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REVUE DE PHYSIQUE APPLIQUÉE

A simple derivation of the bulk strain field - MISFIT dislocation
equilibrium in semiconductor single heterostructures
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Université de Caen-ISMRa, LERMAT, URA CNRS 1417, 14032 Caen Cedex, France

(Received 23 March 1990, revised 18 July 1990, accepted 7 August 1990)

Résumé. 2014 On calcule l’équilibre thermodynamique entre le champ de contraintes interne et les dislocations
d’interface d’une hétérostructure à semiconducteurs, dans un modèle à deux dimensions qui permet une
résolution complète, grâce à un choix simple et physique de conditions aux limites. Le modèle révèle
nettement une transition de phase à un désaccord critique de maille, ou une épaisseur critique de la couche
épitaxiale, et permet de séparer de l’énergie élastique, la contribution du c0153ur qui est ensuite laissée comme
paramètre. Une comparaison soignée avec les théories de van der Merwe et de Matthews et Blakeslee permet
de conclure que toutes trois conduisent à des résultats presque identiques. Par suite, l’accord actuellement
reconnu, d’un bon nombre de résultats expérimentaux avec la théorie de Matthews conceme en fait toutes les
théories d’équilibre et, en particulier, la théorie proposée. Il semble généralement admis, d’autre part, que les
écarts importants qui demeurent sont imputables à des comportements métastables au cours de la croissance.

Abstract. 2014 The thermodynamic equilibrium between bulk strain field and interface dislocations in lattice
mismatched semiconducting single heterostructures, is calculated in a completely solvable two-dimensional
model, thanks to a choice of simple physical boundary conditions. The model clearly exhibits a phase transition
at a critical misfit or a critical thickness of the epilayer, and allows to separate out from the elastic energy, the
core contribution which is left, next, as a parameter. Through a carefull comparison with van der Merwe’s and
Matthews and Blakeslee’s approaches, it is found that all of them turn out to lead to almost identical results. It
follows that the widespread agreement of Matthews’ theory with number of experimental data holds for all
equilibrium theories, and in particular, the present one, as well. The remaining strong discrepancies, on the
other hand, are admittedly ascribed to metastable behaviour in growing processes.
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1. Introduction.

The release of strain by misfit dislocations in lattice
misma c e semicon uc mg e eros ructures is a

topic of considerable technical importance, mainly
because the epilayers quality is severely degraded by
interface defects. Moreover, this topic has recently
received an increasing attention in connection with
the development of superlattices [1, 2] and the

emerging technology of the heteroepitaxy of GaAs
on Si substrates [3-5].
The lattice misfit is well known to be first accomo-

dated by a bulk strain field, up to a critical thickness
of the epilayer, the knowledge of which is essential
in device fabrication. The configuration of misfit

dislocations which sets in at critical thickness, was
first investigated by van der Merwe [6-8] in terms of
minimum energy principle. Calculations based on
various assumptions about interfacial forces lead to
the equilibrium values of the dislocation density and
the critical thickness through rather elaborated
mathematics and computations. An alternative

equilibrium model based on a balance between
forces acting on dislocations, has been proposed by
Matthews and Blakeslee [9]. Also, dynamical
theories exist, taking explicitly into account nu-

cleation and propagation processes of dislocations
[10-13].
The purpose of the present paper is to show that,

by means of a suitable choice of boundary con-
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Fig. 1. - Geometric configuration of the two-dimension-
al scheme used in the analysis of elastic and plastic
deformation of the single heterostructure.

ditions, a fairly simplified derivation of the equilib-
rium case can be obtained, which clearly exhibits a
critical misfit transition. We shall consider a simple
heterostructure fabricated by an overgrowth of a
thin layer 2 of thickness h2 onto a substrate 1 of
thickness h 1 (Fig. 1). The lattice constants, ah

a2 of the constituting materials are not identical, the
misfit being characterized by the parameter

