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On flow and work hardening expression correlations
in metallic single crystal plasticity

P. Franciosi

Laboratoire PMTM CNRS, Université Paris-Nord, Avenue J.B. Clément,
93430 Villetaneuse France

(Reçu le 27 mai 1987, révisé le 29 octobre 1987, accepté le 2 novembre 1987)
Résumé. - De la comparaison des principaux modèles phénoménologiques décrivant l’écoulement
plastique (loi de Schmid, approche dépendante de la vitesse, modèle de percolation) et l’écrouis-
sage (loi d’écrouissage de déformation, loi généralisée) des monocristaux métalliques, on propose
un cadre général duquel les associations usuelles loi d’écoulement-loi d’écrouissage utilisées,
peuvent s’interprêter comme des cas particuliers associés à des hypothèses que l’on s’efforce
d’établir.

Pour justifier cette formulation générale, on propose une description microstructurale des
mécanismes mis en jeu, basée sur l’introduction dans l’expression de la densité des dislocation
primaires et celle du glissement sur les différents systèmes, d’une distribution, sur chacun de
ces systèmes, de segments de dislocations activables.

Il en ressort notamment que dans le cadre de la loi de Schmid, la loi d’écrouissage de défor-
mation est le cas limite de cette description correspondant à une distribution de Dirac pour les

segments de dislocations - leur loi de déplacement obeissant également à une fonction de ce type
- alors que pour toute autre distribution, une loi d’écrouissage généralisée apparait plus
satisfaisante. Une telle loi d’écrouissage généralisée, où les vitesses de glissement ne sont

plus les seuls paramètres d’écrouissage, apparait nécessaire pour prendre en compte la contri-
bution à l’écrouissage des systèmes inactifs, ce qui justifie des travaux antérieurs réalisés
dans ce but. Une dépendance en vitesse de l’écoulement s’exprime ici par une loi de déplacement
pour les segments de dislocations qui n’est plus de type Dirac. Si le seuil d’écoulement
plastique n’est suppose qu’asymptotiquement atteint, on retrouve une forme connue de représen-
tation dépendante de la vitesse.

Abstract. - From a comparison of the main phenomenological models describing the single crystal
plastic flow (Schmid law, rate dependent approach, percolation model) and work hardening (strain
hardening law,generalized hardening), one proposes a general frame of which the usual plastic
flow-hardening law associations can be interpreted as particular cases associated with assump-
tions one tries to specify.
To justify this general formulation, one proposes a microstructural description of the involved

mechanisms, based on the introduction, in the primary dislocation density and in the slip expres-
sions on the different systems, of a dislocation segment distribution on each slip system to be
activated.

It mainly comes out that, within the Schmid law frame, the strain hardening law is the limit

case of this representation, corresponding with a Dirac distribution for the dislocation segments
- the displacement law of which also obeying to such a Dirac function - while for any other

distribution, a generalized hardening law is more convenient. Such a generalized hardening law,
where the slip rates are no more the only hardening parameters, appears necessary to account for

the hardening contribution of the inactive systems, what justifies previous works performed with
this aim. A rate dependency of the flow is here expressed by a segment displacement law which is
no more a Dirac like function. If the plastic flow threshold is assumed only asymptotically
reached, one finds again a known type of rate dependent representation.

Revue Phys. Appl. 23 (1988) 383-394 AVRIL 1988,
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INTRODUCTION.

The descriptions of the elementary plastic flow

and hardening processes at the microstructural scale

are still characterized by more or less question-

REVUE DE PHYSIQUE APPLIQUÉE. - T. 23, N° 4, AVRIL 1988

nable approximations which are difficult to avoid

because of the complexity of the real behaviour.

At the appropriate macroscopic level of the crys-

tallographic mechanisms for single crystal plasti-
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city, several phenomenological descriptions of flow

and work hardening have been developped, each one

being justified with the help of a simple micro-

structural behaviour skeme.

Basically, the major phenomenological descriptions

developped so far are the Schmid law and the rate

dependent approach for flow, and the strain har-

dening law and a generalized hardening expression

for work hardening. Statistical flow descriptions

have been also investigated, as a percolation model

for instance, although not as much used so far.

