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RESUME. - On passe en revue les structures de dislocations en parois et cellules dans les cristaux

métalliques déformés, en insistant sur l’hétérogénéité de distribution des dislocations. L’évolu-
tion de la sous-structure de dislocations est décrite en terme d’écrouissage et restauration dyna-
mique. L’article insiste sur le modèle dit "composite" dans lequel la distribution hétérogène des
dislocations est considérée comme un matériau composite constitué de parties dures et molles corres-

pondant aux parois et intérieurs des cellules, respectivement. Des contraintes internes à longue
portée, d’amplitude cohérente avec l’expérience, font partie du modèle composite. Elles sont une

conséquence des conditions de compatibilité en cours de déformation. Le modèle composite permet une
nouvelle compréhension de la contrainte macroscopique d’écoulement plastique et une bonne descrip-
tion du chargement inverse, y compris l’effet Bauschinger dans le cas des monocristaux.

Abstract. - Dislocation wall and cell structures in deformed metal crystals are reviewed briefly,
emphasizing the heterogeneity of the dislocation distribution. The evolution of the dislocation
substructure is discussed in terms of work hardening and dynamic recovery. The main part of the
paper deals with the so-called composite model in which the heterogeneous dislocation distribution is
considered as a composite consisting of bonded hard and soft components corresponding to cell walls
and cell interiors, respectively. Long-range internal stresses whose magnitude is consistent with
experiment are an integral part of the composite model. They arise as a necessary consequence of the
compatibility requirements during deformation. The composite model leads to a new understanding of
the macroscopic flow stress and to a good description of reverse loading including the Bauschinger
effect in the case of single crystals.
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1. INTRODUCTION

The dislocation microstructure of deformed metals is
characterized by the mutual elastic interaction of
the dislocations and by their tendency to cluster in
order to form dislocation tangles, walls and, in
most cases, three-dimensional dislocation cell l
structures, for recent reviews compare [1,2].
Whereas dislocation tangles (braids, bundles) and
walls can form under single-slip conditions, the
formation of three-dimensional dislocation cell
structures is typical of combined single and secon-

dary slip or multiple slip. The heterogeneity of
the dislocation distribution is an important fea-
ture common not only to monotonically but al so to
cyclically strained metals t3].
Dislocation cell structures form both at low and at
high temperatures, differing, however, in their qua-
litative appearance, as illustrated in Fig. 1. At
low temperatures the cell walls are "untidy" and
have non-negligible thicknesses (Fig. la). At higher
temperatures they become much sharper and approach
ideal low-angle boundary configurations (Fig. lb).

REVUE DE PHYSIQUE APPLIQUÉE. - T. 23, N° 4, AVRIL 1988

The cel 1 structures encountered i n fatigue can be
considered to be of an intermediate type in the
sense that, for example, ot-iron [6,7jand copper
(,81 fati gued moderately at room temperature exhibit
cell structures of the low-temperature type which
approach cell structures of the high-temperature
type after extensive cyclic deformation. Frequently,
misorientations from cell to cell are found. It

appears, though this is not documented systematical-
ly in the literature, that the misorientations
across cell l walls of the low-temperature type are
rTt’Jch smaller [4,9]than in the case of the planar
subcell boundaries typical of high-temperature de-
formation. Qualitatively, this can be related to the
fact that while the "thicker" cell 1 walls formed at
low temperatures contain dislocations of both signs
and hence have a dipolar character, the low-angle-
boundary-type cell walls characteristic of high
temperatures consist predominantly of dislocations
of only one sign. At a given temperature, the
misorientations increase with increasing deformation
L 4 -8 J.
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The present contribution will l focus primarily on the
athermal deformation behaviour at low temperatures
at which diffusion plays a marginal rôle. Hence,
thermal ly activated dislocation glide will l not be
considered explicitly. Following a brief, formal
description of work hardening and dynamic recovery,
the emphasis will l be pl aced on recently devel oped
sa-called composite (dislocation) models of the flow
stress in which deformation-induced lonq-range
internal stresses are intimately related to the
heterogeneity of the dislocation distribution. The
sources of these long-range internal stresses will
be reviewed. Attention wi 11 be drawn to the com-
peting effects of energy réduction by dislocation
clustering and energy enhancement by the extra ener-
gy due to the deformation-induced 1 ong-range inter-
nal 1 stresses in clustered dislocation arrays.
Finally, it will be shown that the composite model
lends itself readily to a description of reversed
loading including the Bauschinger effect and that
the shape of the cyclic hysteresis loop of single
crystals is governed by the composite nature of
plastic deformation.

