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Abstract. Continuum equations appropriate to describe crystal growth from atom beams are

derived in various cases. When desorption is important, the growth is described on very long
lengthscales by the Kardar-Parisi-Zhang equation, but should be corrected for shorter lengthscales
where surface diffusion is the dominant mechanism. In the absence of desorption, an important
effect at sufficiently low temperature comes from the fact that diffusion of incoming atoms on the

surface is anisotropic on long lengthscales becaused it is biased by reflexions against terrace edges.
As a result, the growth is described by a pseudo-diffusion equation. In the case of a high

symmetry surface, (001) or (ill), an instability arises. Finally,in the absence of diffusion bias, the

growth is described by a nonlinear equation of fourth order with respect to 3/3x and

3/3y. The exponents are calculated in a Flory-type approximation. In particular the roughness

exponent is found to be x =

(5 d)/3 in d dimensions.

1. Introduction.

1-1 MECHANISMS oF CRYSTAL GROWTH. This article is intended to give a simple
theoretical description of the macroscopic or mesoscopic aspects (beyond, say, 50 atomic

distances) of crystal growth by atom beams. It is of interest to recall first an essential

difference with growth from the fluid phase the destabilising effect of heat or impurity
diffusion through the fluid phase is absent, so that the corresponding instabilities (Mullins and

Sekerka 1963, Langer 1980, Pelcb 1988, Viscek 1989) do not appear. The interface usually
remains macroscopically planar if it is initially planar. However it becomes rough in the usual

sense of statistical mechanics, to be recalled below. Let Z be the coordinate normal to the

average surface ~possibly different from the beam direction z), let X and Y be two rectangular
coordinates parallel to the average surface, and let R

=

(X, Y) be a two-dimensional vector,

or a (d I )-dimensional vector in the general case of a d-dimensional space. For an initially
planar surface, the height Z(R, t) will be assumed to be a uniform function of R and t, but it

has fluctuations due to the fluctuations of the beam. The roughness is characterized by the

correlation function

G (R, i
=

j (z(R', i z(R' + R, 1))2j (i.1)
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The surface will be said to be rough if G (R, t) diverges when R and t go to infinity. The

main goal of the present work is to study this roughness.
Instead of (I,I), it would be possible to define a correlation function r(R,

v t between

the heights at distance R in space and Tin time after an irradiation time t. This complication,
however, is not extremely useful.

It is of interest to remark that instabilities which are not of the Mullins-Sekerka type can

occur in growth by atomic beams, as seen in subsection 4.4.

1.2 VARIOUS MODES OF GROWTH BY ATOMIC BEAMS.

1.2.I The oscillatory mode. The best semiconducting devices or metallic multilayers are

grown by molecular beam epitaxy (MBE) at fairly high temperatures, where diffusion is fast.

In that case, when the surface is parallel to a high symmetry orientation, the roughness of the

surface oscillates and exhibits minima (corresponding to the completion of the successive

layers) separated by maxima (Fig. la). These oscillations are observed in reflection high

energy electron diffraction (RHEED) or by other spectroscopic methods.

This growth mode will not be treated in the present work. The models presented in the

next sections are continuous, macroscopic models which are of no use to describe oscillatory
growth. Presumably, these models would be in principle applicable on very large lengthscales,
which would be unphysical.

We are conscious that most of experimentalists will be disappointed to see that growth in

the oscillatory mode is not much studied in the present work. Our main excuse is that it is

reasonable to study the simplest problems first. On the other hand, the other types of growth,
addressed below, have also been experimentally investigated, and this suggests that their

interest is not purely theoretical.

1.2.2 Stepped surface (« Step flow » ). From the theoretical point of view, the simplest case

is that of a stepped (or vicinal) surface (Fig, lb). Such a surface is prepared as a set of large

terraces of high symmetry orientation, (001) or (lll) in the case of a cubic crystal. These

terraces are separated by straight, equidistant, parallel steps. Wl1en the beam is switched on,

the steps go forward with an average velocity v, and consequently the crystal grows. The beam

direction
z

will be assumed normal to terraces. If f is the distance between steps, the rate of

growth in the direction z is

d
=

v
If (1.2)

1.2.3 High symmetry surface at moderate temperature. The oscillating growth described in

section1.2,I is observed only at high enough temperatures. On the other hand, at very low

temperature the atoms have no possibility to move and to look for the lowest energy

configuration, so that the resulting object is amorphous rather than crystalline. The present

work will be focused on moderate temperatures, where surface diffusion is fast enough to

allow the growth of a crystal, but the surface will remain appreciably rough (Fig. lc) on

lengthscales larger than a temperature-dependent limit which becomes microscopic at low

temperatures. This growth mode might be of interest in the case of certain multilayers in

order to avoid volume diffusion. Then a continuum description is reasonable on a timescale

larger than the time To necessary to complete a layer.
The cases of interest in the present article are those of figure16 and lc, described in

sections 1.2.2 and 1.2.3.

1.3 RANDOM EFFECTS, INHOMOGENEITY EFFECTS AND RECOVERY MECHANISMS. The

main purpose of this work is the investigation of the effects of random or systematic
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Fig. I. a) High symmetry surface of a crystal growing in an oscillatory way, giving rise to RHEED

oscillations. This is the usual MBE procedure. b)A vicinal face of a crystal. a) At equilibrium.
p) During growth. c) A high symmetry surface growing in a stationary regime. This regime can be

reached when the surface diffusion constant is fast enough to ensure the formation of a crystal rather

than an amorphous material, but sufficiently slow to avoid complete disappearance of small terraces

when bigger ones begin to form.

fluctuations of the beam intensity f(r, t ). It will generally be assumed that the beam is

homogeneous apart from random fluctuations 3 f(r, t ) which are uncorrelated in space and

time. Thus, if r
=

(x, y) denotes the coordinates perpendicular to the beam direction z,

13f(r, t 3f(r', t'))
= To

3f~ firr, 3 (t i~) (1.3)
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where 3f
»

IT
o "

f (' .~)

is the instantaneous beam fluctuation, which on local scales approximately coincides with the

average beam intensity f. Indeed, in a time To, at a given site, an atom can land or not, with

the same probability.
In the absence of atomic motion, the surface would become extremely rough and this would

result, as noticed above, in amorphisation of the material. The recovery mechanisms which

allow for the formation of a good crystal are a) surface diffusion, b) desorption (or
«evaporation»), c) volume diffusion, d) formation of vacancies in the superficial layers,

which are then incorporated in the bulk. The last two effects will be neglected. The effect (d)
is the essential one in a model of Meakin et al. (1987) and would have an effect similar to

desorption. Surface diffusion is the dominant effect except on long lengthscales at high
enough temperature, as it is in the absence of a beam (Mullins 1963).

A short calculation will give the order of magnitude of the effect of fluctuations in the beam

intensity for a layer of thickness h atoms and size R x R, where R is measured in atomic

distances. The average number of atoms deposited (on an initially flat substrate) is

R~h, and its fluctuation is
I.

