Correlation of Peierls-Nabarro Stress with Crystal Structure
Takayoshi Suzuki, Shin Takeuchi

▶ To cite this version:

HAL Id: jpa-00245834
https://hal.archives-ouvertes.fr/jpa-00245834
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Correlation of Peierls-Nabarro Stress with Crystal Structure

Takayoshi SUZUKI and Shin TAKEUCHI*
Institute of Industrial Science and Institute for Solid State Physics*
University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan

According to the theory of Peierls and Nabarro[1], the Peierls-Nabarro stress σ_p is given by

$$\sigma_p \approx \frac{2G}{1-v} \exp\left(-\frac{2\pi h}{1-v}b\right),$$

(1)

where h is the natural spacing of atomic planes parallel to the slip plane, b the magnitude of Burgers vector, G the shear modulus and V the Poisson's ratio.

In Fig. 1 are shown the experimental values of σ_p/G against h/b. The σ_p of b.c.c. metals (K[2], Fe, Nb, Ta[3], Mo[4]) and a B2 compound β-CuZn[3], and those for $\langle 110\rangle \{110\}$ slip in ionic crystals of NaCl-type (LiF, NaCl, KCl etc.[5-7]) were determined accurately by the plastic deformation at low temperatures ($T=0K$). To be noted is that h/b for β-CuZn is a half of that for b.c.c. metals because $b=\alpha l_{\perp}$. When it is difficult to deform crystals at low temperatures, σ_p is deduced by an appropriate extrapolation to $T=0K$ of the c.r.s.s. The σ_p for $\langle 001\rangle \{110\}$ slip in ionic crystals of NaCl-type[6,7] and those for $\{110\} \{110\}$ slip in ionic crystals of NaCl-type[6,7] and those for zinc blende structure (CdTe, HgSe, CuCl, and CuBr[8]) were estimated in this way. The h/b for zinc blende structure is 0.614 when dislocations move between shuffle set and 0.204 between glide set. An f.c.c. metal Ag[10], alkali-halides of CsCl-type (CsBr and CsI, $\langle 110\rangle \{001\}$ slip)[11,12] and Pbs ($\langle 001\rangle \{110\}$ slip)[7] are easy to deform at low temperatures, but one can find no region of Peierls mechanism. In these cases the c.r.s.s. at $T=0K$ gives only an upper limit of σ_p. A crude estimate of σ_p for basal slip in α-Al2O3 is possible from the data of c.r.s.s. at $T=0K$.[13] The plasticity data of α-quartz under hydrostatic pressure at 300-1000°C[14] indicate that σ_p of α-quartz should be several GPa. For α-Al2O3 and α-quartz, h/b is assumed to be the widest spacing of atomic planes normal to c-axis.

The solid lines in Fig. 1 are the relations of eq.(1) for $\nu=0.3$. The line A is the case of perfect (non-splitting) dislocations. Some of the experimental data are close to the line A, but the others are far below it. When the c.r.s.s. at $T=0K$ gives only an upper limit of σ_p. A crude estimate of σ_p for basal slip in α-Al2O3 is possible from the data of c.r.s.s. at $T=0K$.[13] The plasticity data of α-quartz under hydrostatic pressure at 300-1000°C[14] indicate that σ_p of α-quartz should be several GPa. For α-Al2O3 and α-quartz, h/b is assumed to be the widest spacing of atomic planes normal to c-axis.

The solid lines in Fig. 1 are the relations of eq.(1) for $\nu=0.3$. The line A is the case of perfect (non-splitting) dislocations. Some of the experimental data are close to the line A, but the others are far below it. When the c.r.s.s. at $T=0K$ gives only an upper limit of σ_p. A crude estimate of σ_p for basal slip in α-Al2O3 is possible from the data of c.r.s.s. at $T=0K$.[13] The plasticity data of α-quartz under hydrostatic pressure at 300-1000°C[14] indicate that σ_p of α-quartz should be several GPa. For α-Al2O3 and α-quartz, h/b is assumed to be the widest spacing of atomic planes normal to c-axis.

The solid lines in Fig. 1 are the relations of eq.(1) for $\nu=0.3$. The line A is the case of perfect (non-splitting) dislocations. Some of the experimental data are close to the line A, but the others are far below it. When the c.r.s.s. at $T=0K$ gives only an upper limit of σ_p. A crude estimate of σ_p for basal slip in α-Al2O3 is possible from the data of c.r.s.s. at $T=0K$.[13] The plasticity data of α-quartz under hydrostatic pressure at 300-1000°C[14] indicate that σ_p of α-quartz should be several GPa. For α-Al2O3 and α-quartz, h/b is assumed to be the widest spacing of atomic planes normal to c-axis.

References