Fig. 1. Dislocation cell structures.
a) [001]-orientated copper single crystal, deformed

in tension at 293 K [4].
b) Aluminium, deforme i n tensile creep at 473 K

[5]. Courtesy of W. 81 um and G. Kdnig.

2. KINETICS OF DISLOCATION ACCUMULATION, WORK
HARDENING, DYMAMIC RECOVERY AND STEADY-STATE
DEFORMATION.

Following ref. (10) , the differential increase of
the dislocation den s i ty f i of dislocations of
type i, e.g. edge or screw, which contribute a frac-
tion ci to the total plastic shear strain f is
given by

Here Li is the slip path of dislocations of type i,
b the modul us of the Burgers vector and y. the so-
called annihilation length. The latter impiies that
when two dislocations of opposite sign encounter
each other on slip planes separated by a distance
equal to or smaller than yi, then mutual annnihila-
tion will occur. Thus the first term in eq. (1)
represents the differential increase of the disloca-
tion density due to the multiplication of the dislo-
cations and the second term takes into account the
differential strain-induced decrease of the disloca-
tion density. Hence, the second term describes the
dynamic recovery of dislocations.

Considering only edge (i=e) and screw (i=s) segments,
Cs ~ ce - 0.5. If all l screw dislocations annihi-
late mutually by stress-induced cross slip between
unl i ke screw dislocations, then eq. (1) with i = e

would describe the kinetics of the accumulation of
the whole density of dislocations of one slip sys-
tem. If the density of screw dislocations is non-
negligible, the whole dislocation density is given
by that of the non-screw dislocations multiplied by
a factor of, at most, two. In the following this
factor will be ignored so that eq. (1) describes the
behaviour for one slip system. If n slip systems
operate in multiple slip, the total dislocation

density p will be given by

and the fraction ci will be given approximately by

In order to describe the stress-strain behaviour we
assume that the shear flow stress ecis related to
the total dislocation density f by the generally
accepted relation (111

where 61- is a geometrical constant. In the case of
the Hirsch -Saada process, ~ ~ 0.4 [12,13].
Differentiation of eq. (4) yields

By inserting eqs. (4) and (5) into eq. (1) and by

substituting f for n- pi via e q. (2) w e obtain

With the assumption that n = 4 slip systems operate
and that ci is given by eq. (3) we can write (lea-
ving away the index i)

Eqs..’ (6a) or (6b) can be integrated. For this pur-
pose, however, certain assumptions must be made with
regard to the dependence of the slip path L of the
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dislocations and of the annihilation length y on
the fl ow stress 77 (or on the shear strai n X’ ).
Before proceeding further, it must also be noted
that eqs. (6a) and (6b) do not take the heterogenei-
ty of the dislocation distribution into account at
all. Strictly speaking, they apply only to homoge-
neous (uniform) dislocaton distributions. They might
thus be applied locally in regions of relatively
uniform dislocation distribution such as, in the
simplest case, the cel 1 wall 1 or the cel l interior
regions. In this case, the slip path L would have to
be related to the latéral dimensions of these re-
gions in the glide plane, namely the cell wall
thickness dw or the diameter dc of the cell interior
régions, respectively.