The resulting fluctuation in h is therefore

3h
m

ilR~
=

>lilR. (1.5)

Let us assume that at some particular temperature, diffusion is able to heal the surface on a

distance R=100 interatomic distances. Then, for h=100, the height fluctuation is

3h
=

0.I atomic distances. This is not dramatically big, but it is not extremely small either.

Therefore it is of interest to check whether diffusion and desorption are able to heal the

surface. The present work is a step in this direction.

Most of the new results will be derived in section 4, where recovery is assumed to be due

only to surface diffusion, and where novel models will be derived and solved. In section 3,

recovery due to desorption will be studied and the system will be found to be described by the

classical equation of Kardar, Parisi and Zhang (1986). Since the properties of this equation

are well known, the only problem is to determine explicitly the coefficients. We have been

able to do that only in the case of a stepped surface. In section 2 a linearized form of the

kinetic equation is studied. It is an exactly soluble generalisation of a model of Edwards and

Wilkinson (1982). The reader familiar with the topic might go directly to section 4. However,
for tutorial purposes we find it appropriate to give, in the next two sections, some details on

problems which are not novel, but which may require a great bibliographical effort from the

non-specialist.

2. The linear approxbnafion.

In certain cases the equations which describe growth turn out to be linear and can be solved.

Such cases will be studied in subsections 4.4 and 4.6. It is of interest to recall first the

equations which rule the smoothening dynamics of a surface in the absence of a beam, since

these classical equations (which are linear in the case of weak fluctuations) are suggestive of

the kind of equations we would like to have in the presence of a beam.

2, I RECOVERY OF A MACROSCOPIC PROFILE IN THE ABSENCE OF A BEAM. The problem to

be addressed in this section is the following, The surface of a material is, on the average,

planar, but has some macroscopic (e.g. sinusoidal) profile, resulting for instance from grooves

having been digged on it a classical experiment (Mullins 1957, 1959, Bonzel et al. 1984).
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How will that surface go back to equilibrium ? The average surface will be assumed to be

orthogonal to a high symmetry axis z, also chosen as the beam direction.

2.I.I Evaporation dynamics (Mullins 1959). The chemical potential g of the vapor will be

assumed uniform, so that the evaporation term in the kinetic equation has the form

z~~(r, t
=

B(p (r, t fl) (2.1)

where the local chemical potential p (r, t) on the surface is a function of the shape of the

surface at time t in the neighbourhood of r. The simplest assumption is that it is a function of

the partial derivatives of z
with respect to x and y, which can be expanded as a power series if

the roughness is weak. This assumption can be argued to be correct, except in the case of a

crystal surface below its roughening transition, but that case is not relevant in the frame of this

article, the other sections of which deal with growing surfaces. A growing surface is, we

believe, unavoidably rough. The expansion of p cannot contain powers of the first

derivatives, (3~zy (3~z)~, because then (2.I) would imply that a crystal limited by a plane

surface can grow or not according to the orientation of the plane. In reality growth or

evaporation depends only on the sign of the difference between the chemical potentials. For

the sake of simplicity, only the case of an isotropic surface will be considered, and then the

leading term of the expansion is

p (r, t
=

Const. x (z(~ + zjj)
=

Const. x
V~z(r, t ). (2.2)

This is a particular form of the Gibbs-Thomson formula, appropriate for variations of weak

amplitude. Insertion into (2.I) yields

d~~(r, t )
= v

V~z
+ Const. (2.3)

with a positive value of
v.

2.1.2 Surface d%fusion (Mullins 1959). The part off which is due to surface diffusion obeys

a continuity equation

zd,I
=

oj + jj)
=

div j (r, t (2.4)

where the current density j
=

@~ j~) is a vector parallel to the average surface direction (not

to the local surface). According to irreversible thermodynamics (Landau and Lifshitz, 1967).

j (r, t )
=

Const. x VP (r, t ) (2.5)

Relations (2.2), (2.4), (2.5) yield

dd,f(r, t )
=

K V~(V~z) (2.6)

If both surface diffusion and desorption are present, both contributions (2.3) and (2.6)
should be added. The result is a simple equation, which is universal in that sense that the

microscopic details of desorption and diffusion are contained in the constants v
and K.

Equations (2.3) and (2.6) suggest the kind of equations that most of theorists, fond of simple
and universal models would like to have in the case of crystal growth.

2.2 CRYSTAL GROWTH IN THE LINEAR APPROXIMATION. If the beam is switched on, the

naivest guess is that the local rate of growth of the surface is the sum of (2.3), (2.6) and the
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beam intensity f(r, t ). It will be seen in section 3 that this is not generally true. However the

resulting equation

f(r, t
=

f(r, t + v
V~z KV~(V~z) (2.7)

turns out to be correct in certain cases (Sects. 4.3 and 4.6 below). In addition, the solution, to

be given below, has certain qualitative features which are also present in the general case.

The solution of (2.7) is a slight generalisation of the treatment of Edwards and Wilkinson

(1982) who treated the case K
=

0. However, their article is rather difficult to read, and it is of

interest to outline the method. This is done in appendix A. Here, only the results will be

given. The beam direction z is assumed to coincide with the normal Z to the average surface,

which is assumed to be initially flat, so that z(r, 0
=

0.

2.2.I The limit t
- w. If 0

~ v « K, in 3 dimensions and for long distances,

3z(r)~
=

j jz(r', t ) z(r' + r, t
)i~j 2 «To

k
In (r /p). (2.8)

K appears only in the logarithm and does not play an important part. The logarithmic
dependence in

r
is the same as in the original Edwards-Wilkinson model (K

=

0 ), and also as

in a surface at equilibrium at some effective temperature. Thus the noise 3 f may be viewed as

simulating thermal disorder. This way of thinking can, however, be misleading since the noise

does not satisfy any detailed balance formula. Indeed, if
v =

0, the K term is unable to

evacuate all the energy and formula (2.8) should be replaced by

fi f23z(r)~
=

([z(r', t z(r' + r, t )]~)
= To

r~. (2.9)
K

This formula is valid in 3 dimensions for
v =

0, or for small
v

and short lengths
r. It predicts

a roughness which is much stronger than thermal roughness. A numerical evaluation is

appropriate to get convinced that this result is not in contradiction with the experimental
realisation of good layers by MBE. According to (1.3), 3f

m
lITo, where To is the time

necessary to complete one atomic layer. The current is given by j
=

Dp VP IT, where p is the

density of moving atoms, D their diffusion constant and p the chemical potential. This yields
K- Dpg IT, where g is the surface tension. At high enough temperature, D should be of

order I Iv
i,

where vi is a typical phonon time. The order of magnitude of p is the maximum

concentration possible without nucleation of terraces. This threshold does not depend very

much on the growth rate (except if it becomes very slow) and is between 0.01 and 0.I. Thus,

taking g IT =10, a reasonable evaluation is K=10~ ~° and To =
I second. Then the height

variation predicted by (2.9) is one atomic distance for two points of the surface distant of 105

atomic distances. In such a case the continuous approximation is not applicable and formula

(2.9) is not reliable. However, the above numerical calculation shows that this unreliable

formula is not in disagreement with the very smooth surfaces grown by MBE. When the

temperature decreases, vi increases drastically and the roughness becomes much stronger.
Then the present article becomes of physical interest.

