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Abstract. Evidence for crumpled conformations of polymerized membranes is reported. This is

based on Monte Carlo simulations of flexible self-avoiding plaquette surfaces. The radius of

gyration R scales with the surfaces area A according to R~ A °
~. It is shown that the correlation

function between plaquette normals (n(0).n(x)) decays rapidly to zero for plaquette
membranes, in contrast to hard-sphere membranes exhibiting long ranged strong correlations.

The probability distribution P(cos 0 ) of enclosed angles between adjacent plaquettes is discussed

with respect to differences between plaquette and hard-sphere membranes.

I. Introduction.

Polymerized (Or tethered) membranes can be considered as two-dimensional analogs Of linear

polymers ill and are realized, e-g-, in cross-linked polymer sheets Or in protein networks Of

biomembranes [2]. Similar as in the case of polymers, polymerized membranes are expected

to collapse in poor solvent and to exhibit swollen conformations under good solvent

conditions.

An important but still controversial question is concerned with the conformations of self-

avoiding polymerized membranes under the local constraint of temperature dependent
resistance against bending. At low temperatures the membrane is expected [3] to exhibit « flat

conformations » with a fractal dimension D
=

2 due to the resistance to in-plane shear

deformations, which leads to an anomalous stiffening of the surface in the presence of thermal

fluctuations. With increasing temperature the membrane is expected to undergo a transition

to crumpled conformations » [4, 5] which are self-similar and characterized by a fractal

dimension D
=

2.5.

However, the expected crumpled phase has never been observed in simulations of self-

avoiding surfaces [6-12], but instead evidence has been given that self-avoiding tethered

membranes are flat at all temperatures and relevant fluctuations are found only in the

direction parallel to the average surface normal (« rough phase »). This is in disagreement
with mean field estimates [5,13] and recent experimental results [14].

It is important to point out, that our current evidence against a «
crumpling phenomena » is

based solely on simulations of a particular membrane model, the « pearl-membrane »

consisting of tethered hard spheres. Since in this model the ratio between the diameter

i~,~ of the hard sphere and the extended length i~~~ of the tether has to be chosen
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approximately am i~,~li~~~ »0.5 in order to maintain the self-avoidance of the surface

during the simulations of this model [5-12], we suspect that the spheres induce long range
correlations between the triangles, which prevents the surface to crumple. In fact, it has been

pointed out [12], that second neighbor repulsions only between spheres are sufficient to

suppress crumpled conformations.

Therefore it seems obvious to look for a model where spheres as a tool to maintain self-

avoidance are not necessary. This is achieved by a tethered triangulated surface where the

triangles are flexible and impenetrable («flexible impenetrable plaquettes»). This model

provides for the first time some evidence that flexible polymerized membranes are crumpled.
The results from simulations of the plaquette model are reported and discussed below.

2. Model and simulation technique.

Two types of plaquette models have been simulated: «open» membranes with free

boundaries and spherically closed membranes called « vesicles ». Vesicles are of interest as

models of cell membranes which exhibit many different shapes [2]. Shape transformation can

be induced by changing the osmotic pressure [15], the temperature or the composition of

lipids.
The initial configuration of a molecular model of a vesicle consists of a spherically closed

triangular mesh. Starting from an icosahedron, one adds new points on each triangle foflowed

by a subsequent rescaling of all bonds to the desired length [16]. This procedure insures that

most of the grid points have 6 neighbors and each bond has approximately the same length.
The vesicles consist of N

=

10 x
3~ + X vertices (or monomers ») with km I. The number

of triangles (or « plaquettes ») is N~
=

2(N x ) while the number of bonds (or edges ») is

N~
=

3 (N X ). These quantities satisfy Euler's theorem N + N~ N~
= X where

x =

2 2 g is the Euler characteristic, and g is the genus or number of handles of the

manifold, which is g
=

0 for a sphere and g
=

I for a torus.

The initial configuration of an open membrane with free boundary consists of

N
=

3 k(k I + I vertices (k m 2) on a triangular mesh, where the shape of the mesh is a

hexagon. Accordingly, we have N~
=

6 (k 1)~ plaquettes and N~
=

3 (3 k 2 ) (k I ) edges

or « tethers ».