Bearing these restrictions in mind, we now return to
the question of i ntegrati ng eqs. (6a) and (6b).
Regarding the dislocation slip path L, two cases are
considered, namely L = const. and L = K2/rr. The
first case would apply, for example, to stage 1 work
hardening of face-centred cubic (fcc) single
crystals and the second case to stage II work

hardeni ng [10]. For the annihilation distance we
assume y = const. or y = K1 /T. The f i rst relation
has been found to apply quite well 1
(with ye ~ 1.6 nm) for pure edge dislocation arrays
in copper crystals [10], the second implies a mu-

tual dislocation trapping mechanism leading to spon-
taneous annihilation, for exampl e by some form of
cross sl i p [14] . The parameters K, and K2 are con-
sidered to be constants at a given temperature and
strain rate. In lack of a detailed theory they
should be evaluated from experimental data on local
dislocation densities in the case of K, and, in the
case of Kz from the characteristic dimensions of the
di sl ocati on distribution and from slip line data.
Very plausible results have been obtained for ar-
bitrary dislocations in cell structures in deformed
copper crystals with K, = 2.14 N/m [14].

The combination of these possibilities yields four
cases (a,b,c,d) for which eq. (6a) has been inte-

grated. The resul ts are summari zed in Table 1.
For L = const. a saturation of the flow stress (with
a saturation stress cs and saturation dislocationdensity Ps) i s obtai ned i n cases a) (y = const.)
and b) (y = K1/03C4). For L = K2/rC, saturation
occurs for y = const. in case c), whereas for

y = K1/03C4 in case d) linear hardening is obtained.

It should be noted that the annihilation distance y
is expected to depend on temperature T strain
rate 03B4 and stacki ng faul t energy SFE [15]. The
exact dependence should follow from a theory
yielding y = y(03B3,T,SFE). Qualitatively, it is ex-
pected that decreasing z, increasing T and in-

creasing SFE will cause y to increase. The conse-
quences woul d be a réduction of ’7:s and Ps in
cases a, b) and c) in which saturation occurs and a
decrease of the linear work-hardening rate in
case d).

In order to describe the deformation of a wall or a

cell structure, the coupled deformation of the walls
of high dislocation density and the dislocation-poor
regions between the walls must be considered as in
ref. (101. In more detailed models of the evolution
of the dislocation substructure Prinz and Argon [16]
and Nix, Gibeling and Hughes [173 consider dynamic
recovery to occur mainly between the walls, whereas
in the walls static recovery is assumed to be domi-
nant. We note here, that, in a formal manner, we can

al so descri be static recovery i n our approach by a

term similar to the second term in eq. (1), using an
effective value of the annihilation distance y that
is appropriate at a particular temperature and
strain rate.

3. THE COMPOSITE MODEL

3.1 Deformation by single slip.

The composite model represents an attempt to des-
cribe in a simplistic fashion the deformation beha-
viour of a crystal in which the dislocations are
distributed heterogeneously in the form of a wall
or a cel l structure. In the following., an outline
will be given of the composite model in the form in
which it was first proposed on the basis of micro-
structural TEM (transmission electron microscopy)
studies on fatigued copper si n 1 e crystal s ori en-
tated for single slip [,1,18,19 and later also for
tensile-deformed crystals oriented for multiple
slip [1,4]. A very similar model was developed by
Pedersen and co-workers in order to describe the
Bauschinger effect (201 and the cyclic deforma-
tion r21] of copper single crystals of single-slip
orientation. With regard to the details, some diffe-
rences exist between these two related model s and
also with respect to other models [22,23] which, in
the present context, will only be noted briefly in
passing.

Fig. 2 shows the typical 1 dislocation distribution
observed by TEM in copper single crystals of single-
slip orientation deformed cyclically into saturation
(at room temperature). In a (l’3l) section (Fig. 2a)
which contains the primary Burgers vec-