Above a critical value hc of h2, the misfit accomo-
dation is shared between a bulk strain field giving
rise to an overall bending of the structure, and a
plastic deformation due to a more or less regular grid
of dislocations located in the interface. If 8, and
03B2d denote these respective contributions, we thus
have

For the sake of simplicity, calculations will be

restricted to the thin-epilayer-thick-substrate case,
and edge dislocations in a simple cubic lattice will be
assumed. In the actual physical situation, the misfit
dislocations have been identified as being mainly of
60° type. However, on account of the degree of
agreement with experiment usually expected from
this kind of theoretical predictions (see the discussion
below), together with unavoidable approximations
(e.g. in the estimate of the core contribution),
crystallographic details can be simplified without
further loss of precision. For the same reasons, it will
be sufficient to consider, consistently, the bulk strain
and the plastic deformation along only one the two

interface dimensions, say x, and the perpendicular
z dimension. Indeed, we are mainly interested in the
balance between elastic and plastic relaxation, and
to the degree of approximation used here, the
contributions of each dimension of the dislocation

grid simply add up. The mathematical description
will thus be restricted to a two dimensions scheme in
the xz-plane, assuming uniformity in the third

y dimension (Fig. 1).
Calculations of the bulk strain field associated

with the strain 8,, have been already published [14,
15]. Let us briefly recall that in our simplified two
dimensional single heterostructure of transverse di-
mension i (Fig. 1), if equal and isotropic elastic
constants for both materials are assumed, the elastic
energy per unit length in the y dimension is given by

where E is the Young modulus. In the case of a thin
epilayer on a thick substrate (h2 &#x3E; hl ) :

The stress field associated with misfit dislocations
is calculated in the next section, by combining our
choice of boundary conditions with the stress func-
tion method [6, 16]. In section 3 the resulting
expression of the total mechanical energy is obtained
through addition of both contributions, and leads to
the equilibrium value of 13 d. The core energy which
will be first treated as purely elastic for mathematical
convenience, will then be separated out, and left as a
parameter, on account of the lack of quantitative
information thereon. Section 4 is devoted to a

comparison with other approaches and a discussion
on the reliability of equilibrium methods with regard
to available experimental data.

2. Interfacial energy of misfit dislocations.

Since elastic and plastic deformations, and the
related energies, will be additively superimposed,
they can be separately considered. Thus, in this

section, all quantities will be regarded, without any
confusion, as pertaining to the plastic case alone.

In our two-dimensional approximation of simple
cubic structures, we shall consider a regular array of
parallel edge dislocations, lying along the y direction,
and spaced by a distance p along the x-axis. The

atomic configuration in the period - 1 2 p  x  1 2 p
of the x-z plane is schematically represented in

figure 2. The number of cells along the x-axis in the
crystal 1 is larger by one than that of the crystal 2.
Because of the exponential decrease of strain with
increasing distance from the interface plane (z = 0),
the crystal extending on either side will be takèn as
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Fig. 2. - Sketch of the lattice distortion in a period -1 p , x , + 1 p , due to a dislocation array, showing the linear
displacement of the atoms at the interface, relative to their idéal positions.

infinite. The validity of this approximation will be
checked below in a self-consistent way.
At a distance of order p/2 from the interface the

crystal ordering is recovered and, therefore, the true
values al, a2 of the lattice constants too. Taken the

origin of coordinates at the trace of the dislocation
axis in the x-z plane, the projection of the ideal
lattice nodes on the x-axis (as indicated by the dotted
lines in Fig. 2) are symmetrically positioned. On the
right-hand side of the dislocation (x ± 0), in the

crystal 1 and 2, respectively, their abscissa are given
by

x(1)n = na1 and XJ2) = (n - 1 2) a2,
with n integer. The true positions ix% of the atoms, at
equilibrium are located between x(1)n and XJ2}. Since,
in addition, elastic constants are taken equal in both
materials, the x,’s just fall at the middle point,
except in the strongly distorded core region, i.e. for
x . 0,

(A some more elaborated expression would hold in
the case of distinct elastic constants in 1 and 2). As a
result, the displacements at the n-th site on the right,
along the interface, can now be written as