Each Monte Carlo step consists of randomly selecting a vertex and displacing it to a nearby
location which is chosen at random. The variation of the bond length f connecting vertices are

restricted to i~~~
<

I
<

i~~~
=

/. The minimum length i~~~
=

wi~~~(0
< w <

I ) is the only

free parameter of the model. The self-avoidance of the surface is achieved by prohibiting
interpenetration of each triangle with any other triangle (« flexible hard plaquettes »). Similar

algorithm has been previously applied to entangled thin » polymer chains [17,18]. More

details about the algorithm will be published elsewhere.

In the present study we report on simulations of vesicles and open membranes with

w =

0. I and w =

0.5. More extensive simulations of open membranes with 0. I « w « 0.7 are

reported elsewhere [19].
Equilibrium averages are taken over up to 10~ configurations. Correlations between

conformations have been analyzed and are discussed in one of the following sections.

3. Results and discussions.

A typical snapshot of a plaquette-vesicle is depicted in figure I for 540 plaquettes and bond

parameter w =

0.I. The various degrees of bRgthness of each plaquette is due to mirror

reflection techniques. This snapshot demonstrate the highly folded character of the surface.
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Fig. I. Typical snapshot of a crumpled vesicle consisting of 540 plaquettes ~vith bond parameter

w =

0.1.

The fluctuation of the surface area A

8A
m

~/ ( (A (A ) )~) (l)

increases according to 8A
~

/j. This indicates that the central limit theorem is valid for

3A, I.e., the long-time fluctuations of the extensive quantity A are statistically uncorrelated.

The average surface area increases linearly with the number of plaquettes N~, and the average

bond length is independent of N. The corresponding values are listed in table1.

3. I RADIUS oF GYRATION. One Of the main results from the present Monte Carlo study is

the dependency of the mean square radius of gyration R~
on the average surface area

A. This is depicted in figure 2 for two bond parameters w =

0,I and 0.5. All data collapse
approximately on a single curve for each of the two models, vesicle and open membrane,

almost independently of the bond parameter w, exhibiting R~ A °.~ * °.°' This indicates, that

the power law is independent of the choice of boundary condition, either spherical as in the

case of vesicles or free boundaries as in the case of open membranes, which is analogous to

the situation of polymers, where linear chains and polymer rings have the same correlation

exponent v.
The fluctuation of the mean square radius of gyration of the vesicles, defined

according to equation (I), follows a power law 8R~~ A°.~~°.°~ So far, we have no analytic

arguments for 8R~/R~
~

A °.~ This result is in contrast to hard-sphere models of membranes

where R ~ A [6-12].
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Table I. Mean length of the tethers ii),
average area of plaquettes A/N~, normalized

fluctuation of the total area 8A and average angle between plaquettes U for two bond

parameters w and for plaquette models. The first two lines correspond to vesicles, the last two

lines to open membranes.

w
(f ) A IN

~
( 8A )~/A U

0.1 0.893 0.285 0,182 0.29

0.5 1.062 0.455 0.065 0.37

0.1 0.908 0.288 0.16 0.280

0.5 1.066 0.456 0.058 0.350

3.2 LOCAL mGIDITY. If n~ denotes the unit normal to the «-th triangular plaquette, the

average angle enclosed by two adjacent normals of plaquettes sharing a common edge is

U= £ n~ np (2)
'~e

j a, p)

where the sum is over all such pairs («, p ) of plaquettes on the surface and N~ is the total

number of common edges on the surface. The average value of U depends on w. For vesicles,

(U) is almost independent of N, whereas for open membranes a weak N dependence is

observed which is probably due to boundary effects and is expected to vanish for

N
- co. The values of U) for

w =

0.I and 0.5 are listed in table I the values for open

membranes correspond to N
=

271.

In figure 3, we present a log-log plot of the probability distribution P(cos0) of

cos 0
m n~ np versus (cos 0 -1( for bond parameters w =

0.I and 0.5 in the case of the

vesicle model. The distribution indicates that plaquette-vesicles are indeed very flexible and

the enclosed angles between adjacent plaquettes are not restricted. This is in contrast to pearl-
membrane models where due to hard sphere repulsion P (cos 0 )

=
0 for some 0 *

»
0, where

0* depends on the hard sphere diameter «=f~iJf~~~. This is demonstrated for

« =
0.6 and depicted in figure 3. For plaquette-vesicles, the power law

P(cos 0) (cos 0 1(~°.~~, as indicated in figure 3, may be qualitatively correct for small

angles 0 and independent of w, I-e-, P(cos 0)
~

0 '.°~ for (cos 0 1( <1. The onset of

deviation from the power law, as observed in figure 3, may be determined by the bond

parameter w.

