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Abstract. The local Weierstrass representation of all members of the T and CLP families of

triply periodic minimal surfaces involves integrals of the function R (r )
=

II r~
+ A r~

+ (with

cc ~A
~

-2 for T and 2~A~2 for CLP), which were previously evaluated only by

numerical integration. We show that these integrals are pseudo-hyperelliptic, express them

analytically in terms of the incomplete elliptic integral of the first kind, F (p, k ), and give explicit
general parametric equations for coordinates of these minimal surfaces. The procedure

completely obviates the need for numerical integration. The solutions for all three coordinates are

intrinsically periodic. The well-known properties of elliptic integrals and their inverse functions

provide new insights into the features of triply periodic minimal surfaces, and permit their

systematic evaluation.

1. Introduction.

At any point P on an orientable surface there exists a uniquely defined normal vector n. A

plane containing this vector intersects the surface, forming a plane curve. The curvature of

this plane at point P is known as the normal curvature, k~, of the surface in the tangent
direction of the curve. As the plane is rotated about the vector n, an infinite set of plane

curves are inscribed on the surface, with continuously varying normal curvature at P. The

maximum and minimum values of the normal curvature are known as the
«

principal

curvatures », ki and k~, respectively, and tangent directions of the corresponding curves are

known as «
principal directions

».
In general, the principal directions are perpendicular to one

another. The mean curvature of the surface at point P is defined as

H
~

(ki + k2)

and the Gaussian curvature as

K
=

ki k~.

A minimal surface (MS) is defined as a surface for which the mean curvature is zero at all

points [1, 2]. For most points ki
"

k2 # 0. This means that the Gaussian curvature is

negative, and that these points are hyperbolic points. The most negative Gaussian curvature

occurs at «saddle points». Exceptionally, there are points with ki=k~=0 (which
corresponds to zero Gaussian curvature) known as «

flat points
».

A minimal surface given in
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the Monge form z =
z(x, y) must satisfy the Euler-Lagrange equation

I + z))z~ 2 z~ z~ z~ + (I +
zj)

z~~ =

0

where z~, z~ and z~ are the first partial derivatives, and z~, z~ and z~ the second partial
derivatives of z, with respect to the variables given in the subscript. For example, the surface

z =

log ~°~ ~~~
satisfies the above requirement. However, minimal surfaces are very rarely

cos ~y)
given in the Monge form, and the problem of finding a minimal surface with a given
boundary, known as the Plateau Problem, has not been solved in a general case.

If a minimal surface has space-group symmetry, it is periodic in three independent
directions. Such surfaces are known as triply periodic minimal surfaces (TPMS). TPMS

without self-intersections are of particular interest, both as mathematical objects and because

of their relevance to the physical world.

Surfaces in three-dimensional space are usually described by parametric equations

r =

r(u, v ), where the components of the position vector r are functions of two parameters u

and v. However, no analytical expressions for the coordinates of TPMS are known. Examples
of so-called

«
regular

»
TPMS [3] are the somewhat arbitrarily named CLP (an acronym for

crossed layers of parallels) surfaces discovered by Schwarz [4] and named by Schoen [5] and

Schwarz's T (tetragonal distortion of D) surface. The famous Schwarz D (diamond) surface is

a special case of the T surface. Some authors, e-g- Mackay [7] give the name F to the D

surface, since it has face-centered cubic symmetry. The Schwarz P (primitive cubic symmetry)
surface, and Schoen's G (gyroid) surface are related to the D surface by the Bonnet

transformation [ii. Before Schoen's 1970 paper, only five regular minimal surfaces (the

Neovius surface is not regular) without self-intersections were known : the CLP family, the T

family, the H family, the D surface, a member of the T family and the P surface which is

adjoint to the D surface. In the past, a surface patch (or surface element, also known as

Flhchenstfick) of such an infinite surface was calculated by numerical integration, and larger
portions of the surface were subsequently constructed by combining the patches.

In the last 20 years minimal surface theory has been applied in many areas of the physical
and biological sciences [6-14]. Thus Donnay and Pawson [I Ii, and Nissen [12], recognized
that the interface between single calcite crystals and amorphous organic matter in the skeletal

element in Echinoidea (sea urchins) is described by the P minimal surface. Scriven [13] found

that bi-continuous structures of liquid mixtures of water and organics, such as liquid crystals,

can be described as periodic minimal surfaces. The relationship between surface descriptions
and zeolite structures was recognized by Mackay [14]. Examples of compounds with

structures which have been described by minimal surface theory include [6, 8, 10] the zeolites

A, N and faujasite, cristobalite, diamond, quartz, ice, W~Fe~C (cutting steel), starch and

Nb6F15.

