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Abstract. The statistical mechanics of vesicles is not yet well understood. We consider

a simple stochastic model, the Vesicles-Ising-Droplet-Model, on a two dimensional lattice, to

obtain shapes that can be compared to the experimentally observed shapes. We present the

model with constant surface and some results, that
are in agreement with what is known for

real vesicles and we study their phase diagram.

1 Introduction.

The study of biological membranes has been an active field of research in the last decade. Sev-

eral approaches have been tried, in particular the use of statistical physics has been successful.

In nature, a vesicle is
a

closed lipid bilayer that represents a
primitive prototype of a cell.

The factors that seem to affect the spectrum of morphological states are: Osmotic pressure,

temperature, pH, etc. When some of these factors change
so does the vesicle's shape.

Maggs, Leibler, M-E- Fisher and Camacho [2], have developed a model for this problem in

two dimensions, in which the membrane is represented by the "pearl necklace model" of polymer
theory. They obtained

a
phase diagram with two variables, osmotic pressure (AP < 0) and

bending rigidity [3]. In particular, they argued that the last variable is the most relevant
one

for the determination of
a

vesicle's shape and studied
a

possible phase diagram, related to the

parameters of the model. They found scaling behaviour that relates the area and the radius of

gyration of the vesicle to the surface II, 4, 5]. Mathematical approximations have been made

for the case when the boundary of the vesicle is a polygon on a
lattice with fixed number of

edges enclosing
a

given area [7]. Other theoretical studies, focussed on mechanical models of

vesicles (of Zia et al.. [6] and Deuling and Helfrich [8]) to explain several three-dimensional

vesicle shapes by minimization of the curvature energy of closed membranes.

We develop a new model for vesicle shapes in which the vesicles
are defined on a two

dimensional lattice and which takes into account: pressure, surface rigidity and surface tension

and the corresponding conjugate variables. We consider only the case of vesicle's surface

constant. We study two variants: in the first case we have strict area conservation and use
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long range Kawasaki dynamics. In the second case the area is controlled by the pressure
difference (only AP < 0) and

a
combination of Glauber and Kawasaki dynamics turns out to be

appropriate. These Kawasaki long range exchanges distinguish our model from the previously
studied tethered models in which only local motions were allowed having as a consequence a

very slow dynamics.
The outline of the paper is as follows: in section 2 we describe the model in detail, in section

3 we present the results. Conclusions and discussion of the results are the content of the last

section.

2. Models.

In this section we discuss a
model for the formation of vesicles. For computational simplicity

we will study the shape of a vesicle on a square lattice. The controlling factors, such
as

the

bending rigidity and the osmotic pressure will be specified in the dynamics. To this end,
we

define
a

Vesicles~lsing-Droplets-Model.
The sites of the lattice'can take only two values I, -I, I.e. spin up or spin down (occuppied

or
empty), but the vesicles should be compact and so connectivity will be enforced [9,10]. A

vesicle is
a

cluster of up spins immersed in a sea of down spins, as schematically shown in

figure 1.
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Fig. I. Vesicle of up spins in the
sea of spin down.

We start the Monte-Carlo simulation, with a
randomly choosen connected shape, which

contains only up spins as in the figure. We define two models that use combinations of Kawasaki

and Glauber dynamics. For the first, we choose randomly two sites with opposite spin values;
for the second, one single site, irrespectively ofspin direction. The spin flip is realized according
to the Boltzmann factor. Each time a

site (two sites in Kawasaki dynamics) is considered and

three requirements are imposed to make sure
that the transformation does not destroy the

single connectedness of the surface and the laws conservation.

I. The spin to be flipped should either belong to the boundary of the vesicle, or be a nearest

neighbor of a boundary spin outside of the vesicle. In addition,
we

check that spin flip does

not split the vesicle in two or that holes appear in the vesicle, I-e-, the cluster should remain

compact and singly connected.

2. The sum over
the nearest neigbor spins of all the spins to be flipped should be equal to

zero. With this
we conserve the length of the surface.

3. The sum of the up spins should be constant. With this we conserve the area of the vesicle.

With this in mind, we
investigated two models.



N°I A SIMPLE MODEL FOR SHAPES OF VESICLES IN 2D 17

2. I VESICLE WITH CONSTANT AREA. The Hamiltouiau for this model is:

H=-J.£«;«j (I)

;,j

where the summation is carried out over only the next nearest neighbours. This Hamiltonian

represents the rigidity energy of the vesicle.