3.3 CORRELATIONS BETWEEN PLAQUETTES. In figures 4 and 5, we present the correlation

functions (n(0).n(x)) between plaquette normals of open membranes and vesicles,
respectively, as a function of the scaled distance xii, where f is the mean length of the tethers.

The normal-normal correlation function measures the range of correlation, which is expected
to be short ranged for crumpled conformations and long ranged in the rough phase.

According to figure 4 for open plaquette-membranes consisting of N
=

271 vertices, as an

example, the normals are strongly correlated for xii
<

I. The correlations depend in this

range on the bond parameter w=0.I and w=0.6, but are almost independent of

N. For larger distances, the correlations decay rapidly down to in (0) n (x))
«

0.05. This
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Fig. 2. Fig. 3.

Fig. 2. Log-log plot of the mean square radius of gyration R~ and the fluctuation 6R~
vs. the surface

area A for various bond parameters w.
The open and the full symbols correspond to plaquette-vesicles

and open plaquette-membranes, respectively. The statistical errors are in the order of the size of the

symbols.

Fig. 3. Log-log plot of the probability distribution P(cos 6) of the angle 0 between adjacent
plaquette normals vs. cos 0 (. The lower curves labeled by the bond parameters w =

0.I and 0.5

correspond to plaquette-vesicles, whereas the upper curve labeled by
« =

0.6 corresponds to pearl-
vesicles.
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Fig. 4. Fig. 5.

Fig. 4. Open membrane: Correlation function between plaquette normals (n(0) .n(x)) as a

function of distance xii for
w =

0.I and w =

0.6 for N
=

271. The dotted curve corresponds to the

pearl-membrane model consisting of N
=

271 spheres of diameter « =
0.6.

Fig. 5. Vesicle : Correlation function between plaquette normals (n(0) n(x)) as a function of

distance xii for w =
0.I and various N. The dotted curve corresponds to the pearl-vesicle model

consisting of N
=

272 spheres of diameter « =

0.6.
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behaviour is in contrast to that of the pearl-membrane model whose correlations are depicted
by the dotted curve in figure 4. In order to compare the hard-sphere model with the plaquette
model of w =

0.5, we have chosen a hard-sphere diameter of
« =

0.6. For xii
<

I, the pearl-
membrane model exhibits much stronger correlations as compared to the plaquette model. At

distances xii
»

I, the correlations remain finite, (n (0) n (x))
=

0.3, which is in contrast to

the plaquette model. The small upward bending of the correlation function for large
xii,

as observed in figure 4, is related to the finite extensibility of the network leading to flat

conformations at large extensions. It should be noted that the behaviour of the normal-

normal correlation function as depicted for N
=

271 in figure 4 is qualitatively the same for

smaller as well as for larger N (N
=

91, 169, 397, 721 [19]), and the short range behaviour and

the plateau value are almost independent of N.

Similar conclusions concerning (n(0) n (x)) are provided by the results from plaquette-
vesicles in comparison to pearl-vesicles, which is depicted in figure 5. The behaviour of

(n(0) n(x)) for short distances xii
<

I is similar as in the case of open membranes. For

larger distances the correlation functions become negative. This is a reminiscence of the

spherical character of the vesicle surface. For comparison the broken line in figure 5

corresponds to an inflated vesicle of size N
=

92, demonstrating the effect of the spherical
boundary condition. One observes that the crossover to negative values occurs at the size of

the radius of gyration R of the vesicles which are for the plaquette-vesicles, R
=

1.05, 2.o, 3.6

for N
=

32, 92, 812, respectively. But the main observation is, similar as in the case of open
membranes, that the correlations in the pearl-vesicle (with

« =
0.6, represented by the

dotted line in Fig. 5) are much larger than in the comparable plaquette-vesicle with

w =

0.5.

In summary, the correlations between the normals in the plaquette model are qualitative
different from the correlations in the hard-sphere model. The correlation function of the

pearl-membrane model varies strongly at shorter distances and looks similar to the pair
correlation function of classical hard sphere fluids. At larger distances the normals of the

plaquette model are almost uncorrelated, whereas the correlations of the hard-sphere model

remain finite. It is conceivable that the observed strong correlation effects in the hard-sphere
model are responsible for the absence of crumpled conformations.