The case of a dimension d# 3 is also of interest. For
v # 0 and d~ 3 the result of the

Edwards-Wilkinson model is recovered, namely

3z(r) r~ ~~ ~~/ ~ (d
~

3 (2.10)

For v =

0 one finds

3z(r) r~ ~5 ~~/ ~ (d
~

5 (2.I1)
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It follows from these formulae that, in all physically relevant cases (d=3 and

d
=

2) the continuum, linear model (2.7) is consistent with our prejudice that a growing
surface should be rough. This property will be found to hold even when nonlinear terms are

taken into account.

2.2.2 The limit r = w. For 0
~ v « K it is shown in appendix A that

jjz(r', t z(r'+ w, t )i~j f
To 3 f~ In (v~ t/K) (2.12)

and for
v =

0

j jz(r', t z(r' + w, t )i~j
To 3 f~(t/K)~'~ (2.13)

The crossover from (2.8) to (2.12) takes place for r =
I, with

f
=

$ (v # 0) (2.14)

and the crossover from (2.9) to (2.13) occurs at

f
=

(K~ t)~~ (2.15)

Following the notations of Kardar et al. (1986), we define two exponents z
and x by

f t~'~ and 3z(r) rX. Unfortunately X is sometimes called
a

~vicsek and Family 1985,

Jullien and Botet 1985, Viscek 1989) or (. Comparison with formulae (2.12) to (2.15) yields
the following values in 3

=

2 + dimensions.

v # 0 (Edwards-Wilkinson model) v =
0 (no desorption)

z 2 4

x o i

Below 3 dimensions X is seen from (2, II) to be larger than I in tile absence of desorption.
This implies that, below 3 dimensions, the model is not physically acceptable. However,
mathematically, it is still consistent.

3. Growth with desorpfion.

In this section it will be seen that, in the presence of a beam, the linear equation (2.7) is

generally not acceptable. The nonlinear terms can be explicitly calculated in the case of a

stepped surface (Fig. lb).

3,I CASE oF A STEPPED SURFACE. The following model will be assumed. An atom which

has just landed on the surface diffuses until it finds a step or desorbs. If it reaches a step it does

not play any role. The desorption probability obviously depends on the step density
Vz

=

I If, where f is the local distance between steps, and z
is the coordinate perpendicular

to terraces (while Z denotes the direction perpendicular to the average surface). The beam

direction is assumed to be the high symmetry orientation z. For short f, the atoms have no

time to desorb and the growth rate is

d(r, t
=

f(r, t + diffusion terms (3, la)

On the other hand, if f is large, all atoms desorb except those which land very close to a
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step. Therefore, each step has a velocity v
=

Cf, where C is a constant. Relation (1.2) then

yields

d(r, t )
=

(C If ) f(r, t + diffusion terms (3. lb)

It is easy to find the appropriate interpolation formula between (3.la) and (3.lb). It is

convenient to introduce a function of f~~ rather than f
or I If. The interpolation formula is

d(r, t
=

f(r, t q~
(f~ ~) + diffusion terms (3. lc)

For the function q~, the form calculated by Burton, Cabrera and Frank (1951) in the absence

of fluctuations can be used, namely

q~
(I If~)

=

2 f~ /~ tanh /~
,

(3.2)
2

where ~ is the evaporation rate and A the diffusion coefficient of freshly landed atoms

(« adatoms »). The derivation of (3.2) will be briefly recalled. The density p (x) of adatoms

satisfies fl
=

f
~p + Ap ", and this is zero if the system is almost in a steady state. The

solution is, with an appropriately chosen origin, p(x)
=

fI~ A cosh «x, where 2 « =fi. If the capture of adatoms by steps occurs with probability I, A is determined by

p(± fI2)
=

0. The rate of capture by steps is 2 Af(p'(. If this is identified with the step
velocity, (3.2) results from the above formulae and (1.2).

Expanding
q~

in (3.lc) in a power series around the average orientation yields

d(r, t
=

f(r, t )
q~ (z(~ + zj~) + diffusion terms

=

f(r, t ) v~o + f(r, t (zl~ fl~ + zj~) v~l +
jf(r,

t )(zl~ fl~ + zj~)~ WI'

In this formula, y is the average step direction, f[= I If is the average slope, and

q~o, pi and pi' denote the values of
q~

and its derivatives for z(
=

IQ which can easily be

calculated from (3.2). Introducing the coordinate Z perpendicular to the average surface and

neglecting the fluctuations off except in the first term, the above equation yields

Ii(r,
t

=

f(r, t q~o + cZ[ +
~

Z[~ +
~

Zj~ + diffusion terms
,2

'

where

A
=

2 /(q~j
+ 2 fj~ pi')

,

(3.3a)

'
=

2 fq~(
,

(3.3b)

and c=2ff[.

In the equation for 2
one can get rid of the constant part of the first term by a translation

Z
-

Z q~o t, and of the second term by a Galilean transformation
x - x ct. Finally

2(r,
t

=

3 f (r, t q~o +
~

Z(~ +
~ '

Zj~ + diffusion terms (3.4a)
2 2

The actual beam intensity is renormalized by the factor q~o. This factor will be omitted in

the following. This is possible if (as generally done) the beam intensity is not directly
measured, but deduced from the layer completion time To through (1.4). On long
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lengthscales, diffusion terms can be neglected. The above calculation is too crude because it

assumes that atoms coming to a step do not play any role. In reality, they can still escape from

the step and even from the surface, but these events follow the laws of thermodynamics and

are described by equation (2.3). Combining (2.3) and (3.3) leads to an anisotropic form of the

well-known KPZ equation

2(r,
t

=

3 f(r, t ) +
~ (VZ)~ + v

V~Z (3.4b)

introduced by Kardar, Parisi and Zhang (1986) to describe the long distance behaviour of the

Eden (1958) model. The anisotropy in (3.3) will be neglected for simplicity from now on.

Certain models different from the present one are also represented by (3.4) on long
lengthscales. Certain of these models do exhibit desorption, since particles which land at

certain places are not accepted. It is so in the model of Kim and Kosterlitz (1989), Amar and

Family (1990) and in an exactly soluble, two-dimensional model of Meakin et al. (1986). In

the Eden model the justification of (3.4) is completely different (Kardar et al. 1986). In the

Edwards-Wilkinson model, A
=

0 and the J~term is due to gravity. In other models described

by (3.4), desorption is not allowed, but vacancy formation is allowed (Meakin et al. 1987,
Pellegrini and Jullien 1990). When neither vacancy formation nor evaporation are possible,
then A should vanish as discussed in the next section.