In the assumption of elastic continuum underlying
the present treatment, this leads us to interpolate the
displacement u.,(x, 0) along the interface, in the

range 2P ut outsi e t e core, y t e o ow-

ing linear functions

A similar symmetrical function holds in the range

(- 1 2 p, 0 l . The dislocation misfit parameter Bd has
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Fig. 3. - Interface strain profile in the upper half-crystal of figure 2, derived from the displacement function shown in
the inset. The unphysical elastic behaviour assumed in the core - 1 c _ x _ 1 c is separated out by analytical means.

been introduced, together with an average value
a of al and a2.

Inside the core, which will be assumed to extend
over a width c, the displacement will be described,
for the time being, by means of a simple linear
interpolation (Fig. 3) giving

This procedure has the advantage of preserving
everywhere the continuity of the displacement
ux(x, 0) which is required in the mathematical
treatment below. The counterpart is that a spurious
unphysical contribution is introduced in the inter-
facial energy, which we shall have to separate out
later on.

Next, if one assumes the displacement u (x, z)
sufficiently regular near z = 0, the boundary strain
component are easily deduced from (4) and (5) by

This leads to the strain profiles shown in figure 3, for
the upper half-crystal. Notice that, as ux(x, 0) van-
ishes at the ends of the range - 1 p, 1 p , neces-
sarily the mean value of Exx(x, 0) is zero.

2.1 STRESS FIELD OF MISFIT DISLOCATIONS. - We

now turn to the calculation of the two dimensional

stress field, assuming isotropic medium. This field is
periodic, with a period p, in the x direction, and
vanishes away from the interface, i.e. for z = ± oo.
Following van der Merwe [6], we start with the stress
function [16] CP (x, z) satisfying the compatibility
equation, V4cp(x,z) = 0. The n-th Fourier compo-
nent of the suited general solutions is given by

where A,,, B,, are constants. Putting for brevity
kn = 2 7Tn /p, this leads to the following stress com-
ponents, satisfying the boundary conditions
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The zero Fourier component is missing because the
strain mean value vanishes as above mentioned. The

upper sign refers to the crystal 2 acted upon by the
crystal 1, and the opposite holds for the lower sign.
From elementary Elasticity Theory [16], the strain
components are given as function of stress by

G denotes the shear modulus and v the Poisson
ratio. Using equations (6) we find, in particular, in
the upper half-crystal, close to the interface,

On applying this expansion to the profile of figure 3,
we straigthforwardly obtain the Fourier coefficients

which makes complete the determination of the
stress components (6).

2.2 STRESS ENERGY. - The stress energy of the
dislocation array is defined as the energy required to
change each half-crystal from the ideal configuration
(dotted lines in Fig. 1) into the final distorded one.
Using (7), we have in a period, per unit length in the
y direction

The integration only requires the zero Fourier

components of squares and products of stress compo-
nents appearing in (9), which are given in turn, by
summin over n the related s uares and ro

the Fourier components of same order in expansions
(6). On performing all of these quite elementary
calculations, we find

in each half-crystal. Substituting next An from (8),
we obtain

The numerical series in the right-hand side is calcu-
lated in Appendix 1 as an expansion to increasing
orders of c/p. For our purpose the leading term will
be sufficient and yields the following expression of
the interfacial energy per unit length along the y-axis

3. Thermodynamic equilibrium, critical misfit and

critical thickness.

3.1 SEPARATION OF THE CORE ENERGY. - Before

writing down the complete mechanical energy includ-
ing at once the contributions of strain and dislo-
cations, we have to separate out the unphysicàl
« elastic » core energy initially introduced. The oc-
currence of such a spurious contribution was often
discussed previously [8, 17], and generally neglected.
An evaluation is possible, here, by taking both
integrations of expression (9) in the range (- c/2,
+ c/2)

Since p &#x3E; c, it will be sufficient to replace the stress
components by the leading term of their expansions
for x - 0, and because of the continuity at the

origin, these can be obtained through derivation by
x of the Fourier series (6). To lowest order in

c/p, we obt4iu_

On substituting again An from (8), these components
are found to be expressed in terms of the following
series and its derivatives with respect to z