3A DYNAMICS. In the following section we discuss some dynamical properties of

plaquette-vesicles. We restrict our attention to the time dependent correlation function of the

mean square radius of gyration

jR~(0) R~(t)j <R~)~
(3j~~~~~

jR4j jR~)~

The amount of decay of 45~(t) provides some information how far our estimates of various

static quantities as discussed above are based on uncorrelated data. The correlation function

4~~(t) is depicted in figure 6. For comparison, it should be noted that the total Monte Carlo

time r~c the vesicles were simulated (one MC time step is one attempted move per vertex),

was r~c =
3 600 for N

=
272 and r~c =

400 for N
=

812. This has to compared with the time

during which 45~(t) decayed to lie. Since 45~(t) <0.2 for t « r~c as shown in figure 6,

r~c can be considered to be sufficiently long in order to obtain well equilibrated data.

In figure 6 we have depicted 45~(t) versus t/N in a serni-log plot. Since 4l (t/N) is almost

independent of N and an exponential relaxation is observed for 45~(t)»0.2 for both

w
=

0.I and 0.5, the typical correlation is in the order of
r ~

N.

On the other hand, this result is somewhat unexpected, because classical Rouse behavior

r N ' + ~ (
v =

0.8 ), analogous to free-draining single polymers, should appear and has been
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Fig. 6. Semi-log plot of the time correlation function of the mean square radius of gyration
~P~(t) vs. the scaled time t/N for bond parameters w =

0.I and 0.5 for the plaquette-vesicle model.

predicted and discussed in detail for open polymerized membranes [5]. The disagreement
could be resolved by relating this phenomena to a crossover effect which requires separate

considerations of « gel-like » longitudinal modes and Rouse relaxation. For « in-plane »

longitudinal relaxation we expect vi ~N, similar as in permanent cross-linked networks

[20, 21] and «phantom» membranes [5], whereas for out-of-plane relaxation r~
N'+~

Assuming that 4l~(t) can be represented by the sum of two exponentials

f~R(t)
~ ~l ~XP (~ l/Tl) + a2 eXp (- 1/T2)

,

(4)

then the typical time
r

* characterizing the crossover between gel-like relaxation and Rouse

relaxation is
r

*
= r t

In (ajla~). If ajla~ » I, then the two relaxation processes could be well

separated. Assuming aj =
I, then the time vi can be estimated according to the time during

which 45~(t) decayed to lie from its initial value. In this case we obtain estimates

vi =
4.2 N and 22N for

w =
0.I and 0.5, respectively. Since for t »r* the correlation

function is 45~(t) <0.I and is rather noisy due to large statistical fluctuations (compare
Fig. 6), the possible appearance of Rouse relaxation is difficult to confirm and cannot be

excluded. It is unknown how the ratio ajla~ depend on the bond parameter w.

4. Concluding remarks.

In summary, the present Monte Carlo study of a new model for polymeric self-avoiding
surfaces indicates that the conformations of polymerized membranes with sufficiently small

intrinsic rigidity are crumpled with a fractal dimension of D
=

2.5. This supports analytical
predictions [5] and recent experimental evidence [14]. It supports the conjecture [12] that

hard-sphere models of polymerized surfaces [5-12] have strong internal correlations prevent-
ing the membrane from crumpling.

It should be noted that similar crumpling phenomena and the same fractal dimension have

been found recently for fluid» self-avoiding surfaces too [10, ((j. Polymerized and fluid

models differ with respect to the local coordination number qi of the vertices I of the

triangulated surface. In contrast to polymerized surfaces, the numbers q, are not conserved in
N

the fluid model, although in both cases £ qi =

3(N -2). This leads to the interesting

, i

question whether the coincidence of the fractal dimensions of fluid and polymerized surfaces

is exact, and wether membrane models with quenched connectivity belong to the same class as

fluid models with a locally fluctuating metric.
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Finally it should be mentioned that the fractal dimension of 2.5 for self-avoiding
polymerized surfaces, as reported in the present work, has been found recently also for

surfaces (or hulls ») of percolation clusters [22]. This raises the intriguing question wether

the two models are related to each other and belong to the same universality class.
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