Dependence of the cyclic stress-strain curve of F.C.C. single crystals on temperature and stacking-fault energy

U. Eßmann, M. Werner

To cite this version:

HAL Id: jpa-00245837

https://hal.archives-ouvertes.fr/jpa-00245837

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The shape of the cyclic stress-strain curve (resolved saturation stress τ_s versus resolved plastic-shear-strain amplitude γ_p) at low to intermediate strain amplitudes reflects macroscopic properties of persistent slip bands (PSBs) [1,2]. After a rather steep increase of τ_s the curve exhibits a long plateau in the strain-amplitude regime $10^{-4} < \gamma_p < 10^{-2}$. Within this range only a small increase of τ_s is observed. In other words, τ_s can be considered as a constant in a first approximation. Investigations by optical and electron microscopy have shown that the beginning of the plateau is determined by the first appearance of PSBs, whereas at the end of the plateau the whole specimen surface is covered by PSBs. The PSBs are orientated parallel to the active slip plane. Experiments reveal that with increasing γ_p the pattern of the dislocation arrangement in the plateau range transforms from that of the matrix (which is observed at $\gamma_p < 10^{-4}$) to that observed in PSB lamellae traversing the specimen.

Some of the characteristic features of a PSB lamella are the following: One observes a strong strain concentration. The local strain amplitude in a PSB, γ_{PSB}, may be more than two orders of magnitude larger than that in the surrounding matrix. The specimen surface becomes severely damaged where a PSB lamella intersects it. PSB lamellae (which have thicknesses of typically 1 μm) exhibit a unique dislocation pattern: It consists of a striking periodic arrangement of thin parallel dislocation walls, which subdivide the bulk of the lamellae into long channels. The walls are orientated perpendicular to the Burgers vector b and consist of dislocation dipoles. Screw dislocations linking the walls are observed in the channels.

Considering dislocation glide and dislocation interactions in PSBs a number of authors espouse that the dislocation density is controlled by a dynamical equilibrium between dislocation multiplication and annihilation [2,3,4,5]. It is concluded that dislocation glide in PSBs must be a highly dissipative process. Though many properties of PSBs have been explained in these terms, three items and their mutual relation await a theoretical explanation. These are i) the distance between the periodic dislocation walls, ii) the plateau stress $\tau_s = \tau_{PSB}$, and iii) the density of the screw dislocations in the channels.

In order to promote an explanation we have started a systematic investigation of the dependence of τ_{PSB} on deformation temperature and on stacking fault energy γ.

Fig. 1 for $(T/T_m)^{1/3} < 0.63$. Values taken from Mughrabi et al. [2] and from Basinski et al. [7] agree with our results. A difference which may correlate with the stacking fault energies show the cyclic stress strain curves of silver and aluminum for low γ_p at 80 K: The plateau stress is reached in aluminum and silver at $\gamma_p = 2 \times 10^{-4}$ and $\gamma_p = 1 \times 10^{-3}$, respectively.

References

![Fig. 1 Plot of the reduced plateau stress versus the cube root of the homologous temperature](http://dx.doi.org/10.1051/rphysap:0198800230406880)