S(z) n = 1 n 
e- kn z= Arctg 2 c z ’

for z  0. Details of calculations are given in Appen-
dix II. Hence, the stress components (12) pertaining
to the upper half-crystal
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On substituting into equation (11), one finds after
some integrations (see Appendix II), the value of
»1el) to zero order in c/p, allowing us to write

where W(el)c(c) is a small c-dependent correction and

Now, the true energy of the matter in the range

- 1 c, 1 c including the strongly distorded region,
say T (c) in units of Ga2/4 03C0 (1 - v), must be

substituted in expression (10). For convenience the
resulting expression of Wd will be rewritten as

Unfortunately, the core energy is sensitive to the

actual atomic structure and particularly to the pos-
sible reconstruction of dangling bonds, which are not
well established up to now. It follows that no reliable

Fig. 4. - Dislocation part Bd to the misfit accomodation
at equilibrium as a function of the constituent misfit

,6, for two selected values of the layer thickness (100 A
and 1 000 Â). The phase-transition-like behaviour is well
exhibited by the quick decrease occuring at critical misfit.
The straight line 03B2d = 03B2s = 1 2 03B2 is the locus of the

transition points, according to the present definition.

value is available and, therefore, we shall restrict
ourselves to rewrite the interfacial energy with the

help of a suitable core energy parameter y. To this
end we notice that even though the choice of
c is somewhat arbitrary, an exact expression of
Wd cannot depend on it. This means that provided
c is large enough to overlap the elastic region, all c-
dependent terms in the square bracket above
combine so as to eliminate the parameter c. Thus,
y will be most properly defined by the c-indepen-
dent quantity

leading to

From existing estimates of the energy of dangling
bonds, distorted and possibly reconstructed bonds,
based on suited atomic potentials [18], an order of
1 eV per site is quite probable, leading to values of
y of about 1 in usual semiconducting compounds.
This is also close to the current estimate of the

Peierls core parameter [17]. It can perhaps be

regarded as small but not negligible, as early pointed
out by van der Merwe [8] and, recently, by Eag-
lesham ei al. [12]. So, it must be born in mind in the
comparison of theory and experiment.

3.2 TOTAL ENERGY AND THERMODYNAMIC EQUILI-
BRIUM. - The total mechanical energy of the

(13 s’ 13 d) configuration is now obtained by adding up
(3) and (13)

It will be convenient to rewrite this expression in

units of 1 2~h2 E. Taking the relation E/2 G = 1 + v
into account and recalling that a/p = f3 d, we obtain

with a = a/8 7T(l- v 2). A minimum of w occurs
for f3 d satisfying the equation

The function /3(/3d) has in turn a minimum (see
Fig. 4) for f3 d = a /h2. It follows that given /3 above
the minimum, two roots for f3 d are obtained, the
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largest one of which only corresponds to a minimum
of the energy, as it can be readily checked by
calculating the second derivative d2w /dfJ d. No ther-
modynamic equilibrium can exist below the mini-
mum so that the related value of /3 satisfying the
following equation

defines the critical misfit /3 C.
It is more convenient to consider the inverse

function /3d(/3) which, from the foregoing, must be
drawn as shown by the full lines in figure 4, to be
physically significant. It is worth noticing its phase-
transition-like step behaviour : below /3 c’ we have a
range of coherence in which the misfit /3 is accomo-
dated by the bulk strain field alone, whilst beyond
/3 c’ astate is quickly reached in which /3 is com-

pletely accomodated by dislocations.
Now, if /3 is regarded as a constituent parameter,