tor bp = 1 2[101] and lies perpendicular to the pri-
mary glide plane (111), persistent slip bands (PSBs)
with the so-called ladder or wall l structure, embed-
ded in the vein or bundle structure of the ma-
trix (M), are observed. The walls and the veins
consist essentially of a very high density of elon-
gated primary edge dislocation dipole loops and are
separated by "channel s" of rather low dislocation
density [3,10,18,24-26]. Since plastic deformation
i s concentrated strongly i n the PSBs which carry a
plastic shear strain amplitude of almost 1% as com-
pared to only about 10-4 in the case of the matrix,
we shall confine our considerations to plastic flow
in the wall l structure of the PSBs. The détails of
the dislocation distribution in the wall structure
are shown in Fig. 2b. Dislocation glide in the chan-
nels occurs by the bowing-out of edge segments from
the walls across the channel s and by the spreadi ng
of the screw dislocations along the channels, as

illustrated schematically in Fig. 3a [18]. A neces-
sary consequence of the steady-state conditions
prevai 1 i ng i n cyclic saturation is that a dynamic
equilibrium must exist between the processes of
dislocation multiplication and annihilation with
regard to both screw and edge dislocations [103.
Aside from the gross features of the dislocation
distribution described above, the following more
subtle observation is important. In Fig. 2b which
shows the dislocation distribution pinned in the
stress-applied state, it is evident that dislocation
segments near the walls are much more strongly
curved than those in the centre of the channel s. In
particular, attention is drawn to the large number
of strongly curved short edge segments bowing out at
the periphery of the walls. The implications are
that the locally acting shear stress varies strongly
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across the channels, increasing sharply near the
walls [1,18,19,24,26]. The results of a quantitative
évaluation of the variation of the local shear
stresses from wall to wall [1,19] are shown in
Fig. 4 (x//dc is the distance from the "left" to the
"right" wall, normalized with respect to the channel
width dc). Considering the external saturation shear
flow stress Ys e= 28 MPa as a macroscopic flow
stress , it is to be noted that the local 1 shear
stress Ir is si 9 ni f i cantl y lower than i n the
centre of the channels and much higher near the
walls. Mechanical equlibrium requires that the local
shear stresses in the walls be approximately
100 MPa [1,19j.
It is concluded that significant long-range inter-
nal stresses exist in the wall structure in the
stress-applied state, as shown schematically in
Fig. 3b. The origin of such long-range internal
stresses which were first noted in 1973 [27j is not
immediately clear, since the bulk of the disloca-
tions are edge-dislocation di- or multipoles with no
significant long-range internal stress fields. It
will l be shown bel ow that the composite model ex-
plains the experimental observation very satis-
factorily.

The basic idea underlying the composite model is
that a crystal contai ni ng a heterogeneous disloca-
tion distribution behaves mechanically like a two-
phase (or multi-phase) material even if it is chemi-

cally single-phase. Referring to Fig. 2b and

ignoring details of the dislocation distribution for
the moment, the view is taken that the material is a
composite consisting of bonded dark and light compo-
nents of high and low dislocation density which have
correspondi ngly hi gh and low 1 ocal fl ow stresses,
respectively. When such a composite is strained, the
déformations of the components must be compatible.
The simplest assumption is that the components are
strained in paral 1 el under the condition that the
total strain be constant throughout the structure.
This assumption is based on the considération that
deformation occurs by dislocation glide and that the
glide planes are continuous through the soft and the
hard components. Other si mpl i fyi ng assumptions are

that both components exhibit ideal elastic-plastic
behaviour and that they possess the same elastic
constants.
The composite model, as described above, is formally
similar to MasinQ’s model of the yielding of poly-
crystals [281 . Masing considered the polycrystal as

an aggregate of bonded crystallites of varying
orientations with respect to the stress axis and
with accordingly différent yiel d stresses. He des-
cribed the overall yielding behaviour under forward
and reverse strai ni ng by assuming that the grains
are strained in parallel under the condition of
constant total (axial) strain and that they behave
in an ideal elastic-plastic manner. It follows that
our composite model of a single crystal is formally