2. Local Weierstrass parametrization of minimal surfaces.

Weierstrass has shown [15] that the Cartesian coordinates (x, y, z) of MS can be locally
determined by a set of three integrals

w

x =

Re (I r~) R (r drw~

w

y =

Re I (I + r~) R (r) dr (1)
~~

w

z =
Re 2 rR(r dr

~~
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where I is the imaginary unit, and R (r) some complex function of a complex variable. Thus

the Cartesian coordinates of any point on an MS are expressed as the real part (Re) of

complex (curvilinear) integrals, evaluated in the complex plane from some fixed point

wo to a variable point
w.

Integration is carried out within the domain of analyticity of the

integrands, and thus the values of the integrals are independent of the path of integration.
The value of each integral is the same along any path joining wo and

w
(in that order),

provided that the path of integration lies entirely within the domain of analyticity. The

Weierstrass function R (r ) completely specifies the local differential geometry of the surface.

The Weierstrass equations guarantee that any su;face they describe is a minimal surface, but

not necessarily free of self-intersections. The problem of finding a minimal surface is thus

reduced to solving the integrals (I). So far, analytical solutions, giving expressions for the

integrals in (I) have been found only for a handful of minimal surfaces, such as Enneper's and

Scherk's surfaces [2].
The T and CLP families of surfaces have been known for more than a century, but the

Weierstrass functions for them were discovered only in 1987, when Lidin and Hyde [9, 10]

showed that for these surfaces the Weierstrass function has the form

~ ~~~
~ ~i ~~~

where A is real and
«

is, in general, a complex number related to the Bonnet transformation

and the normalization constant. They showed that for the T family

A=-[16~~(~-2j with 0~A~l.
A

It is easily seen that the above condition is equivalent to co ~
A

~
2.

For the CLP family, they found that

which is to - 2 ~ A ~ 2.
Schwarz

[4] knew the Weierstrass
function

(A
=

3. Elliptic and hyperelliptic integrals.

Our starting point is the local Weierstrass representation (I) with the Weierstrass function (2)
given by Lidin and Hyde [9] for all real values of A

~
2. With R (r in form (2), the integrals

in (I) are hyperelliptic. We note that in non-mathematical literature on minimal surfaces

there is much confusion conceming the concept of elliptic and hyperelliptic integrals, as well

as the related special functions (incomplete and complete elliptic integrals of the first, the

second and the third kind). We therefore begin by discussing these concepts.

A hyperelliptic integral is an integral of the type 3t(z, w) dz where 3t(z, w) is a rational

function in variables z and w related by an algebraic equation of the type w~=

dl(z) where dl(z) is a polynomial of degree greater than four and without multiple roots.

Hyperelliptic integrals cannot, in general, be expressed in terms of a finite number of

elementary or special functions. In order to evaluate them, it is neces8ary to use direct

numerical integration or complicated series expansions. Hyperelliptic integrals appearing in
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the description of minimal surfaces have, therefore, always been evaluated numerically.
Numerical integration assumes the choice of one of many methods, and special care must be

taken of singularities of the integrands. Further, the integration is carried out for points inside

an appropriate integration domain, avoiding the singularities, although in some cases

important parts of the surface reside very close to the singularities. The coordinates of

30 points of the D, G and P surface elements were found by numerical integration [6].

In very rare cases, some hyperelliptic integrals (known as pseudo-hyperelliptic) can be

reduced to integrals involving square roots of polynomials of the third and fourth degree, I-e-

to elliptic integrals. Let dl (z )
w

w~
=

ao z~
+ ai z~ + a~ z~ + a~ z + a4 be a polynomial in z with

complex coefficients and no multiple roots, and 3t (z, w) any rational function in z and w. An

integral of the type 3t(z, w) dz, known as an elliptic integral, is not in general expressible in

terms of elementary functions only. Any elliptic integral can be expressed as the sum of

elementary functions and of the three special functions (canonical forms of elliptic integrals).
These canonical forms are incomplete elliptic integrals of the first, the second and the third

kind.