equation (15) defines a critical value of the epilayer
thickness h2. The natural definition of the threshold
as h2 is increased is then obtained by setting
/3c = /3. In practice, however, the measured tran-
sition point is somewhat dependent upon the exper-
imental methods employed. These mainly rely on
the observation of an abrupt change in some physical
property : reduction of the tetragonal lattice distor-
tion measured by X-ray diffraction [19-22], Ruther-
ford back scattering and ion channeling [23] ; strain
induced shift of the photoluminescence peak
together with the related line broadening and drop
of quantum efficiency [24-28] ; direct appearence of
the dislocation patterns by electron microscopy [11,
23, 26, 29], electron-beam-induced current [30],
changes in surface morphology [28], transport
properties [31, 32]... Because of this large variety of
methods a suited definition ought to be adopted in
each case. For the need of the present analysis, it
will be most reasonable to define the transition as
the point where the misfit is equally shared between
strain and dislocations, say 03B2d = 03B2s = 1 2 03B2. This

leads, from (14), to the following expression of the
experimental critical width

Strictly speaking, this expression is only valid as
. far as h(ex)c falls beyond the limit for which the above
approximation of semi-infinite crystals holds. From
equations (6) the stress and strain components
decrease mainly as exp (- 2 TT 1 z 1 Ip ). As p = a/l3d,
one easily obtains

which will be found to amount to 1.9 at {3 = 10- 3
and 1.3 at 03B2 = 10- 2, with the numerical values
taken below. Thus, due to the weak logarithmic
dependence in {3 of 27ThJex)/p, the semi-infinite

crystal approximation is acceptable up to 03B2 values of
a few 10- 2.

4. Comparison with other théories and experiment.
Discussion.

Assuming the core energy parameter equal to 1, the
critical thickness defined by equation (16), as a

function of P, is smoothly sensitive to the material
elastic constants (through the Poisson ratio), and so,
hJex)(f3) can be conveniently compared with other
theoretical predictions and available experimental
data, by assuming average values for the elastic
constants and the lattice parameter a. In fact, the
latter represents a slide distance, i.e. the magnitude
of the Burger vector.
The van der Merwe theory is dominated, in the

case of a two-dimensional semi-infinite overgrowth,
by the following expression of the interfacial energy
[6]

Present notations have been used and

yd = ’TT f3 dl (1 - v ). On combining this contribution
with the strain energy (3), and proceeding as before,
a minimum occurs at

Since yd  1, this expression will be simplified into

which is close to that given by Maree et al. [11]. The
critical thickness, however, cannot properly be ob-
tained by taking the value of h2 in the limit

/3S = f3, as noticed by these authors, since in that
limit the logarithm becomes divergent (Pd = 0). We
notice, instead, that the van der Merwe expression

(14), so we shall define the experimental transition
threshold the same way as before, which leads to the

following van der Merwe critical thickness

This expression is almost identical with (16) from
which it only differs, through the constant

In [71’/(1- v ) ], by an amount of the order of the
core contribution.
The theoretical law established by Matthews and
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Blakeslee [9], on the other hand, will be taken, in
the simple heterostructure case, in the usual form

Also, it will be of interest to consider the People and
Bean energy balance model in which [10]

Now, the critical thickness, as given by expressions
(16) and (18-20), is plotted versus the misfit

{3 in figure 5, with the typical values a = 4 Â and
v = 1/3. Besides the similarity already mentioned
between the van der Merwe and the present theoreti-
cal laws, it is worth noticing that the latters are, at

once, very close to Matthews’ law for single heteros-
tructures to within the degree of uncertainty of all
these analysis (they would be almost identical if the
transition were defined from (15) with {3c = {3).
For the sake of comparison with experiment,

points obtained from various measurement methods
in several heteroepitaxial systems have been plotted
in figure 5. Some of them pertain to quantum well
structures for which the related Matthews’ law has
been plotted, also. We first observe that, in spite of
the spread which can likely be attributed to the
limited accuracy of theoretical predictions, exper-
imental detections, and our averaging procedure, a
fairly large number of points are in satisfactory
agreement with the theoretical laws. This is in

accordance with the emerging belief that Matthews’s
law adequately predicts the critical layer thickness,
as repeatedly pointed out in recent years [20, 25, 28,

Fig. 5 - Theoretical plots of the critical thickness h(ex)c as a function of the misfit {3 : the present theory (full line) is very
close to van der Merwe’s ; Matthews and Blakeslee (dashed lines) pertaining to single heterostructures (HST) and

quantum wells (QW) ; People and Bean (dot-dashed line). Experimental points are extracted from references [19]
(cross), 29 (closed circles), 23 (asterix), 20 (open circles), 22 (stars), 11 (open triangles), 25 (closed triangles), 30 (open
squares), 28 (closed squares), 33 (inverted closed triangles).