In this case we conserve both, the surface (numbers of boundary bonds) and the area (num-
bers of spins up) of the vesicle. For an update, wd choose two sites, one spin up, the other spin
down. These sites must be border sites, I-e-, have at least one neighbour in each of the two

spin states and
one must belong to the cluster and the other to the sea of spin down. With

this condition, we conserve
the area, which can be done with Kawasaki dynamics.

If both sites fulfill the requirements 1-3 the exchange is executed with
a

probability propor-
-AE

tional to the Boltzmann factor P
-~ e

kT
,

where T is the temperature, k the Boltzmann

factor and AE is the energy difference between the configuration after and before the inter-

change.
Our model is sensitive to lattice effects. At low temperatures (kT < 1.0) we observe the

formation of facets in diagonal orientation, these facets correspond to the configuration of

minimal energy of the Hamiltonian (I). If we increase the temperature (kT > 2.0) the facets

disappear and the border of the vesicle becomes smoother. In three dimensions where one has

a finite roughening temperature in the Ising model, this effect should be much stronger.

2.2 VESICLES WITH UNCONSTRAINED AREA. For this case, the Hamiltonian is:

H=-J.£«;«~+AP.A (2)
;,j

where the summation is
over next nearest neighbours. The first term represents the rigidity

measured by the parameter J and in the second term AP is the finite pressure difference,
between the interior and the exterior of the vesicle. For this model

we use a
grand canonical

ensemble, while for the first model
we

worked in a
canonical ensemble.

In this case, we use a combination of I<awasaki and Glauber dynamics. A site on the surface

of the vesicle is considered and flipped according to the Boltzmann factor only if it fulfills

requirements I and 2. Every N steps of Glauber dynamics we applied M Kawasaki steps.
Initially, only Glauber dynamics was used, typically the dynamics got stuck at tips of branches

so that we always found rather rigid branched structures. Moreover, the
same

shapes of the

vesicle were
obtained for different values of AP. These facts forced us to change the rule

and include Kawasaki dynamics. With the imposition of constant surface in Glauber dynamics
branches appear, they keep

a
fixed place in the vesicle and grow in a rigid manner (side branches

do not appear). The Kawasaki dynamics perturbes the configuration with changes over long
distances, avoiding the formation of localized tips.

3 Ilesuits.

For each vesicle we measure the components of the inertia tensor and the radius of gyration.
We consider each bond between spins ofdifferent direction and call the coordinates ofits center
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(X;, l§). The inertia tensor is defined as

I£
xl £x;n

~
i

~ £nx; £j~

(where B is the number of boundary bonds) and we calculate the eigenvalues11, 12 of this

matrix and their ratio as p =
max(li,12)fmin(li,12). The radius of gyration is computed

through Rg
=

~/£(X/ + (~)/B. We performed an average over the different shapes. To do

this, each vesicle is translated to the center of the lattice such that the center of mass is the

center of the lattice, and rotated into
a

fixed orientation such that all vesicles share the same

principal axis (axis of the largest eigenvalue of the inertia tensor). We superimpose
on the

same figure various vesicles with the same parameters but different initial configurations
as

seen in figure 2.
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Fig. 2. Vesicles for
area

of 900 up spins, kT
=

3.0.

We made the simulation
on a

lattice of 500X500 sites. We took 100 different random

initial configurations for each model and iterated each vesicle 1.5 million Monte Carlo steps for

different values of the surface from 120 to 450. All the simulations
were

carried out at kT
=

3.0

for the model with constant area
and kT

=
10.0 for the model with unconstrained area. For

the last model, Glauber dynamics was used but every 10000 Monte-Carlo steps, we performed
1000 Monte-Carlo steps with I<awasaki dynamics. We found that, if the area is less than 1300
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spins, after this number of steps, the values of the radius of gyration and of the inertia tensor

do not change.
We tried to measure other quantities such

as
the distance from the center of mass to the

border of the vesicle parallel to the secondary axis of the shape, as well as the deviation from

the shape middle, but these quantities have very big statistical errors.

For both models the calculations are made
on

the MIMD Alliant FX2800 at GMD having
16 1860 processors in parallel. For the first (constant area) we have 1.2 million updates/sec
and for the second 3.I million updates/sec.

3. I VESICLE WITH CONSTANT AREA. In this case, we conserve the area and the surface

of the vesicle. The temperature allows to suppress the effects of the lattice; while not affecting
the results. In creasing the temperature above of 2.5, we observe that the influence of the lattice

is entirely suppressed. We stop the simulation for the value of area to which the shape of the

vesicle is close to a circle.
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Fig. 3. Ratio of eigenvalue of inertia tensor vs. area.