Table 1: Solutions of eq. (6a) for different combinations of slip path L and annihilation distance y.
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equivalent to a two-component Masing model.
The "hypothetical" stress-strain curves of the com-
ponents 1 and 2 and of the composite are shown in
Figs. 5a and 5b, respectively. For an elucidation of
the term "hypothetical" the reader is referred to
ref. [1]. The macroscopic behaviour of the com-
posite results from the superposition of the micros-
copic behaviours of the components under due con-
sideration of the area fractions f1 and f2 occupied
by components 1 and 2 in the g1ide plane, respec-
tively. For all cases to be considered in the
following, these area fractions are identical with
the volume fractions. Yielding of the composite can
be divided conveniently into mic royielding corres-
pondi ng to plastic yi el di ng o e so component
while the hard component is still deforming elasti-
cally and into macroyielding when the material has
become fully plastic. An important feature of the
composite model is that long-range internal stresses
are bui 1 t-i n as an intégral part. Upon unloading,
when the applied stress is reduced to zero, these
long-range internal stresses are frozen in (residual
stresses) in the form of forward (tensile)
stresses btr 1 and backward (compressive)
stresses eT2 in the hard and in the soft components,
respectively.

The two-component Masing model can be formulated for
the wall structure of the PSBs (Fig. 2) in simple
relations Il, 18, 19] in terms of the shear stres-
ses ’ë: and the shear strai ns r as follows. The
subscripts w and c refer to walls (component 1) and
channels (component 2), respectively. The compatibi-
lity requirement is

Fig. 2. Dislocation arrangement in fatigued copper
si ngl e crystals [24].
a) (121)-section showing matrix (M) and persistent

slip bands (PSB).
b) Section parallel to primary glide plane (111) in

PSB wall structure.

where the subscripts t, el and pl refer to total,
elastic and plastic, respectively. The applied
stress for a given value of 9t is given by a rule
of mixtures:

Fig. 3. Schematic illustration of dislocation
behaviour in the PSB wall l structure. After [18].
a) Glide of edge and screw dislocations.
b) Idealized local stress distribution in the

stress-appl ied state.
c) Idealized local stress distribution in the

unloaded state.(v1, v2 : volume fractions)

Fig. 4. Variation of the local stress in the PSB
channels in the stress-applied state at a plasticshear strai n amplitude rpl:: 5 10--l [19].
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Fig. 5. Hypothetical stress-strain curves for a two-
component composite model during forward straining
and unloading. After [1,19].
a) Microscopic behaviour of the components.
b) Macroscopic behaviour of the composite.

(0-1 J, 0’2 and T are the current (axial) stresses
of components 1 and 2 and of the composite,
respectively, and 6-t’ â-2 and (rare the
corresponding (axial) f ow stresses, E is the
total (axial) strain.) 

t

At the point of macroyielding eq. (8a) reads

where -r and 7-w denote the local 1 flow stresses
and  thé overall macroscopic flow stress. The
local flow stresses Tc "and are related to the

macroscopic flow stress Z as fôllows

where 0393 is Eshelby’s elastic accommodation
factor [29] to which we shall l return later. The
stresses 039403C4c and A’Cw are deformation-induced long-
range internal stresses which arise from the plastic
strain mismatch between the soft and the hard compo-
nents, as expressed by eqs. (11) and (13). They
enhance the applied stress in the hard components
and oppose it in the soft components, ensuring
overall compatibility. Upon unloading, they are

fully retained if no reverse plastic flow occurs and
only partially otherwise, compare [1,18,191. In the
unloaded state, "1: = 0, and eq. (8a) reduces to

Figs. 3b and 3c summari ze schematically the local
shear stress distribution in the PSB wall structure
in the stress-applied and in the unloaded states.
The rectangular stress profile is, of course, an

idealization. More detailed considerations [1]
lead to a more realistic profile which agrees
cl osely wi th that of Fig. 4.

The sources of the long-range internal stresses are
the edge dislocations of 1ike sign deposited at the
interfaces between walls and channels, as indicated
in Fig. 3a. The density of these interface disloca-
tions represents only a few percent of the total
dislocation densi ty Cl3.

The most important feature of the composite model is
its ability to explain the observed long-range in-
ternal stresses in a straightforward manner. In
addition, the composite model provides a better
understanding of the macroscopic flow stress via

eqs. (10) to (13), depending on whether the local

flow stress c of the soft or w of the hard
regions is considered as a reference. In the former
case It i s equal to tc plus the back stress |039403C4c|,
in the latter case it is equal to w minus tche
forward stress lA1:wl.