Let the values (3.3) of A and A' be reconsidered. The derivatives of
q~ are taken with respect

to (
=

z[~. From (3.2) one deduces

~ ~~
~

~~~~
~'

~' ~~ ~~~ ~t
cosh~ I /

~'~~~ ~ ~ ~~ ~ ~~
cosh~ I / (

ji ~~~~~~

Comparison with (3.3) shows that A' vanishes for very large and very small f. This can be

directly checked from the asymptotic behaviour. More important, A and A' are seen to have

different signs The possible consequences of this effect is left for future work.

3.2 HIGH SYMMETRY SURFACE. A growing crystal surface of high symmetry at moderate

temperature (Fig. lc) is expected to be rough. Similarly to the case of a surface at equilibrium

at high temperature, we expect all properties to be analytic functions of the derivatives of the

height z. If one writes that1is an analytic function, equation (3.4) is obtained at lowest order.

However, we have not been able to calculate explicitly A.

A simple-minded argument would be the following : a non-vanishing value of Vz indicates

that steps are present. A step produces a disturbance of finite extension b. Therefore a non-

vanishing value of Vz should be reflected by a term of I proportional to h/f. It this is

(incorrectly) identified with b (Vz(, the result is in contradiction with (3.4). The flaw in the

above argument is the following equation (3.4) should hold only in the limit Vz
-

0 (this

means : on very long lengthscales). Thus, Vz should not be equal, but much smaller than

I If, where f is the average distance between steps resulting from fluctuations. Since the

numbers of up and down steps are on the average equal, a finite I does not imply a

nonvanishing Vz

To summarize, the dynamics of a growing surface with a high symmetry orientation is

presumably given by the KPZ equation for very long lengthscales, but the practical use of this

equation might well be very limited. Further investigation would be necessary to precise this

point.
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3.3 PROPERTIES OF THE KARDAR-PARISI-ZHANG EQUATION (3.4). They are reviewed in

detail elsewhere by more competent specialists (Medina et al. 1989, Wolf 1990). However the

non-specialist may be glad to find the summary which will be given here. f will be assumed to

vanish, since this condition can be fulfilled with the help of a translation
z - z

ft.

a) The sign of A is irrelevant since it can be changed by the transformation

z - z, A
-

A which leaves (3.4) invariant.

b) The nonlinear term in (3.4) is relevant, at least in 3 dimensions and below 3 dimensions.

Indeed the ratio of the nonlinear to the linear (v-) term in (3.4) on a lengthscale R scales as

~(~~
m ~~~~~~~~/~

=

3z(R),
V z 3z(R)/R

where 3z(R)
=

~ (see formulae (I.I) and (2.9)). Since the surface is rough,
3z(R) goes to infinity with R. This argument suggests, in fact, that not only the nonlinear

term is relevant, but the linear term is irrelevant.

c) A similar argument would show that all analytic terms which might be added to (3.4) and

are consistent with translation invariance are irrelevant at long lengthscales. Translation

invariance implies that Z can only appear through its derivatives.

d) The relaxation time
T

of a bump or a hole of radius f and height h can indeed be

calculated from the A-term alone in the absence of beam, and is given by h/Tm
h

m

(lilt)~. It follows

T ~

f~/Ah. (3.5)

e) Some insight into the relevance of the v~term in (3.4) may be gained if one considers the

decay (Fig. 2) of a sine profile Z(x, y, 0)
=

acos qx under the effect of the deterministic

version ~f
=

0) of (3.4). Assuming first
v =

0, the surface becomes flat almost everywhere
after a time given by (3.5), but there are still sharp peaks at the places where

cos qx =

I (if A
~

0) or cos qx =

I (if
~

0). These spikes disappear when the v~term is

switched on, but presumably a term of the form (2.6) would have the same effect. To

summarize, the v~term or a similar term is necessary (at least for f
=

0) but the relaxation

time (3.5) does not depend on it.

iZ

Fig. 2.- Relaxation of an initially sinusoidal profile (full curve) subject to equation (3.4) with

f
= v =

0. The sharp spike obtained at long time (dotted curve) would disappear for nonvanishing

values of
v.

o The exponents x and
z

defined in section 2 should be such that the characteristic length f

and height h associated to a time
T

satisfy

f
T

~'~ (3.6a)

and h
T

Xl ~ (3.6b)

Insertion into (3.5) yields

x+z=2. (3.7)
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The use of (3.5) implies the non-obvious assumption that A is not renormalized by the

noise. The justification will be found in the literature, e-g- Medina et al. (1989).
g) The exponent x in 3 dimensions (Forrest and Tang 1990) turns out to be

x m
0.385 (3.8)

Surprisingly, x # 0 although the argument (b) suggests the upper critical dimension to be 3.

A discussion by Halpin-Healy (1989) casts some light on this point.
Let the physical relevance of the KPZ equation (3.4) in crystal growth be briefly discussed.

Firstly, it clearly neglects higher order terms, in particular the K-term of (2.7). As said above

~point c) these terms are negligible in the long lengthscale limit. If one wants to describe short

lengthscales, it is necessary to reintroduce the K-term (2.6).

4. Growth without desorpfion.

At temperature where MBE is usually performed, desorption is generally negligible at

equilibrium. Although this is not necessarily true in the presence of a beam, the limit of

vanishing desorption is of physical interest.

4.I ABSENCE OF A-TERM IN THE GROWTH EQUATION. In this section it will be assumed

that all atoms coming from the beam are incorporated in the surface, and that the

concentration of vacancies in the bulk is not influenced by the growth process and is just the

equilibrium concentration at the temperature of the material. Under these circumstances, the

rate of growth d of a planar surface (if z is the beam direction, assumed to be also a high

symmetry axis) should be independent of the orientation of the surface, therefore

independent of Vz. It follows, as noticed by Kariotis (1989) that the coefficient should

vanish in (3.4). Another way to obtain this result is to write that the growth rate should satisfy

a continuity equation (corrected by the beam intensity), namely

z(r, t )
=

f(r, t div j (r, t )
,

(4,I)

where the current density j is perpendicular to z.
The A-term in (3.4) is not a divergence, and

therefore
=

0.

4.2 DIFFUSION BIAS. The next question is whether the linear term of (3.4) also vanishes. In

the absence of a beam, it does, and the dynamics are described by equation (2.6) where only
higher order derivatives appear. This is a consequence of the detailed balance principle,
which obliges the average current to vanish if Vz

=
0. A non-vanishing current would indeed

imply, through the detailed balance principle, that the particle energy depends on the height

z, and this is excluded if gravity is neglected. However, in the presence of a beam, the average

current does not vanish. The reason is the following. Assume Vz # 0, so that the surface has

steps (Fig. 3). A number of experimental facts (Fink and Ehrlich 1986, Tsushiya et al. 1989)
show that freshly landed atoms (which are not thermalized and therefore ignore the detailed

balance principle) prefer to be incorporated to the
« upper » step than to the lower one. The

reason is that incorporation to the lower step would imply that the atom first jumps down to

the lower terrace. To do that, the atom should jump over a potential barrier (Fig. 3). This can

be understood from the fact that the number of neighbours is particularly small when the

atom passes through the terrace edge. Experimentally, the effect is strong at room

temperature in usual metals and semiconductors, but does not prevent the formation of

smooth surfaces at around 600 K, so that the order of magnitude of the potential barrier can
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~

f-

x

Fig. 3. Potential seen (lower part) near a step (upper part) by an atom diffusing on a stepped surface.

The potential has a maximum near the terrace edge because an atom at this position (circle) is at

maximum distance from its remote neighbours. As a consequence, atoms go more easily to the upper

step than to the lower step.

be estimated to 300K. We propose to call the effect defined in this section @# 0 if

Vz # 0) « diffusion bias ». Its consequences are studied in the next two subsections.

The effect of diffusion bias can be tested by the following exercise. Consider (Fig. 4) a