We will show that the local Weierstrass parametrization for the T and CLP families of triply
periodic minimal surfaces involve pseudo-hyperelliptic integrals. By reducing them, we obtain

parametric equations dependent on the value of the coefficient A, and general expressions
describing the T and CLP families of minimal surfaces : I-e- all the known surfaces with the

Weierstrass function in form (2). Most importantly, the properties of elliptic integrals of the

first kind (one of the so-called
«

special functions ») are well known, and our results open the

way to systematic investigation of the more general features of TPMS.

4. The elliptic integral of the first kind.

Here we will use only the integral in the form

l~
~~

= j~
~~

(3)
<o'~ <o/~z~+aiz~+ajz~+a~z+a4

taken along some rectifiable path in the complex plane, and known as the incomplete elliptic
integral of the first kind (IEIFK). By subjecting the variable z to certain algebraic

transformations, the function w, and the basic elliptic integrals, can be brought to their

normal (standard) forms. There are several normal forms, of which Legendre's w~=

(I z~)(I k~z~) and Jacobi's w~
=

I k~sin~ o normal forms are the most common [16,

17]. Thus, we define the incomplete elliptic integral of the first kind as

~~~~ ~~
~

~/(l
~~l

-k~t~)

~ ~
~~'~

The symbol F is in general use for the incomplete elliptic integral of the first kind, but these

is no unanimity as to the way in which the variables are specified. Following Byrd and

Friedman [16], we will use the notation F(~p, k), and refer to ~p as the amplitude of the

function, and to k as the modulus. Other notations [18, 19] use the parameter m =

k~, or the

modular angle a =

arcsin (k ), so that the notations F (
~p

k ), F ( ~p a ), F (k
~p

),

F(k,
~p and even F(~p) are encountered. F(~p, k) is usually discussed for 0

~
k ~1 and

0 < ~p < w/2 only, but may be defined for all values (real and complex) of k and ~p. In what

follows, k is real with 0
~

k
~

l and
~p

is, in general, a complex number.
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The complete elliptic integral of the first kind is defined by

~ ~~~
~

~/(1
~~1

k~ t~)

~~~ ~

so that there is a relation K(k)
=

F(w/2, k).
Elliptic integrals were among the first special (non-elementary) functions to be discovered

(in the early 19th century) and, together with elliptic functions, have numerous important
applications in various problems of analysis, geometry and physics, especially in mechanics,

astronomy and geodesy. Cayley [17] treats the properties of Legendre's integrals in detail,

and Byrd and Friedman [16], MiIne-Thompson [18] and Tblke [19], give formulae, numerical

tables of values, and tables of elliptic integrals. Extensive tables can also be found in

Gradshteyn and Ryzhnik [20]. Computation of F(~p, k) and K(k) is easy, and will be

discussed in detail in another paper. Routines for such computation are available in the NAG,

SLATEC and IMSL Fortran libraries.

5. Reduction of the hyperelliptic integrals.

To reduce integrals (1) with R(r) in form (2), we introduce three complex functions :

xl (w )
=

r~ r~

Y? (w )
=

I(ro + r~) (4)

zt(w )
=

2 ri

where ro, ri and r~ are

ro(w
=

ro(wo) +

j ~~
(5a)

o
r~+ Ar~+ I

w ~
ri(w )

=

ri(wo) +

j
~ ~

A e R (5b)

wo
r~+ Ar~+ I

w
2 ~

1~2(W
=

1~2(W0) +
~ ~ (5C)

wo
r~+ Ar~+

It is clear that the local Weierstrass representation (I) for a particular surface is obtained by
taking the real part of the complex functions in (4). The subscripts stress the dependence of

the coordinates on a particular value of A. For A
=

± 2 the integrands in (5) are complete

squares, and are easily reduced to rational functions, which can always be integrated in terms

of a finite number of elementary functions. Thus, for Scherk's surface A
=

2, and for the

adjoint surface A
=

2. This is in agreement with the result of Lidin and Hyde [9]. Therefore

we only need to consider A # ± 2, and that branch (sheet) of the square root which takes the

value I at r =

0. In this way, the integrands in (5) are always single-valued, provided that

during integration we do not cross the branch cut. If this happens, the integrands in (5) have

eight singular points (singularities) in the finite complex
r

plane. These are shown in figure 1,

where
a

and fl are defined as

" "