Returning to the Eshelby factor, it must be remarked
that this quanti ty is not i ncl uded in a simple
Masing-type model and represents a refinement adop-
ted from the continuum theory of dispersion
hardening by Brown and co-workers f303and empha-
sized in papers by Pedersen and co-workers (20,21)
in the present context. The Eshelby factor depends
on the shape of the "inclusions", i.e. of the walls
i n the present case, and on the mode of straining.
It lies between zero and one. In the opinion of
Pedersen et al. j2lJ, an appropri ate value for the
walls woul d bel’= 1/100. The conséquences of such a

low value woul d be a strong réduction of the long-
range i nternal stresses 4:rc and 6-rw whereas, in
the present author’s opinion, the experimental re-

sults strongly indicate that"f’ must be close
to 1 j19). In fact, a val ue of 1" = 1 wi 11 be used
throughout this paper as in earlier work [1,18,19]
The choice of the value 0393 ~ 1 is deri ved from the
expérimental observations. The justification is
briefly as follows. The TEM observations of disloca-
tions pinned in the stress-applied state (Fig. 2b)
indicate that dislocations glide into and out of the
walls. I n si tu TEM studi es (31) support thi s pi c-
ture. Hence, it can be concluded that the hard
dislocation walls are not only strained elastically
but do in fact yie1d plastically (1,18,19a. The
required relatively high local stresses are provided
by the applied stress plus the aiding forward inter-
nal stress 039403C4w, cf. eq. (12). According to the
measurements of the local 1 shear stresses (Fig. 4),
the shear stress acting locally in the walls is
about 100 MPa which is considered of the right mag-
nitude in order to cause dislocation glide in the
wal 1 s. If, on the other hand, 1- were much smal l er
than one, as suggested by Pedersen et al. C 21),
arc would be reduced significantly. I n this case,
neither the large values of the long-range internal
stresses deduced from the observations nor the
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bowing-out of small 1 edge segments from the walls
could be explained in terms of the composite model.
As will be shown later, the analysis of the shape of
the hysteresis loop also leads to the conlusion that
the walls yield plastically (and that 1"-- 1).

3.2 Déformation by multiple slip

Until 1 quite recently, dislocation ce11 structures
formed during multiple slip deformation were
generally considered to be energetically favourable
dislocation arrays with insignificant long-range
i nternal stresses, c.f. [2]. This contrasts the
situation in the case of single-slip deformation
where long-range internal stresses (due to disloca-
tion pile-ups) had been an important ingrédient of
stage II work-hardening theories [32,33 1
Recent X-ray studies on [0011-orientated copper
single crystals deformed in tension at room tempera-
ture [4] have provided convincing evidence that
significant long-range internal stresses exist also
in dislocation ce11 structures. This conclusion is
based on a detailed analysis of the experimental
observation that deformation-induced broadening of
the {002} X-ray ref 1 ec ti on profiles is asymmetric.
For détails, the reader is referred to the original
paper [4J. Si mi 1 ar resul ts have in the meanwhile

also been reported for copper polycrystals deformed
in tension at room temperature [341.

These observations which are difficult to interpret
in terms of existing dislocation models are easily
explained i n the composi te picture. For thi s pur-
pose, the model has to be adapted to the geometry of
the cell structure and allowance has to be made for
multiple slip. Fig. 6 shows an idealized model of
the cell structure with two intersecting symmetri-
cally operating slip system s Cl,41. Glide disloca-
tions that have traversed the ce11 interiors are
held up at the periphery of the walls (Fig. 6a). In
a formai manner, these interface dislocations with
Burgers vectors b1 and fi can be replaced by others
width resul tant Burgers vectors b (fit. 6b). The
effect of these résultant interface dislocations is
to reinforce the applied axial stress a- by a for-
ward i nternal stress 039403C3w&#x3E; 0 in the cel 1 wal 1 s
lyi ng paral l el to the stress axi s and to reduce çr
by an internal back stress 4U-,  0 in the cell
interiors, as illustrated schemaîically in Fig. 7.
(At the same time the walls lying perpendicular to
the stress axis are subjected to internal compres-
sive stresses in the latéral (horizontal) direc-
tion.) As in the case of single slip (Sect. 3.1), it
must be noted that the number of interface disloca-
tions required to provide a large enough forward
stress 039403C3w i n the wal 1 s i n order to make them
transparent to further dislocation glide (macro-
yielding) is on1y a small fraction of the total
number of dislocations [4]. The insets in Fig. 7