1045

31-33]. The point is that, since all equilibrium laws
are, from the present analysis, almost identical, this
necessarily remains true for the other models derived
from the minimum energy principle, at least in so far
as some care is taken in the definition of the
transition. It is worth noticing, in addition, that the
agreement of the present theory with some set of
experimental points is still improved by choosing a
larger core parameter, e.g. y - 2. This emphasizes
the importance of a more realistic determination of
this parameter, which was also recently stressed by
Eaglesham et al. [12].
A second remark is that there are, nevertheless, a

noticeable number of cases for which the critical
thickness falls far beyond the theoretical predictions,
outside experimental uncertainties, even if the sim-
plifications inherent to the theoretical calculations
are taken into account. Such discrepancies which
also exist between measurements on a given struc-
ture, have generated conflicts as to the reliability of
experimental methods in detecting the transition

[22, 30, 34]. More likely, these difficulties lend

support to the increasingly accepted idea that ter-
modynamic equilibrium is not always reached in
actual sample preparations [11, 13, 20, 23, 28, 35,
36], in particular because of the large Peierls stress in
crystals of diamant structure. The strain accomo-
dation process is then dominated by the activation
energy for dislocation nucleation and propagation,
resulting in metastable behaviour which makes the
critical thickness strongly dependent on growth
conditions. This is likely the reason why models
based on nucleation mechanisms [10, 11, 20] did
succeed, in some cases, in explaining strong devia-
tions from equilibrium, as shown in figure 5 for the
People and Bean model [10].

In connexion with metastability and nucleation
processes, it is worth mentioning the influence of the
substrate growth area, recently stressed [36, 37], on
the interface dislocation density. Luryi and Suhir
[37] have theoretically demonstrated the possibility
of eliminating misfit dislocations through reduction
of the transverse sample dimension f. This offers
interesting promise in the development of techno-
logies to reduce dislocation effects.

In summary, a simplified theoretical approach has
been proposed to describe the thermodynamic equili-
brium between bulk strain and misfit dislocations in

single heterostructures. Some of the adopted
simplifying assumptions could be released in further
refinements, e.g. by taking into account the three
dimensionality, the finite thickness of the epilayers,
and the detailed cristallographic structure of misfit
dislocations. This should require, accordingly, a

better knowledge of the core contribution. Once
coherently compared with one another, all equilib-
rium theories turn out to yield almost identical

results, so that the widespread agreement of Matth-
ews’ approach with a number of experiments is valid
for all of them and, in particular, for the present
theory, as well. Remaining discrepancies, on the
other hand, have been admittedly ascribed to meta-
stable behaviour. In fact, the occurrence of such a
behaviour together with the role of lateral dimen-
sions, are fairly attractive features since they allow
us to foresee the possibility of removing strict
limitations on allowed thicknesses of mismatched
materials and, thereby, to produce structures free
from misfit dislocations. To this end the present
approach could help in a systematic evaluation of
metastable contributions.

Appendix 1

We have to calculate the numerical series

Let x = 2 7rclp. The series in cos x in the r.h.s. can be obtained by means of two integrations of the identity
38 .

which gives

The calculations are elementary and lead to
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Appendix H

The series S(z) can be reduced to logarithmic series

Since |z| 1 5 c -- p, this can be approximated by

Making use of S(z ) and its derivatives, the detailed expression of W(el)c, as given by (11), becomes, after
the evident integration by x,

Putting x = 2 z/c, all integrations are easily performed and yield, to order c/p,

where C = 0.9159... is the Catalan constant [38].
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