From a comparison of these different phenomeno-

logical approaches, one proposes in part I a general

representation for both the plastic flow and the

work hardening conditions, of which the usual

phenomenological models mentionned above can be

interpreted as particular cases. The part II pre-

sents a microstructural background to support this

generalized plastic flow description, based on the

introduction, in both the slip and the primary

dislocation density expressions, of a dislocation

segment distribution per unit volume and on each

slip system. In part III, the various approximations

leading to the usual models reported in part I are

discussed with regard to this description.

I. FUNDAMENTAL BACKGROUND AND USUAL FLOW

DESCRIPTIONS.

In pure metals, plasticity is essentially related

with dislocation behaviour, that is dislocation

creation, multiplication, motion and interactions.

If both slip and work hardening involve these

various mechanisms, they differently depend on them,

and this is the source of one major difficulty in

single crystal plasticity modelling.

Typically, we can assume that on any g system, the

dislocations are of two kinds : those emitted from

active sources under stress and those resulting from

interactions between these emitted loops and any

encountered dislocation. The former will be called

primary dislocations and the latter, the secondary

dislocations or the interaction products.

If plastic flow is basically a function of the

primary dislocation density, work hardening depends

on an obstacle density, the composition of which

includes both primary and secondary density elements

through a complex relation. However, at this dislo-

cation density scale, the work hardening expression

is the question which receives the more satisfying

answer from experimental data and we begin with it.

1.1. Work hardening and obstacle density

Comparing with the case of a dislocation motion

through point defects of various strengths, the

critical resolved shear stress (CRSS) to move a

dislocation through a forest density has been often
written (Zarka 1972, Lavrentev 1976):

where po is the obstacle density of the £ system

(say dislocations of a b Burgers vector) and a a

dislocation interaction coefficient matrix. For n=2,
the incremental related form is:

generalizing the Taylor isotropic first law (1934).

Typically, the obstacle density belonging to a g

system, can be dissociated into two main contri-

butions as schematized on Fig. 1:

a) primary mobile loops

b) secondary loops, c) junctions

Fig. 1. The obstacle density components.

- the primary still mobile loops pg on g: the mobile

dislocation density p m differs from the primary

density P created from the onset of loading, by a

rearranged density p*=p-pm, the variation rate of

which being assumed equal to the primary density

one, under the assumption of steady state 03C1m = 0 .
The rearranged density is the one involved in the

interaction processes.

- the interaction products of the primary loops with

dislocations of the other systems, mainly with the

dislocations piercing the slip planes of the consi-

dered g system: the primary mobile loops can let a
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secondary loop of same Burgers vector around the

tree obstacles, and continue to move on. This is the

interaction process usually called for to express

the rearranged density p,, the variation rate of

which being assumed proportionnal to p .
A general expression for these secondary loops can

be written as:

into which p , without upper index, is the initial

dislocation density on each g system, assumed

identical on all systems in the absence of all

prestrain history: the mobile loops can also inte-

ract with the encountered tree so as to make

junction products, which more unlikely allow further

motion. (Anihilation events contribute to hardening
in reducing the interacting primary density by a

fraction which is here assumed constant and not

considered in the following). This interaction type

can be considered as a gross representation of a

substructure hardening contribution. A general

expression for it can be given under the form:

with a double summation over the slip systems of the

structure.

Primary loops can also interact with secondary

dislocations, to create second order interaction

products and so on. This has been discussed in

details previously (see Franciosi 1985). Then, at

this first interaction order, the obstacle density

expression of b~ Burgers vector is:

involving the two components Pm and pf of the

primary dislocation densities on each t system.

Now, although the exact primary dislocation

density expression is ignored, it must at least be

related with slip.

Basically the slip rate is either assumed to be a

function of the primary dislocation density times an

average dislocation velocity V, (Orowan 1940):

or alternatively (when the creation of dislocations

is a process much slower than their propagation), a

function of the primary dislocation production rate

time an average displacement law D:

In (6), the involved density is generally assumed

to be the mobile one (p=pm). Then the steady state

assumption à m =0 allows to write the obstacle density
rate 03C1o, when identified with p*, as:

introducing now D as an average finite free path
between interactions. In (7) one has P=Pm+P*’ say

the primary dislocation density (created from t=0)

variation rate, and not only the variation rate of

the mobile ones. For steady state pm=0, and still

identifying the obstacle density rate Po to e,, one

directly obtains:

with D the average dislocation displacement law.