depict schematically the "tetragonal" lattice dis-
tortions f referring to an [001]-orientated crystal)
retained in the unloaded state in the cell walls
lying parallel to the stress axis and in the cell
interiors. It is easily shown that the corresponding
lattice parameter changes give rise to precisely
that kind of asymmetry of the broadened X-ray re-
flection profiles that was observed [1,4].

With the modifications outlined briefly above, the

composite model provides a very satisfactory des-
scription of the macroscopic flow stress and the

long-range internal stresses in crystals (or
crystallites of a polycrystal) deformed in multiple
slip at temperatures at which cell structures of the
low-temperature type (cf. Fig. la) form. Aside from

Fig. 6. Model of symmetri cal multiple dislocation
glide in idealized cell 1 structure. After [1,4].
a) Glide dislocations are held up at the interfaces

between cell interiors and walls.
b) Representation of interface dislocations by

resultant interface dislocations.

Fig. 7. Schematic illustration of internal stresses
in cell 1 walls and in cell interiors with
corresponding lattice parameter changes (in the
unloaded state). After (44).

details [43, the concept illustrated in Figs. 4
and 5 and the basic equations summarized in
Sect. 3.1 are applicable. In thi s case, the experi-
mental results and theoretical considerations [4]
suggest that an Eshelby factor close to one is
appropriate. Further work is needed in order to
extend the model to dislocation cell structures of
the high-temperature type (Fig. lb).

3.3 On the sources of the long-range internal
stresses.

As outlined in Sections 3.1 and 3.2, the message
conveyed by the composite model is that, if the
dislocation distribution is heterogeneous, then the
fulfillment of the compatibility requirements during
deformation leads unavoidably to (more or less sig-
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nificant) deformation-induced long-range internal
stresses. The importance of this statement lies in
the fact that i t hol ds irrespective of whether the
bulk of the dislocations, viewed in a "static"
sence [1], that is in the absence of the applied
stress, are arranged in low-energy configurations or
not.

At this stage it is appropriate to identify and
classify the dislocation configurations that act as
the sources of the 10n -ran e internal stresses, as

illustrated In Fi g. 8 35]. In a homogeneous dislo-
cation distribution such as the Taylor
a tice (Fig. 8a), the range of the elastic strain
field is of the order of the mean dislocation
spacing and long-range internal stresses are essen-

ti al ly absent. dislocation pile-ups (Fig. 8b) are a
classic représentative of a eterogeneous disloca-
tion distribution and, at the same time, the most
frequently cited source of long-range internal
stresses. However, whi 1 e dislocation pile-ups cer-
tainly play an important ro1e in materials which
exhi bi t pl anar slip such as 0( -brass or stainless
steels, they are a much less common feature in many
other materials, and they loose their importance to
a large degree in most materials once multiple slip
becomes dominant. The dislocation arrangements ob-
served in these latter cases range from(one-dimen-
sional) dislocation bundles and walls to three-
dimensional cell structures. This class of heteroge-
nous dislocation distribution is represented schema-
tical ly in Fig. 8c. In this case si gni f i cant long-
range internal stresses arise during deformation, as

Fig. 8. Schematic survey of dislocation distribu-
tions. After [35].
a) Regular Taylor lattice.
b) Dislocation pile-up.
c) Dislocation wall (or cell) structure.
d) Flexed dislocation sub-boundary cell l wall.
e) Dislocation glide through random obstacle array.

described in Sections 3.1 and 3.2. The sources of
these internal stresses have been identified as the
so-called interface dislocation Cl,4,191.
Jackson’s recent wor 36 (and the work of Peder-
sen et al. (203 ) deal in more détail with the
specific primary/secondary dislocation distributions
such as dislocation sheets (grids) wich are typical
of stage II tensile deformation in fcc single crys-
ta1s. These dislocation configurations fall also
into the category of Fig. 8c and have not been
considered here.

