parameter equations for the Hopfield neural network model for solutions having a

macroscopic overlap with only one
ofthe stored patterns can be written as [3]

where the function r(q) is given by

r(q)
=

~~
p~~ p~~~.

(2)

The physical interpretation of
m

and q (see Ref. [3]) is:
m

is analogous to magnet12ation and

measures the overlap of the state of the system with
a

single pattern nominated for condensatibn

and q is the Edwards Anderson order parameter which signifies spin glass ordering if it is non-

zero when
m

is zero. In the Hopfield neural network model the phase transition line we seek

corresponds, for T fixed, to the value of
a where physical ferromagnetic solutions of the type

m
# 0, q # 0 are no longer present and only spin glass solutions of the type m =

0, q # 0

exist. For this model these ferromagnetic solutions disappear discontinuously. For solutions to

be physical they must be minima of the free energy and real as well as solutions of equations
(I). The desired phase transition line corresponds to the point at which, varying a, two real

solutions of the form m
# 0, q # 0 converge and then become complex. One of these real

solutions is not a minimum of the free energy and is therefore not a physical solution. Thus,
this is a bifurcation point in terms of the solutions of equations (I) and corresponds to the

point in the solution space at which the determinant of the matrix of partial derivatives of the

order parameter equations, with respect to the order parameters, becomes
zero I-e-

This equation also has a more
interpretation in that it can

the maximum value of m as a
function a

for T fixed.

Simultaneously

3. Itesults.

The three equations (I) and (3) were
solved for

a range of temperatures between I and 0 using a

Newton Raphson algorithm in three variables. The phase diagram derived using this numerical

method is shown in figure I where the spin glass to paramagnetic phase transition is also shown

for completeness. The important new
result for this phase diagram is the reentrant phase which

can be
seen most clearly on the blow-up. Below T

=
0.023 the gradient of the phase transition

becomes positive and there is reentrant behaviour from the memory phase to the pure spin
glass phase. The maximum value of ac is obtained at ac(TM

=
0.023)

=
0.1382 which is

slightly above the zero temperature value of ac(TM
"

0)
=

0.1379. The replica symmetry
breaking line it also shown, this being the line below which the replica symmetric solution for

the memory phase is known to be incorrect. This is the equivalent of the Almeida-Thouless

line in the case of the SK spin glass [6] and it cuts the phase transition line just above the point
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Fig. I. Phase diagram for the Hopfield neural network model (originally presented in Ref. [3]) with

low temperature blow-up. a is the number of patterns stored per spin. P, SG and M+SG, refer to

the paramagnetic phase (m
=

0, q =
0), purd spin glass phase (m

=
0, q # 0) and the memory spin

glass phase where both the memory states (m # 0, q # 0) and the spin glass states (m
=

0, q # 0)

are
stable. The spin glass states appear below the line Tg and the memory states below the line TM

TR is the line below which replica symmetry is broken for the memory states. The reentrant memory

to spin glass behaviour can clearly be seen on
the low temperature blow-up.
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Fig.2. Critical value of the order parameters mc(TM) and qc (TM) along the phase transition line.

at which its gradient changes sign. Figure 2 shows the magnetization mc(TM) and spin glass
order parameter qc(TM) along the phase transition line. They both show

a
difserent behaviour

from ac(TM) in that they always decreases as T increases. We also found theoretical solutions

close to the T
=

0 axis for equations (I) and (3) by expanding in T. To first order in T,

TM
=

-5.56+40.3ac(TM)

mc(TM)
=

mc(0) 0.023TM (4)

qc(TM)
=

qc(0) 0.18TM
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where m~(0)
=

0.967 and qc(0)
=

1. The first of these equations is written as a function of ac

rather than TM so that it corresponds to the phase transition diagram (Fig. I). It should be

noted that this equation is difserent from that quoted in reference [3]. They found
a

gradient
of -40 while

we
find a gradient of the same value but positive which signifies the reentrant

behaviour. We can
also see from these equations that as T increases it is only ac(TM) which

increases while mc(TM) and qc(TM) decrease.

4. Discussion.

The main result of this work is to show that the replica solution of the Hopfield model has

reentrant spin glass behaviour which seems characteristic of the replica symmetric calculation

when applied to disordered systems. This behaviour has already been seen in the case
of the

bond diluted Hopfield model where the number of interactions per site grows more slowly than

N (e.g. N~, 0 < a < 1) [7, 8]. In this case the reentrant behaviour is much more marked and

the memory phase has the same properties
as

the ferromagnetic phase of the SK spin glass.
By analogy with spin glasses it is believed, for neural networks, that the true replica broken

solution
removes

the reentrant phase and increases ac(TM) below the replica symmetry breaking
line. This means

that the maximum value of ac found in replica theory will always be a
lower

bound for the true value. Thus our work gives, for the fully connected Hopfield model,
a

lower

bound for the true storage capacity of am" > 0.1382. This is still well below the value of

ac(TM
=

0)
=

0.144 [9] found by a one step broken symmetry calculation.

It is quite probable that all neural network phase diagrams based
on

the replica symmetric
assumption will have reentrant spin glass behaviour. The magnitude of this reentrant behaviour

may depend on the learning rule as well
as the architecture of interactions. It is therefore

important, for these models, to study the value of ac(T) at all temperatures to find its maximum

rather than just at zero temperature as most papers to date have done. This maximum is

expected to be
a

lower bound for the true maximum.
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