These simple derivations of a 03C1o(03B3) relation,

which look similar but are different, remain very

questionable. However, both these descriptions

support the phenomenological strain hardening law:

where hardening is represented by a hardening moduli

matrix h with one, two or more differents terms

according to various anisotropy assumptions.
If on the contrary the obstacle density rates are

not assumed to only depend on the slip rates 03B3~, but
also on extra parameters say z1 (not specified now),
the strain hardening law has to be generalized into:

Such a generalized hardening law, introduced

previously (Franciosi 1985,1987) for a special zf
choice, is considered later on in a more general

way.

If the work hardening law can be generalized as

(11), the h (or h and k) moduli identification is a

separate difficulty since they in general diffe-
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rently depend on the strain history. Their descrip-

tion depends on the relation between the primary

density and the hardening parameters (03B3~, or 03B3~) and
z~), and for instance from (2) and with (8) or (9),

they would take the form:

with a different D 91 value for each £ system.
We now summarize the usual plastic flow

phenomenological expressions derived so far, to

point out the common features and the differences.

1.2. Usual plastic flow descriptions

We first recall the percolation model developped

by Kocks (1966,1967), which is more physical than

phenomenological, and then the major descriptions
i-e the rate dependant approach and the Schmid law.

- a. The percolation model

As developped by Kocks, for a dislocation of a g

system moving through a two dimensionnal array of

point obstacles, like in Fig. 2, a calculation of

the fraction of penetrable obstacles as a function

Fig. 2. Dislocation motion through point obstacles

of the ratios = Tg/Tg has given the relation:

which defines a percolation function F(03B6), from

which the slip increment due to a d03B6 increment can

be expressed under the form of the geometrical
series:

In (14), a is the average cell area, N the segment

number per unit volume and c+1 the cell side number.

In this statistical displacement description, and

when the loop motion is assumed infinitely free,

slip can become infinité for F = 1/c, say when one

at least of the c sides of the cells obtained in

joining the neighbouring point obstacles is pene-

trable (the calculated c value for a random array of

obstacles is between 2.5 and 3.5). The area swept is

given by a/(1-cF) and therefore NdF is the active

segment number at 03B6. Then, the dF(03B6) increment in

(14) can be identified with the segment fraction

activable during d03B6. As detailed in Kocks (1967), in

the slip increment expression written under the

form:

dN is the number per unit volume of new occupied

links between obstacles since F was raised, and

reduces to (14) when this increase is assumed

strictly dependant on the slip increment so that:

When 03B6 is not monotonically increasing during the

load process, this description has to be completed,

by assumptions on the backward loop motion. Steady

state is here reached at F=F , and if then 03B6 is only
increased to ensure this equality, the flow in

steady state is described by the condition d03B6=0,

dT=dTC. A question, discussed later on is whether

the critical F c value is reached or is only an

asymptotical limit, when hardening is considered.

- b. The rate dependent approach

This approach, summarized for instance in Asaro

and Needleman (1983), is supported by the assumption
that the slip rates on all the easy glide systems of

the structure are given by the Orowan law (6), with

the dislocation velocity taken under the form :

derived from experimental measurements giving a

linear relation between v and T , assuming in

addition a maximum velocity which would be related

with the sound velocity. This velocity expression

accounts for the two major experimental features
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which are the shear stress dependency form and the

upper limit, and the slip rate is therefore written:

using a power law in 03B6 as suggested by Hutchinson

(1976), with o a constant reference slip rate.
As in the percolation model, the ratio 03B6g = Tg/Tg

appears to be a fundamental parameter in the flow

description, although introduced in a different way.

However, since such a rate dependent description
involves here a real time derivative and not a

kinematical one, the derivation of a general frame

for the single crystal plastic behaviour description
will not be able to include it formally.

However, when 1 o is no more chosen constant but

depends on a flow parameter, the approach is no more

rate dependent, what will serve later on.

In this rate dependent description, the slip rate

asymptotically tends towards the reference value,

and the steady state is never reached. The use of

the Orowan law under the form (6) can therefore

appear debatable.