stepped surface with parallel steps separating alternatively broad and narrow terraces of two

different lengths ii and i~. If there is diffusion bias, the upper edge of broad terraces proceed
faster because they collect most of atoms falling into the broader terraces (see appendix B,

Eq. (Bl)). Thus the terrace widths equalize. This equalization does not occur in the absence

of diffusion bias, as seen from equation (Bl) with
Y~ =

1/2. Thus, diffusion bias accelerates

the relaxation of a stepped surface to equilibrium. A more general study is presented below.

~Z

~,
~

A
B'

Fig. 4. If diffusing atoms are strongly repelled by the lower step, this can stabilize a stepped surface.

Indeed, if a narrow terrace AB is between two broader terraces AA' and BB', the steps B and

A' collect most of the atoms landing on the broad terraces, and therefore go faster than A. Therefore

the narrow terrace grows at the expense of the broad ones, and a flat surface is stabilized. The curve is a

combination of the geometrical profile (Fig. 3a) and of the potential (dotted curve of Fig. 3b) which has

no physical meaning.

4.3 CASE oF A STEPPED SURFACE. In the case of stepped surface, the equation which

describes growth on long lengthscales (longer than the step distance I)
can easily be derived in

the case of infinitely high barrier. This approximation can be expected to be good at low

enough temperature and if I is not too large, otherwise the atoms would try a large number of

times to jump the barrier, and would ultimately succeed with a high probability.
What is needed is an evaluation of the current density, to be inserted into (4.I). All landing

atoms should go to the upper ledge, and it will be assumed that they do that in a time
T

sufficiently short, so that the ledge does not move very much in that time, If the atom has

landed at a distance x from the upper edge, its average velocity is x/T. If the probability for an

atom to have certain values of x and
T

is p(x, T), the average current density is

I
oJ

j
=

dX dT p (X,
T

) UT Xl
T

o o
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The factor ~fT) is the average density of particles with a given
T.

The beam intensity

fluctuations are neglected in the second term of (4.I) which is now being calculated, although
they should be taken into account in the first term. The integration over T

is readily done and

one obtains

I

iii
#

dXp(X) fX,
o

where p(x)
=

I Ii is the probability that an atom has a given value of x.
The final result is

j
~

Ii /2
~

f/2 azlaxj
,

where X denotes the coordinate perpendicular to the local orientation of the steps. Coming
back to the coordinate x perpendicular to the average step orientation, the above formula

yields

~' f
~" 2(z(~+ zj~)

~" ~ ~

Insertion into (4.I) yields after linearization about the average slope (f(=lli,
fj=0).

z(r, t)
=

f(r, t + v
V~z(r, t ), (4,2)

with v =

i~ f/2. (4.3)

Thus, the linear model of section 2 is applicable and
v can be explicitly calculated. For short

lengthscales, the term (2.6) should presumably be taken into account. The result is equation
(2.7). In the absence of diffusion bias, there is no linear coupling between j and

Vz, so that
v =

0. This is in agreement with the finding of the last subsection that diffusion

bias accelerates relaxation on a stepped surface.

We have discussed this section with various distinguished specialists, and we had some

difficulty to convince them. The reason is presumably the following. The growth of a stepped
surface corresponds to an forward motion of the steps. On the other hand the current density j
considered in this section is defined between steps and has no intuitive relation with steps. For

that reason an alternative derivation of (4.2) is given in appendix C (in the one-dimensional

case). That derivation considers step motion directly.

Deterministic version of (4.2). If the surface is initially rough and if the beam fluctuations

3f are negligible with respect to the initial disorder, f can be replaced by the constant

fin (4.2). Equation (4.2) now becomes deterministic, and can be used to study the evolution

of the surface toward equilibrium.
As an application, a result of Gossmann et al. (1990) will be rederived. These authors

consider an array of parallel steps, the distance of which has random fluctuations which are

initially uncorrelated. They find that after a time t the probability distribution of the distances

has a width proportional to t~ ~M (or to the power I/4 of the coverage, in their language).
This will now be rederived from (4.2). A consequence of (4.2) is that the Fourier transform of

z(x), which can be defined with some precaution as explained in appendix B, satisfies, for

q # 0,

zq(t)
=

zq(0) exP (- vq
~ t)
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The Fourier transform i~
m

iqz~ of I(x) satisfies the same equation and therefore

[i~(t)[~)
=

([i~(0)[~) exp(- 2 vq~ t).

Since the distances I
+

3i~ between consecutive steps are uncorrelated at t
=

0, it follows

[i~(o)[~) jj (3i~ 3i~,) expjiq(x~ x~,)j
=

const.

n,n,

In this formula we have ignored the fluctuations of x~ in the exponential. This

approximation might be justified at the cost of some complications. The last two equations
yield

(3i~) £ [i~(t) [~) =

£ i~(0) [~) exp(- 2 vq~) £ exp(- 2 vq~ t) l / /.

q q q

The width of the distribution is therefore proportional to t~ ~M

4.4 HIGH SYMMETRY SURFACE. In the case of a high symmetry surface, it is not so easy to

take diffusion bias into account. Formula (4.2) would suggest an infinite current. This is in

fact not true. The current density was found in subsection (4.3) to be proportional to the step
distance I because the atoms were supposed to diffuse to the upper ledge. This is not true if I

is too large because the density of free, diffusing atoms becomes so large that they form their

own terraces as in figure lc. It is reasonable to assume, as in section 3, that on a growing
surface, all properties are analytic functions of the derivatives of z, as they are for a rough
surface near equilibrium (Mullins 1963). In particular

j(r, t)
= a

fvz(r, t)

where
a

is a constant and the factor f recalls that the coefficient should vanish in the absence

of beam. The point is that, according to the discussion of subsection 4.2, a
should be positive.

Then insertion into (4.I) yields equation (4.3) again, but with a negative value of v! A

microscopic justification is given in appendix C, together with a rough evaluation of
v.

The negative value of
v

implies an instability. Equations (2.7) and (3.4), derived in the

previous sections, were consistent with a macroscopically planar (since X ~
l), though

microscopically rough surface. If
v ~

0, the surface cannot be macroscopically planar. To our

knowledge no such instability has been reported, presumably because experimentalists just

try to avoid it.

Since the surface of the growing crystal cannot be macroscopically planar, what is the actual

surface shape ? The answer requires further specification of the model. In a particular model

treated in appendix D, a sawtooth profile is generated (Fig. 5).

izI... L-.-
---------> ~

Fig. 5. Steady state profile resulting of the growth of a surface having initially a periodic profile of

weak amplitude.
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4.5 THE cAsE v =

0. In practice, although diffusion bias is a well-known effect, it seems to

be mainly present at rather low temperatures. The fact that it does not prevent the growth of

very smoth surfaces at higher temperatures suggests that diffusion bias becomes weak, so that

v can be neglected.
The simplest idea (Bruinsma 1990, Bales et al. 1990) would be to use equation (2.7) with

v =
0. However, since a nonlinear term is necessary in the case where desorption is possible,

nonlinear terms can also be expected to be present in the absence of desorption. We have not

been able to produce any real derivation, but the following argument may have some value.

One would like to use equation (4.2) and an appropriate equation to replace (10) when no

chemical potential can be defined. A reasonable Ersatz of (10) is j (r, t Vp (r, t ), where p is

the density of adatoms. Then it is reasonable to assume that p depends on the surface slope.
For a highly symmetric orientation the lowest order expansion should be p =po+

pi (Vz)~. Combining both relations, one arrives at

z(r, t
=

f(r, t ) KV~(V~z(r, t )) + ~rV~(Vz(r, t ))~. (4.4)

It tums out that, in this model, all exponents can be calculated from an argument I la Flory.
Firstly a bump or a hole of radius R and height h is healed by the last two terms of (4.4) after a