2~ ~'~ ~~-
A +

fi
~~

fl =2~~'~ Q-A -fi.
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It is also clear, from figure I, that integration (5) is always possible for
w ~ m, where

m
=

min ((a(, (fl( ). This is in accordance with the usual procedure adopted for the

integration domain of the Weierstrass function in form (2), where numerical integration is

always carried out within a unit circle inside the appropriate region of the complex plane with

four singularities at the boundary. We will reduce the hyperelliptic integrals in (5) to elliptic
integrals. With the mapping r'= r~ (see Tab. I) we obtain :

I" dT I dT'

wo

~ ~

~6

~~I'r'~ +
AT'~

+ r'

"
T

dT I " dT'wo
~ ~

wi
~1

W ~2 ~~ W ~' ~~'wo
~ ~

wi

~~t"r'~ +
AT'~

+ r'

It is clear that the mapping reduces the second of the above integrals to an elliptic integral, but

the first and third integrals remain hyperelliptic. This means that the expression for the z

,

,' ',
, ,

/ I

i '

, i

I

"

"

[~[ '"'

a) b)

Fig, I. The roots (marked with solid points) of the polynomial r~
+ A r~

+ in the complex plane for

A ~2. The domains of analiticity are (a) A ~-2. The roots are given for A =-14. (b)

2
~

A
~

2. The roots are given for A
=

0.

Table I. -Reduction of pseudo-hyperelliptic integrals to elliptic integrals.

Mapping Inverse mapping Differential Fixed limit Variable limit

r,=r~ r=W
dr=

) wi=wl w'=w~

r
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coordinate is easily reduced. This result was known to Schwarz [4] for the special case of

=-14. With the mapping r"= r'+
,

(see Tab. I), which has never been used
r

previously, the first of the above integrals becomes :

j" dr' I

~j"'
dr"

~i
ml ~~t"r'~ +

Ar'~
+ r'

~
w"

~/(r"
+

2)(r"~
+ A 2)

WI dr"
~

w"
~/(r" 2)(r"~

+ A 2)

and the third integral becomes :

I " T' dT'

~"~
dT"

~
wi

N/r'~
+ A r'~

+ r'
~

w"
~/(r"

+
2)(r"~

+ A 2)

j"' dr"

w"
~/(r" 2)(r"~

+ A 2)

The result of the two successive mappings in the complex plane on (5a) and (5c), and a single
mapping on (5b) is

1"
dr

~j"'
dt j"' dt

wo

~1 ~
w"

~/(t
+ 2) (t~ + A 2)

~

w"
~/(t 2)(t~

+ A 2)

1" T
dT I j"' dt

Wo

~l ~
Wi

~ ~~~

l" T~dT I lj"' dt j"' dt

wo

~ ~
w"

~/(t
+

2)(t~
+ A 2) w"

~/(t 2)(t~
+ A 2)

where wo, w( and wl' are the fixed, and w, w' and w " are the variable integration limits.

From (4), (5) and (7) we obtain only elliptic integrals :

~~~~° ~~~~°°~ ~

j)
~/(t

+ 2) it

)lit
+11 ~~~~

~~~~°
"

~~~~°°~ ~
i ~°

~/~~ ~~j~

)jj~
+11

~~~~

~~~~°
"