- c. The Schmid law

This representation, which is the oldest one

(Schmid and Siebel 1931) but still the most widely

used, assumes that slip on a g system is allowed

only once the applied resolved shear stress on it

reaches a critical value Tg, and continues if the

applied shear stress rate remains equal to the cri-

tical resolved shear stress rate. One can write:

Since this criterion involves only Tg and Tg , one
can rewrite it, in using the 03B6g ratio appeared in

the previous descriptions, under the form:

This criterion, introduces the concept of yield
surface below which no microstructural events are

accounted for, and defines a macroscopic yielding,
before which both slip and work hardening are

neglected. In opposition with the two previous

approaches, this criterion neglects the transition

domain, and consideres only the steady state plasti-

city.

From these plastic flow descriptions, some general
features can be now pointed out.

1.3. Common features of the flow descriptions

The essential point is that in all these descrip-

tions, the same undimensional parameter cg =Tg/Tg
c

appears predominant in the slip expression, the

variation of which *dith Cg has always the same

sharply increasing form obeying (as shown on Fig.3),
to the relation (in the {0,1} 03B6g domain):

For the percolation model one has:

(identifying the asymptotical limit with the 03B6g=1
value, say c=exp(1)) when F is the function (13);

For the Schmid law one has:

with 0394(03B6g) the Dirac function, and, in the des-

cription derived from the rate dependent approach

with d03B6g for 1 dt, one has:

say the power law (18).

In the slip incrément expression (21), the load

process dependency is assumed reducible to the 03B6g
parameter. A more general expression would at least

involve also the timelike parameter which defines

the load proces, say 6, leading to write:

(with the usual conventions for the partial

derivatives), like the expression (15) for instance
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Fig. 3. The S(03B6) functions (22)a, (24)b and

derivatives.

if the dN term does not only depend on slip.

Now, when one chooses the microstructural

hardening law (2), instead of the strain hardening
law (10), one must also express the primary dislo-

cation density evolution during the loading process.
From what preceeds, one can expect an expression for

dpg similar to the one in (25) for the slip incre-

ment, say:

We now investigate the microstructural background

allowing to derive such expressions for dpg and dYg,
and the dpg versus dYg relation.

II MICROSTRUCTURAL ANALYSIS

To derive a general slip versus primary dislo-

cation density relation, we first introduce the

concept of dislocation segment distribution by unit

volume and for each slip g system, which will appear
in both the slip and the primary dislocation density

expressions.

II.1 The dislocation segment distribution

Defining, as in Kocks (1966), the dislocation

segments per unit volume on each g system as the

occupied links between near neighbour point obs-

tacles in the slip planes (see Fig. 2), we consider

that the primary dislocation segment density can be

represented for each g system, by a density function

s(zg) , and so that the mobile fraction at 0, takes

the form:

with zg(6) a positive undimensionnal parameter spe-

cified in what follows: since, within such a defi-

nition, the segments can be assumed distributed

around any critical length £g, related with the

current mean length of these links between obs-

tacles ~g&#x3E;, and which evolves like it with the

hardening, one has:

for segments of length t 9 activated under an applied
shear stress 03C4g(03B8) according to:

This leads to the distribution S(zg), and intro-

duces the Tg/Tg ratio appearing in part II. Then, in

(25) and in (26), one has the identity zg = 03B6g. For

instance, the critical length £g can be chosen as

the length of the greatest family of segments, so

that at tg=tg, c s(1)=smax’ . One has, in general:

with the relations between critical and mean values:

In (26), any statistically reasonable density

function can be chosen for s(zg), provided that the

Z9 definition domain is specified: if the largest
value, related with the crystal dimension or the

grain size, can be chosen infinite compared with the
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tg value, the lowest value can be either chosen to
c

be zero or tg if most of the segments are assumed

activated at this critical value. Therefore the zg

validity domain can be either {0,1} or {0,~{. Now,

the critical length could have been defined as the

length of the smallest segments, instead of the

length of the greatest number of segments. Limiting

the density to the {0,1} domain simply defines the

critical stress as the stress at which all the

segments are active, what is an upper bound.

Since zg is not necessarily monotonically increa-

sing, the active source fraction described by (26)

may increase or decrease with regard to 6, as shown

on Fig. 4.