time
T

which satisfies the relation

h IT
~

(
m

(Kh + ah ~)/R~.

Hence

T ~

R~/(K
+ ah ) (4.5)

Another relation can be obtained by looking for the time
T necessary for the random noise f

to make a bump or a hole of radius R and height h. The number of atoms landing into the area

R~~ (if d is the space dimension, usually 3) in the time
T

is fR~~
T

/ To, and the fluctuation

of this number, responsible for the formation of the bump or hole, is equal to its square root.

It should also be equal to the volume R~~ h divided by the atomic volume (assumed to be

one). This yields

~ ~ ~
y~ ~~- i ~~ ~~ ~~

Equating (4.5) and (4.6) yields

h~(K+ ah )
m

y/To) R~ ~~ (4.7)

It follows that the surface should be rough below 5 dimensions, since lim h
=

co. It

R~O~

follows also that the relaxation time does not depend on K for large lengthscales.
Inserting h

~-

RX into (4.7) yields, if
« # 0,

x =

(5 d) /3 (4.8)

In particular, for d
=

3, X =
2/3. For « =

0, (4.7) yields x =
(5 d) /2 in agreement with

(2.I I). Insertion of h
~-

tX/ ~ and R t
~/ ~ into (4.5) yields

z=4-X
=

(7+d)/3.

The above relations result from an argument I la Flory or I la Imry and Ma, which would

fail in the case of the KPZ equation. More precisely, relation (4.6) cannot be applied to the
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KPZ equation (3.4). It can be understood from the physical interpretation given in the

present work, that (4.6) is correct in the case of surface diffusion dynamics and not in the case

of desorption dynamics. Indeed, the correct way to handle the problem would be a coarse-

graining procedure, in which an initial cell of linear size R would be divided in cells of size

bR, then in cells of size b~ R, etc. (with b
~

l). The fluctuation of the atoms having landed in

the initial cell and having remained in that cell is normally expected to depend on all scales.

Equation (4.6) states that they do not. This is ~presumably) correct in the case of surface

diffusion because the atoms which land in a small cell of size bP R have no great probability to

leave the big, initial cell. In the case of desorption dynamics, on the contrary, desorption is

dominated by small cells, because the average value of VZ( in (3.4) is bigger in small cells.

Even though a more precise justification of (4.6) seems necessary, the present argument
probably yields the correct answer.

On the other hand, equation (4.5) is not so safe as (3.5) was in the KPZ case (Nattermann
1990). There are two reasons for that. The first one is that the relative weight of short

wavelength fluctuations in (4.4) is higher than in (3.4) because q~ increases faster than

q~. Therefore renormalisation due to large q values should be more effective. The second

reason is that there is an exact proof of (3.5) in the KPZ case, based on Galilean invariance

(Medina et al. 1989). If (4.6) is correct, but not (4.5), the following exact relation follows

~wolf and Villain 1990).

z-2x =d-1. (4.9)

The argument h la Flory which leads to (4.8) is similar to the one which yields the

equilibrium roughness of a domain wall ~villain 1982, Grinstein and Ma 1982) in the random

field Ising model (RFIM). The result is the same. The analogy between the RFIM and growth
problem was already remarked by Zhang (1988). The analogy between the Eden or KPZ

growth and the random exchange Ising model is well known (Kardar et al. 1986). In the

random field problem, formula (4.8) is believed to be exact. Whether it is exact in the present

case is an open question.
An interesting consequence of the above Flory-like calculation in the case of equation (4.4)

is the following. The effect of the nonlinear term is
a

decrease of the roughness, as seen from

the comparison between (4.8) and (2.ll). This is in contrast with the KPZ case, where

comparison between (2.8) and (3.8) shows that roughness is increased.

4.6 SIMULATIONS IN TWo-DIMENSIONAL MODELS. Although surface diffusion seems to be

the dominant healing mechanism, there are not many numerical studies. Wolf and Villain

(1990) studied a one dimensional model in which a freshly landing atom moves by one step (in
the direction x of the average surface) if it increases the number of its neighbours, and then

does not move any more (Fig. 6). A similar model has been devised by Das Sarma and

Tamborenea (1990).

B

@B~'@C"

@@ A @@@@C

@@@@@@A' M B'@@@@@C~

@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@

Fig. 6. A one-dimensional model with no evaporation and no vacancy formation. Atoms landing at

A', B', B", C' or M do not move. Atoms landing at A should go to A'. An atom landing at B can choose

between B' and B".
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The numerical results are in both models consistent with equation (35) with
« =

0. It is not

quite clear why
« should vanish. Moreover there is no clear derivation of equation (35) in this

case. The coefficient K cannot be obtained from the thermodynamical argument of section 2,

since there is no Hamiltonian, no free energy and no chemical potential in the problem. It is

interesting to see that thermodynamic-looking equations can occur in non-thermodynamical
problems.

5. Conclusion.

The most important new results reported in this paper are related to the case when the

smoothening dynamics is due to surface diffusion only. In that case the most striking results

are I) a non-vanishing
v

in the presence of diffusion bias (Sect. 4.3). ii) The instability which

arises from diffusion bias for a high symmetry surface (Sect. 4.4). iii) The calculation of the

roughness exponents in the absence of diffusion bias (Sect. 4.5) in an approximation h la

Flory.
Another contribution, which we believe to be useful, is the actual calculation, for a stepped

surface, of the coefficients A and A' (of opposite signs!) in equation (3.4), and of the

coefficient
v

of equation (4.2). The coefficient A gives access to the knowledge of the surface

roughness in the case of evaporation-dominated smoothening, while the coefficient
v

contains

the same information in the case of surface diffusion. Our understanding of high symmetry
surfaces is poorer, in spite of the attempts reported in appendix C.

Since the coefficient
v can be positive or negative in the case of surface diffusion dynamics

(Eq. (4.2)) there is a particular case where
v is exactly zero. This can occur for a stepped

surface with a weak slope when temperature is varied : at lower temperature v can be seen to

become negative. This corresponds to the onset of an instability, rather than to a kind of

roughening transition as in the case where A is not generically zero, but vanishes accidentally
~Yan et al. 1989, Amar and Family 1990, Pellegrini and Jullien 1990, Krug and Spohn 1990,

Kim et al. 1990).
In the case of surfaces with a high symmetry orientation we have not been able to calculate

the coefficients of the continuum equation (except for the rough evaluation of
v

in

appendix C). Moreover, the value of continuum equations in the case of highly symmetric
orientations may be limited to unphysically large lengthscales. A general and realistic

description of the growth of a surface of highly symmetric orientation is still an open problem.
Most of the results of the present paper (for instance exponent values) describe the effect of

random beam fluctuations. However the kinetic equations (2.7), (3.4), (4.2), (4.4) can also

describe, in the respective cases, systematic fluctuations in space, thus competing with the

alternative continuum theory of Ohtsuka and Miyazawa (1988).
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Appendix A.

Solution of the linear model (2.7~.

The Fourier transform of (2.7) is

dq(t)
=

fq(t)
«

(q) zq(t) (Al)

where

"(q)
=

vq~ + Kq~ (A2)

Introducing the variable

tq(t)
=

zq(t) e~~~~
,

(A3a)

so that zq(t)
=

f~(t) e~ "~~~ ~, (A3b)

equation (Al) becomes

/q(t) =fq(t) e"~~~~

This is readily integrated, yielding

f~(t)
=

f~(0) +

~
dt' f~(t') e~~~~~'

The correlation function is therefore

(fq(t) f-q(t'))
=

~~dT' ~dT
lfq(T')f-q(T)) e~~~~~~'+~~ + lzq(0)z-q(0))

Assuming t'~ t and using (1.3), the integral over T' is readily performed :

It(fq(I) f_ q(I'))
= To dT 3 f~e~~~~~ ~ + (Zq(0) Z_ q(0))

0

An initially flat surface normal to the beam direction z
will be assumed, so that the last term

vanishes for q # 0. Coming back to the z variable, one finds

It(z~(t) z_~(t'))
= To e~ "~~~~~

~~ dT 3 f~e~~ "~~~~~ ~~ (t'
~

t) (A4)
o

For large times, t, t'» I la (q), one finds for both signs of (t'- t)

lzq(i)
z

~(i,)j
= ~~

13f~)
~ ~