~~~~°°~ ~

)1 ~
~~~~

where

xfl(w~)
=

r~(w~) r~(w~)

Yt(Wo)
=

I ire(wo) +1~2(wo)i

z?(6'o)
=

2 ri(wo)
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are constants, and the meaning of w(, wl', w' and
w

" is defined in table I. This demonstrates

that equations (5) can be completely reduced to elliptic integrals. All that remains is to

express the results in terms of Legendre-Jacobi forms of IEIFK.

6. Evaluation of elliptic integrals.

The results of algebraic reduction of IEIFK in form (3) to the Legendre and Jacobi normal

form given in (3') are listed in tables of integrals where one the limits of integration is the root

of the polynomial under the square root, and the other limit is variable [16-18]. It follows that,

in order to reduce some particular integral in form (3) to form (3'), it is necessary to find all

roots of the polynomial, examine their nature (real or complex), and look up the appropriate
integral in the table.

We shall integrate from wo=0, and consider two distinct cases: A~-2 and

2
~

A
~

2. The polynomial can be factorized to (t a) (t b )(t c) for (8a) and (8b), and

(t a)(t b)(t c)(t d) for (8c). A discussion of the number and nature of the roots for

both cases is given in table II.

The IEIFK in (8) have been evaluated using integral tables in Byrd and Friedman [16],

MiIne-Thompson [18] and Gradshteyn and Ryzhnik [20], and checked with Prudnikov [21]

and Jahnke and Emde [22]. Analysis of the roots (Tab. II) reveals that six different integrals
of three types must be evaluated (see Tab. III).

Integrals (8) expressed in terms of Legendre-Jacobi IEIFK are

xi
=

xi (o) + gx(A ) F q~x(A ), kx (A ) (9a)

yt
=

yt (o) + gy(A ) F (q~y (A ), ky(A ) (9b)

zt
=

zt (o) + gz (A ) F q~z(A ), kz (A )) (9c)

where F(~p~ (A ), k,(A )) are IEIFK with moduli k~(A ) and amplitudes ~p,(A ) and I
= x, y, z.

Table II. Roots of the polynomials under the square root in equations (8a)-(8c) for different
values of A.

Roots

A a b c d Comments

(8a) fi -2 -A w"~a~b~c

A<-2 (8b) A 2 v2- A w"~a~b~c

(8a) -A
-fi -2 w"~a~b~c

2~A~2 (8b) 2 ,fi w"~a~b~c

(8c) + ia~ a~ ia~
m a~ a~ + ia~

m

' ~'~~" ~
~ ~~~

a~ =

0.5 I(a~- p~)
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Table III. Integrals which occur in the evaluation of (8). Abbreviations refer to integral
numbers in BF

=

Byrd & Friedman [16] MT
=

MiIne-Thompson [18] ; GR
=

Gradshteyn &

Ryzhnik [20].

Integral Occurs in (8) in Comments Reference

)" dt xl, Y?(A
~

2)
~ ~

~,,
~ ~ ~

b
~ ~

/~ ~~j)~
""

~~~ ~~~~ ~~~~ ~~' Y~~~ ~
~

~
~ MT 17.4.65

2 w' dt BF 219.00

~/ ~ ~ ~ ~
zf(A

<
2) A ~B m w'm 0 GR 3.152.7

° ~~ ~~~
MT 17.4.45

~
dt

~/t~
+ 2 p~ t~

+
v~

v =

BF 264.00

j" dt
~

i
~/ ~ ~ ~ ~

zf(- 2
~

A
~

2) p =

A GR 3,165, I
o t +2p t +v 2

j" dt

~, ~/~4
~ ~ 2 ~2 ~

~2

Table IV. Solutions for xi, yf and zf given in (9a)-(9c) for dflerent values of A,