Fig.4. The S(zg),S(6) and zg(O) relative variations

Among possible density functions of these kinds,

one can mention two exemples (the g index is omitted

in what follows):
- the power law shown on Fig.3, defined by:

where the highest segment density corresponds with

the shortest ones. The z mean value is p/(p+1) and

the z 1 one is p/p-1, what gives:

- the exponential negative function (Fig. 5a):

which becomes, if truncated at z=l (Fig.5b):

Here too, mean and critical length values are not

necessarily equal.

These density and distribution functions have all

the same limit, when p and q respectively is infini-

Fig. 5 Distribution functions (33)a,(34)b,(36)c

and derivatives

tely high, which is the Dirac peak density:

In this singular limit case, ~c = ~&#x3E;, Tc 
= T&#x3E;

and all the dislocation segments are active under

the same shear stress, while no activity is allowed
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as long as this shear stress is not reached.

However, when the distribution is truncated at

z=l, any function of z, monotonically increasing

between zero and unity can be used to describe the S

distribution, and in particular, the law (Fig.5c):

is as relevant as the previous ones. We now express

the slip versus primary loop density relation.

II.2. Primary dislocation density and slip

expressions

Considering any g system of the concerned crystal

structure, still omitting the g index for brevity,
if a segment family s(z)dz activated at z = z(8),
allows some new segment production (by new source

activation) between U and 0, the increase of mobile

segment number per unit volume is:

with t the segment production rate and vo the

initial segment number. The dislocation density

increase per unit area is:

with ~=~&#x3E;z , the mean segment length.
The associated slip incrément is then:

with a=a&#x3E;z , the swept area by each segment.

Then, for all the active sources at 6, and first

when the unknown function z(O) is monotonically

increasing, the total primary dislocation density

and the total slip are given by, (with 03B8*=03B8-03B8):

and: 

say, of the syntlietic form:

with D=A/L the mean primary dislocation

displacement law, generally depending on z and 6.

A similar analysis of slip and primary dislocation

density has been recently reported in Marzik et al

(1987) from an expérimental investigation of the

dislocation segment distributions.

The incremental form derived from (40) is then:

remaining valid even when z(6) is not monotonically

increasing. The expressions (43) are a particular

case of (25), from which one can write (for A 03B8~0):

what gives the general slip versus primary

dislocation density relation:

In (45), the dz term only vanishes when:

- S is constant and neither L nor D depend on z

- D is constant

The usual strain hardening law (10) is formally

valid only for these two particular cases, when dz

is not assumed enough to describe the load process,

say when the de dependency does not vanish in (25)

and (26).

We now discuss the general flow solution and the

allowed approximations in comparison with the usual

representations.
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III. A GENERAL FLOW EXPRESSION AND DISCUSSION

111.1. A general flow solution.

Expressing the zt parameters in terms of Tt and Tf
from (2), the slip rates being now on defined from

the kinematical time 6 so that y = dy/de, one has:

which are the N hardening conditions allowing to

solve the flow problem in addition to the flow

conditions (25b), provided a consistent choice in

both for the dislocation segment distribution.

As shown previously, (Franciosi 1984), the applied
resolved shear stress rate can be written as:

in small or large strain formalism, where Ah and
Cg are known terms, due to thé local conditions in

prescribed stress and strain rates (for uniform

fields). Once the 03C4~ are eliminated in (46), the

hardening law becomes :

and the left hand side being generally inversible :

Finally introducing (47) and (49) in the flow

conditions (43b) and after some rearrangements, this

gives the system (with Sg,svg,sllg for S(zg), s’(zg),
s"(zg) respectively):

which is the general flow solution in this analysis.

If one calculates first the z 1 parameters, this

must be done using (47) and with (2) written -

assuming, from (5), 03C1~o(03C1~,03C1~m) ~ ffhph - under the

form: N

which gives:

and the system (with S~,s’~,s"~ for S(zf), s’(zf),
s"(zf) respectively):

We now discuss the usual phenomenological flow

approaches and the convenient work hardening

expression with regard to this general description.

111.2. Discussion.

We first consider the Schmid law criterion

as the limit case on the flow solution (50).