~~~
~,

2
v q

~
+ Kq 4)

~
~~ ~ ~ A 5~

EQUAL TIME CORRELATIONS. The case t
=

t' is of special interest. Then (A4) reads

(Zq(I) Z_ q(I))
= To

~
dT 3 f~e~~ ~~~~~~ ~~~

= To 3 f~ ~~~~
~~~~~~

~~~~ ~~ (A6)
o (vq + Kq )

The Fourier transformation can be inverted, yielding the results (2.8) to (2.ll) when the

limit t
=

co is taken, and (2.12) and (2.13) in the limit r =
co.
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Appendix B.

Derivation of (4.2) in terns of step flow.

In this appendix the one-dimensional version of (4.2) will be derived in an alternative way. It

will be assumed that the velocity of the n-th step is

in
"

~f'1(Xn+I ~~n)~f(1~'1)(Xn~~n-I). (Bi)

The case
Y~ =

0 corresponds to maximum diffusion bias. The case
Y~ =

1/2 corresponds to

no diffusion bias. The present approach is less general than that of section 4, because (Bl)
neglects retardation effects. It is convenient to introduce the Fourier component z~ of the

height

no+L

z~ =

£ z(x) exp (iqx) (82)

x no

This Fourier transformation is not very useful unless periodic conditions are artificially
introduced, namely

xi~~ = x~ + L (83)

where
n

and L are constants. The sum in (82) depends on no, but the Fourier transforms of

z'(x) and d(x) are independent of no, provided q satisfies

q =
2 arQ IL (84)

where Q is an integer.

The derivative of (82) is

2~ =
£ i~ exp (iqx~) (85)

n

Note that, in this equation, z has not the same meaning as in section 4. In equation (4. I), all

atoms on the surface contribute to z. In (82), the atoms which have not yet been incorporated
in a step are ignored. Of course the continuum equation (4.I) makes sense only for long
lengthscales.

Inserting (Bl) into (85) and making a Taylor expansion yields, to second order

d~ =

£ fY~ (f
+ xl') + f(I

Y~ (x( xl') exp(iqx~)
2 2

~

f £ Xl ~Xp (iqXn) f
'1 £ < ~Xp (iqXn)

,

(86)

n n

where x'and x" denote the derivatives of x with respect to n or z.
If the sum are replaced by

integrals, the first term vanishes for q # 0 because

lh
L

x' exp(iqx) dz
=

dx exp(iqx)
=

0 if (84 is satisfied (87)
0

o
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Thus (86) reads for q # 0

=q=-ill-71) j[xexP(<qx)dz

=

ill-71) j)xzexP(iqx)dx

f
7l II ~~ll~'~ z'exP ~i~xi dx

-

fl
71

j) ~~[l~'~ exP (iqx) dx

or

2~ =

f
Y~

~

~
exp (iqx) dx

2

~

Linearizing around the average value f' yields

2~ =

f
Y~

f'~ ~ l~ z"(x) exp (iqx) dx (88)
2

o

or

d(x)
=

f
Y~

f'~~ ="(x) + Const.
2

This is the required equation. The constant (obviously equal to jj is necessary because (88)
is not correct for q =

0. When the beam intensity fluctuation 3f is added, the one-

dimensional version of (4.2) is obtained, with

v =

f(1 2
Y~

) /f'~

We have taken the shortest way to the result. A few remarks are appropriate. Firstly, one

can wonder whether the replacement of the first term of (86) by an integral does not

introduce an approximation which would be of the same order as the second terra, To prove
that it is not so, it is appropriate to consider the integral

h h 1/2
x' exp(iqx) dz

=

£ df x'(n + t exp [iqx(n + t )]
o

n =1

-

l/2

h 1/2

-

£ d£ [x( + ixl'] exp [iqx(n + £ )]

n

-

l/2

h 1/2 h 1/2

~

£ dt Xl ~Xp liq(~n + ~l t + £ d< (Xi ~Xp lqXn

n=1

-

l/2 n=1

-l/2

This does reduces to the first term of (86), which therefore vanishes according to (87).
Higher order terms in q have been neglected.