Components of rue solution

A g~(A ), g~(A ), g~(A kj(A ), kj(A ), kj(A ) ~~(A ), ~~jA ), ~~ (A comments

2 1_
_~

2fi
~~ fifi7j 2 fi ~~~ ~~ ~~

+
~-~+fi

A<-2
~

2
_~

2fi
~~ fill 2~fi ~~~~~~~~+~-2+fi ~~~~~~

~*
~

-A- 4 w~
~

A + 4 + 4

~~~ ~~

A ~- 4

~

2 2-fi
,~

2+fi
~~ ~fi

2 +
fi ~~~ ~~

2 +
w~

+ w
~

-2<A<2
~

2 2 fi
~

2 +
fi

~~
2 +

fi 2 +
fi ~~~ ~~ fi

+
w~

+ w~ ~
~ ~

2 8fi fi I-w~
~~ 2+fi [2+fi]~ ~~~~ 2-fi I+w~

For a particular value of A
~

2 we have :

(a) real functions g~(A ), g~(A ), g~ (A ), k~(A ), k~(A and k~(A ), listed in table IV, are real

constants

(b) xf(0), yf(0) and zf(0) are real constants defined in (8)
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(c) functions ~p~(A ), ~p~(A ) and ~p~(A ), listed in table IV, are complex functions of the

complex variable.

7. Conclusions.

(I) For any particular real value of A
~

2 we obtain Cartesian coordinates (x, y, z) of the

minimal surface as ordered sets of values

(Re (xi), Re ~yf), Re (zf )) (10)

I-e- real parts (Re) of complex functions xi, yf and zf, defined in (9) and dependent on the

complex number w. It follows that, for any particular value of A, (9) and (10) are the

parametric equations for the corresponding surface.

(2) For A e (- co, -2) we obtain all members of the T family of surfaces, and for

A e (-2, 2) all members of the CLP family. This means that equations (9) and (lo)
completely describe the T and CLP families of triply periodic minimal surfaces in terms of

parametric equations. In this way, the calculation of Cartesian coordinates of any minimal

surface belonging to these families reduces to finding the real part of an incomplete elliptic
integral of the first kind defined within an appropriate domain in the complex plane.

(3) We note that all three coordinates given by expressions (10) involve the function

F(~p, k) which is intrinsically periodic [16]

F(- ~p, k)
=

F(~p, k)
F(mw ± ~p, k)

=

2 m. K (k) ± F(~p, k)

where m is an integer and K (k ), the complete elliptic integral, is a constant for a given value

of A. It is thus instantly clear that the surface is indeed triply periodic. This also means that

only a small part of any surface need to be calculated, and the coordinates of further points

can be derived from the simple periodicity relations given above.

Acknowledgment.

We are most grateful to the British Council (Dr. C. Briggs) for support.

References

ill Do CARMO M. P., Differential Geometry of Curves and Surfaces, Prentice-Hall (Engelwood
Cliffs, NJ, 1976).

[2] NITSCHE J. C. C., Vorelesungen fiber Minimalflichen (Springer-Verlag, Berlin, Heidelberg,
1975) Lectures on Minimal Surfaces I (Cambridge University Press, 1989).

[3] FOGDEN A., J. Phys. Coll. France, Suppl. 51(1990) C7-149.

[4] SCHWARz H. A., Gesammelte Mathematische Abhandlungen (Verlag Julius Sprmger, Berlin,

1890) (two volumes).

[5] SCHOEN A. H., Infinite Periodic Minimal Surfaces Without Self-intersections, NASA Technical

Report No. TN D-05541 (1970).

[6] HYDE S. T, and ANDERSSON S., Z. Krislallogr, 168 (1984) 221-254 ; 170 (1985) 225-239 and

references therein.

[7] MACKAY A. L., Nature 314 (1985) 604-606.

[8] VON SCHNERING H. G, and NESPER R., Angew. Chem. Int. Ed. Engl. 26 (1986) 1059-1080 and

references therein.



N° 2 THE T AND CLP FAMILIES. 147

[9] LID» S. and HYDE S. T., J. Phys. France 48 (1987) 1585-1590.

[10] ANDERSSON S., HYDE S. T., LARSSON K. and LIDUQ S., Chem. Rev. 88 (1988) 221-242 and

references therein.

II II DONNAY G, and PAwsoN D. L., Science166 (1969) l147-l150.

[12] NissEN H. U., Science166 (1969) l150-l152.

[13] SCRIVEN L. E., Nature 263 (1976) 123-125.

[14] MACKAY A. L., IUC Copenhagen Meeting Poster (1979).
[15] WEIERSTRASS K., Math. WerkeI, 3 (Mayer & Miiller, Berlin, 1903).
[16] BYRD P. F, and FRIEDMAN M. D., Handbook of Elliptic Integrals for Engineers and Scientists,

2nd Ed. (Springer-Verlag, Berlin Heidelberg New York, 1971).

II?] CAYLEY A., Elliptic Functions 2nd Ed. (Dover, New York, 1961).
[18] MILNE-THOMPSON L. M., Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun

Eds. (Dover Publications Inc., New York, 1980) ch. 17.

[19] TnLKE J., Praktische Funktionenlehre, 3 and 4, 2nd Ed. Springer-Verlag, Berlin Heidelberg New

York (1950).
[20] GRADSHTEYN I. S. and RYzHNIK I. M., Tables of Integrals, Series and Products (Academic Press,

New York, 1980).

[21] PRuDNiKov A. B. P., BRYCHKOV Yu. A, and MARICHEV O. I., Integrals and Series, I (Gordon
and Breach, New York, 1986).

122] JAHNKE E, and EMDE F., Tables of Functions with Formulae and Curves (Dover Publications Inc.,

New York, 1945.