- a. The Schmid law

When the S distribution is the Dirac distribution,

one has a singular limit case for the flow solution

(50): from (43), the slip increment is, for any g,

zero when zg  1, but is undetermined for the

potential active systems, (zg = 1, zg = 0), and is

negative infinité for the potential inacti.ve ones

(zg - 1, zg  0), returning to zero in an instan-

taneously oscillating mode.

The system (50) leads to:

since for s infinite, h* == h and C* = 0, which are

exactly the conditions zg = 0, i-e the Schmid flow

conditions, but for the potential systems being all

active. When zg = 1, the général solution (50) must

be completed as the Schmid conditions by unequa-

lities, necessary to allow negative values for àg.
In this case the work hardening can be represented

by the strain hardening law (10), and the presteady

state is entirely neglected. In order to have a rate

independant steady state domain, the dislocation
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displacement law D must also be a Dirac like

function.

When s"=dS"/dz in (50) corresponds with a S" Dirac

distribution, but not S, meaning that the disloca-

tion displacment law D obeys to such a Dirac func-

tion (the rate independent limit assumption for the

dislocation motion) one has, assuming for simplicity

that D only depends on zg, for zgl :

The work hardening law does not reduce here to the

strain hardening law (10) but to the generalized
form (11).

This description allows to describe the presteady
state domain on each slip system, and then the

hardening contribution of the inactive systems

during plastic straining, what is not only a small

strain feature since most of the slip systems remain

inactive all along the deformation process. (When zg
= 1, the usual steady state flow description remains

valid). A description like (54), but with Tg repla-

cing zg has been satisfactorily used in previous

behaviour simulations of the single crystal response

to plastic straining (see Franciosi 1984, 1985,

1987).

We now consider the rate dependent approach to

discuss the dislocation segment velocity influence

on plastic flow.

- b. The rate dependent approach

We here consider the basic expression (18) into

which the reference slip rate y is not a constant

but depends either on 03B8 or zg still assuming for

simplicity that D in A only depends on z 9
For a time like (A) dependency, the second term in

(43b) vanishes for s"=(AS) ,z =0, say when S" is

again a Dirac function. But now, if D is not a Dirac

function - in order to express a dislocation velo-

city dependency of plastic flow - S must be a Dirac

function, and we are again in the Schmid limit

description.

For a àg dependency, the first term in (43b) is

zero when A,03B8 =0 say when L e =0. Then, pg is also

only depending on zg and one can write:

The strain hardening law form (10) can be used

here if an extra assumption is given for the zg

dependancy of L, what is not necessary a priori in

using the generalized hardening form (11), involving
àg. Both work hardening expressions (10,11) can be

used, but the strict expression of pg as a function
of the displacement D is only obtained, when D is

not constant, if àg leads towards 0. Anyway, even

using the strain hardening law (10), the solution

requires the calculation of the ig terms from (52).
Note that when D is constant, the common zg depen-

dancy of the slip rate and of the primary dislo-

cation density rate on g is due to the segment

activation rate S, represented by the power law

(31), and not to the dislocation segment velocity.
The present plastic flow representation is consis-

tent with the rate dependent approach as long as the

yield threshold remains an asymptotical limit. With

regard to the assumption of such an asymptotical

yield threshold, we now discuss the percolation
model and the possibilities of infinité or finite

displacements for the dislocation segments.

- c. The percolation model

In the phenomenological representations discussed

above, the derived expressions for the pg versus y
relation involve a loop displacement D which must

remain finite: On the contrary, the percolation

model points out the possibility of an infinité loop

displacement on a g system, once on it, a critical

value for zg is reached.
Finite displacements for the loops are likely,

although the argument of strong back stresses

associated with expected pile ups, since the expe-

rimentally observed built up substructure must be

related with the accumulation of weakly mobile

interaction products once the mobile segments have

moved over a finite path . Separately from this

debate, there are two possibilities to account for a

finite free path in the percolation model: the first

one, dicussed in Kocks (1966) and mentionned in part

I, is to assume that the critical probability of

infinité slip is only reached asymptotically. It

would mean that in the system (52), all the z~
values remain lower than unity, the zR, rates tending
towards zero asymptotically, more or less rapidly.