Another remark is that it is easy to make a mistake by inserting (Bl) into (82) and

relabelling the x~'s, if one forgets that x~#x~~~ is not periodic, in contrast with

(.

Finally, it can be remarked that the use Fourier transformation in the above argument was

merely to provide a precise definition of the continuum approximation.
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Appendix C.

Calculation of the negative v for a high symmetry surface.

We consider a growing surface with an orientation of high symmetry, where steps are however

present because of growth-induced fluctuations. Figure 7 gives an idea of this situation. For

simplicity, the steps have been sketched as straight in order to distinguish them from smaller

fluctuations which do not contribute to Vz at the scale of interest. Moreover all steps present
in the field of the figure have been assumed to be of the same sign a somewhat misleading
simplification. Thus, the surface is formed of terraces separated by ledges. On those terraces

there are smaller, roughly circular terraces and holes. An atom which has just landed starts

diffusing with zero average velocity (if long range, e-g- elastic forces are neglected) until it

finds either a small terrace or a straight step. The only process which gives rise to a finite

current is when the atom hits a straight step, and this happens only for atoms landing at a

distance of a step which is not too much bigger than the distance a to small terraces. The

proportion of such atoms is of order all, where I is the average distance between steps. In

this fraction of the total area the local current density j
=

fa/2,
as seen from section 4.3 if I is

replaced by a. However this current is either in one direction or in the other. For a given value

of Vz, the probability that the local current is parallel to Vz is of order I Vz. Finally the current

density averaged in a region where Vz has a given value is jm (all)fa/2)(ivz)
=

fa~vz/2. Insertion into (4.I) yields (4.2) with

~
2 f

~~~

fOl f eu~s~~~jj~

Fig. 7.- Schematic representation of a growing surface with a weak, but non-vanishing value of

VZ
=

I If, where Z is orthogonal to a high symmetry orientation. To make the argument clearer, the

surface is arbitrarily represented as an array of large terraces separated by straight steps at distance I,
with small terraces and small valleys inside large terraces. Most of the atoms which land on the surface

go to small terraces and do not contribute to the current, except those which land on the dotted stripes of

width a. Such an atom landing in A diffuses with zero average velocity until it reaches a step at S. At low

temperature, it is then reflected with a high probability and diffuses again until it is caught by a smaller

terrace at T.

This relation yields
v

if a is known. In the calculation, barriers have been assumed

completely opaque. At high temperature, where their transparence is high and a is large, each

atom will try a large number of times to jump over the barrier, and the probability of success

will be large. Thus,
v

will decrease rapidly with increasing temperature, more rapidly than

would be predicted by the Arrhenius exponential.
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Appendix D.

The instability arising from diffusion bias.

The diffusion bias arising from the effect of figure 3 has been seen, in section 4.4, to give rise

to an instability. When this instability takes place, the growing crystal is no longer limited by a

planar surface. What happens then ? Presumably, fluctuations play a very important role and

the situation is unpredictable in most cases. However, we describe in this section a

deterministic model in which a periodic profile is possible. This would be similar to cellular

growth from the liquid phase ~Pelcb 1988).
The surface (Fig. 5) will be assumed to be made of terraces separated by ledges parallel to

the y direction. The initial conditions are assumed periodic with period 2 L. It will be assumed

that no additional instability destroys this periodicity. The initial, periodic profile can be

microscopic. We will argue that a macroscopic profile results.

The ledges present in the interval (0, L) will be assumed to follow the equation (Bl) with

Y~ =

0 (maximum diffusion bias).

~=-e(x~-x~~j) (2<m«h), (Di)

where h is the height. The appropriate form for m =
I is obviously

ii
= exi (xi

~
l /2). (D2)

The lowest terrace width can of course not be narrower than one atomic distance. It can be

assumed, for instance, that xi vanishes abruptly when it reaches the value 1/2.
Formula (Dl) and (D2) are most reasonable. The difficulty is to describe the formation of

new terraces at the top of the uppest ones. Random beam fluctuations can presumably have a

dramatic effect at this stage. We shall assume the following, deterministic process a new

terrace is formed whenever (L x~) takes a certain value lo. For the sake of simplification, it

will be assumed that terrace formation at the top coincides with terrace death at the bottom,

so that h is constant. This can only be true for certain, quantized values of h (fixed by
to in the stationary regime) but this is no serious restriction if h is large enough.

It may look intuitive that the profile is rather linear. We are going to prove that. The

solution of (Dl) between two discontinuities may be written as

m-1

x~(t)
=

£ qA~_~ eP tPe~~~ (D3)
p=oP.

Now we look for a solution which is stationary in this sense that it satisfies

x~(o)
=

x~~i(o)
=

A~~i (D4)

where 0 is the time which is necessary to fill a layer, so that

0
=

Ifs. (D5)

Insertion of (D3) into (D4) yields

m-1

Am
=

Am-
i

e~° £
q Am

-p
8~ t~ (D6)
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This equation can be solved by introducing the Laplace transform

w (q )
=

ij Am e~ ~~ ~ (D7)

Insertion of (D6) yields

q~(q) =Ai+e~~ jj A~_i e~~~~~~~- jj £ A~_~ ePtP

m=2

=l~'m=~+1

=

A
j + q~

(q) ee° -~ £ e-P~ eP HP
q~

(q)~ji
P.

=

A, + q~
(q) ee° -~

q~
(q) exp(eo e-~) + q~

(q)

Thus

Aj
~~~~

exp(e0 e~~) e~°~~
~~~~

This defines
q~ as a function of Aj since His given by (D5). Inverting the Laplace transform

yields the various A~'s as functions of Aj. Then the relation L
=

x~(0)
=

A~ yields h as a

function of Aj. Finally the relation L x~_ j
(0)

=
L A~_

j =

to determines Ai.
For small q, (D8) reduces to

'2Aj
W(q)

= fi,
eq

and this turns out to be Laplace transform of

x~(0)
=

A~
=

2 A
j m e~ + Const. (m » I

The profile is seen to have a sawtooth shape.
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