Some typical shapes are shown in figure 2. We see "vesiculation", I-e-, the process in which

the vesicle becomes less spherical when the surface increases.

We measure the radius of gyration and the ratio of the eigenvalues of the inertia tensor at

fixed surface as function of the vesicle area (Fig. 3). We note that these functions remain

smooth as the shape changes from spherical to dumbbell (Fig. 2 with surface of 360) and

see no
sign of a transition. For large area we obtain the typical figure of minimal energy, a

circle, whereby the ratio of the eigenvalues of the inertia tensor is approximately one (Fig. 3).
For different surface values and decreasing area the ratio of eigenvalues increases, presenting a

behaviour typical for dumbells
or ellipses (that are also typical for real vesicles).

Increasing the value of the surface, the shape of the vesicle changes much more slowly and

more Monte Carlo steps and higher statistics are necessary.
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Fig. 4. Radius of gyration vs. area.

For this simple model we find a power-law that relates the radius of gyration, the area A

and the surface S, through Rg
-~

S°.~ f(AS~ ~.~~). This behaviour is observed in figure 4, where

we tested this hypothesis by
a

data collaps for different surfaces. This shows that there is an

intimate relation between radius of gyration and area. When the surface increases and the

area
is fixed then we find flaccid vesicles and in the opposite case we find circles.

The computational capacity puts a
limit

on the possible values of the surface, I.e. when the

area
is small and the surface is big

we need a
bigger lattice.

3. 2 VESICLE WITH UNCONSTRAINED AREA. In this case, we measure the same quantities,
but

we
leave the area

unconstrained and include
a new parameter, the pressure difference. This

change to a
grand canonical ensemble enhances the lattice problem and the temperature can

not suppress it completely, although it is irrelevant as in the first model. As explained above

the dynamics is a
combination of I<awasaki and Glauber dynamics.

We study a possible phase diagram. We define dimensionless quantities for the parameters,
J/kT (related to the rigidity) and AP/kT. The second parameter took values in the range
[-0.001,-10.0]. We also study what happens outside of this range but the shapes of the

vesicles do not change very much with the respect to the possibles shapes obtained within this

range.

In figure 5, for large J/kT (and small values of AP/kT-near zero) the radius of gyration
becomes constant. As the value of J/kT decreases, the radius decreases slowly, without a

sharp
transition, however;

as we increase the surface, the curve seems to tend to a
limiting value,

independent of the surface.

At small values of AP/kT and J/kT the vesicle is ramified and the ratio of the eigenvalues
(p) is about 4.0. When J/kT increases p decreases smoothly, and when it is sufficiently high,

p gets close to unity as in figure 6. For this model, at large rigidity, the shape is
a square that

is
a state of minimal energy of the Hamiltonian (2). The influence of the surface on

the value

p is quite significant (S < 250). A small change in the surface produces a big change in its
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value. When S > 250, we obtain curves
similar to the case

of small surfaces, but the value of

p decreases more rapidly. The curve for the surfaces of S
=

250 and S
=

350 are close to a

curve which may be independent of the surface
as in the case of the radius of gyration.

For more negative AP/kT and constant surface the curves of figure 6 and figure 5 (radius
of gyration and ratio of eigenvalues vs..

J/I(T)
are just translated with respect to the case of

small AP/kT. In other words, AP/kT has almost no influence on the vesicle. This hypothesis
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was also presented by Leibler et al. ill The surface tension has greater influence
over the

shape of the vesicle.

4. Conclusions and discussion.

We presented a new method for investigating the formation of vesicles in two dimensions. This

is an alternative to the "tethered-surface model" proposed by Leibler et al.. [Ii.
We can

describe "vesiculation" and obtain realistic shapes of vesicles, in particular in the

model with constant area. We found different regimes for the proposed parameters and ob-

tained evidence of scaling behaviour that relates the Rg to the
area

and the surface. For the

model with unconstrained area the parameter that becomes crucial for the changes in the shape
is J/kT (bending rigidity).

Both models have slow relaxation, especially in the grand canonical case, where the
area is

unconstrained and under combined Glauber and Kawasaki dynamics. For this
case we have

problems with the lattice which do not reduce with the change of the temperature.
We do not observe a sharp phase transition for the quantities that we study, Rg and p, in

agreement with Leibler et al. [Ii and Camacho and Fisher [3]; we study the fluctuations around

the average shape but we do not find evidence for a transition.

We can study other parameters that describe the transition for the different regimes of the

vesicle. This model is easily extended to three dimensions and can be instructive to observe

the possibles regimes of the shapes and the properties of the vesicle.
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