The second possibility is to consider that the

critical probability is not a probability of infi-

nite slip, but the probability at which the mobile
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segments have moved over a finite distance D,

at which a final event occurs: in this case, the

probability would be the solution of the equation:

reducing to:

if the finite number r of elementary cells swept

over is large enough to neglect the (cFc)r term.
In such a description, the function (22) can be

considered as a particular distribution function,

and, as shown on Fig. 6 for c=2.5, very similar to

the previously reported ones in the {0,1} zg domain

(Fig.3 or 5), when normalized and still choosing the

critical value for zg=l.

Fig. 6. The function (22) for finite slip at zg=1

This does not allow to conclude whether or not the

general solution of (50) always correspond with non

zero z~ values, say an asymptotical threshold for

the steady state plasticity. However, if the solu-

tion always corresponds with such an asymptotical

steady state, it does not matter whether the AS

value is infinité or not at a critical z~ value,

here chosen equal to unity for simplicity.
The next part illustrates how the flow solution

can be obtained from the present representation,
when the yield surface is only an asymptotical
limit.

111.3. Illustrative exemples

The Fig. 7 and 8 illustrate the flow solution

obtained from the equations (52) and (43) for an

imaginary material with respectively one single slip

system and two slip systems, in the case of an

asymptotical threshold for steady state, and using a

power law for both S (Sa(z8)m) and D (D-(zg)P):
- in the former exemple, assuming a single slip

system, (Fig. 7) there is no rotation and Q being

the load parameter one has, from (47) C=T=RQ and

âh=O, what gives, using (52):

If from (57), z generally decreases with the load

increase, it may or may not reach the zero value

according to L e which is the only unprescribed

parameter. Setting:

assignes a zero z value for z=1 what ensures the

asymptotical behaviour as reported on Fig. 7.

This T versus y curve is typical of the single

crystal single slip straining, with the elastic

plastic transition domain. The critical shear

stress, equal to To for the unloaded material,

increases with the load so as to always remain

higher than the applied resolved shear stress. This

initial domain sharpens when the power is increased

in S and D, to disappear when D is a Dirac function.

Fig. 7 Simulated T-y curve for asymptotical

steady state, one slip system, no rotation

- in the second exemple, we consider two slip

systems, n°1 and n°2, and an initially predominant

number one, and we account for a rotation like

effect which increases the applied resolved shear

stress rate on the latent (n°2) system during

primary slip (we here simply assume the rotation
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rate of the tensile axis towards the primary slip

diection proportionnal to ÿl_ÿ2). Under the assump-

tion of an asymptotical threshold, one has to solve,

from the right hand side of (52b), the following

equalities:

what determines the unprescribed L~03B8 parameters

according to the specified assumption - which are

equivalent to (58) for a single slip system - and

then the zi terms are calculated. The Fig. 8 reports

the 03C41 versus yl curve now including a stage two

like domain, still with an asymptotical approach of

the critical shear stress. The corresponding curve

obtained without rotation, is also reported for

comparison.

Fig. 8 Simulated 03C41-03B31 curve for asymptotical
steady state, two slip systems, a single active

one (n°l), with and without rotation effect

CONCLUSION.

The present approach, based on the introduction of

dislocation segment distributions in the primary

dislocation density and in the slip expressions of

each slip system, provides a general form of the

plastic flow solution which allows to discuss the

major usual phenomenological descriptions, for both

flow and work hardening, as particular approxima-

tions. It appears that :

- the rate independent plasticity can here be

interpreted as a dislocation segment displacement

law of a Dirac form.

- the strain hardening law appears specifically
related with the extremal case of a Dirac function

too for the dislocation segment distribution,

corresponding with the Schmid law flow criterion and

having to be treated as the singular limit of the

general approach here derived.
- when used with the rate independent Schmid flow

criterion, the previously introduced generalized

hardening law is convenient for any other

dislocation segment distribution function, and

accounts for the presteady state hardening features,

say essentially the hardening contribution of the

inactive systems during plastic flow.
- when neither the dislocation segment distribution

nor the dislocation segment displacement law are

Dirac functions, the solution provided by the

present generalized plastic flow criterion, can a

priori either correspond with a true yield point or

with an asymptotical steady state threshold, accor-

ding to the précise expressions chosen for the slip
and primary dislocation density functions. This

latter case corresponds with a rate dependent

plastic flow description of the known type from the

literature. The analysis of this generalized flow

criterion is still in progress so far.
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