In contrast to the heterogeneous dislocation distri-

butions discussed so far (Figs. 8b, 8c) which are
typical of low-temperature deformation, the disloca-
tion cel l wal l s of the sub-boundar type (Fig. 8d)
represent another type o eterogeneous dislocation
distribution. Also in this case high local stresses
have been detected at or near the wa11s [371. The
sources of these internal stresses have been as-
cribed to the flexing of the walls under the action
of the applied stress [383 and to dynamic fluctua-
tions in the regularity of the subcell wall network
as dislocations are continuously emitted and built
in [371. While these processes are complex, a for-
mal description in terms of a composite model seems

possible.

The last case to be considered refers to dislocation
91 ide through a random array of obstacles (Fi g. 8e).
At first sight, one might expect a quasi -homoge-
neous dislocation distribution with negligible in-
ternal stresses. However, as first pointed out by
Orowan [39] in a discussion of the Bauschinger
effect, compare Sect. 4, the dislocations sample
locally varying inter-obstacle spacings which divide
the crystal into soft and hard regions which alter-
nate (with a small wavelength) compare also
refs. [35,40,411. Hence a formai similarity to a
markedly heterogeneous dislocation distribution
exists. The main difference is that in the latter
case the hard regions with the small inter-obstacle
spacings are localized in the dislocations walls and
separated from the soft regions which are localized
in the cell interiors, whereas in the case of the
random distribution the hard and the soft regions
are "intermingled".
Finally, some conclusions seem important. Regardless
of the details of the dislocation distribution,
internal stresses, defined in a broad sense and with
more or less long range, are bound to develop during
deformation in all practical cases encountered.
Hence, the mechanical behaviour, viewed macroscopi-
cally, will 1 be qualitatively similar in most cases.
In order to sort out differences with regard to
details, the actual dislocation distributions must
be studied carefully.

3.4 The effect of the degree of heterogeneity of the
dislocation distribution on the flow stress and
the elastic energy

In the fo110wing we compare in a simple model the
properties of a crystal containing a heterogeneous
dislocation distribution with that of a reference
crystal containing a homogeneous dislocation distri-
bution [14,35]. We denote the macroflow stress of
the crystal containing a heterogeneous dislocation
distribution by -t-het which we define according to
eq. (8b) and assume that the local flow stresses 7-C
and w are given by relations similar to eq. (4): 

c

where ec and P dénote the local dislocation den-
sities in the ce interiors and in the cell walls,
respectively. Then the mean dislocation density, p
can be expressed by a rule of mixtures as

The reference flow stress - of a crystal con-
taining a density p of di sl ocaf, ons which are dis-
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tributed homogeneously is given by the constant value

With eqs. (8b), (9) and (14) to (17) we obtain

Eq. (18) expresses the important fact that, for a

given mean dislocation density , the flow stress

het for a heterogeneous distri ution of the dislo-cations (for which &#x3E; P &#x3E; ? c hol ds) i s al ways
smaller than the flow stress hom for a homogeneous
dislocation distribution [1#. Taking the dif-
ference between ?,, and c as a measure of the
degree of heterogeneity of t e dislocation distribu-
tion we conclude that, with increasing heteroge-
neity, het will become increasingly smaller than
the constant reference stress hom..

These considerations lead to the macroscopic stress-
strain behaviours depicted schematically in Figs. 9a
and 9b for crystal s contai ni ng a homogeneous and a
heterogeneous dislocation distribution, repectively.
The macroscopic flow stresses -t- ho and - rCh 4 hom
are compared at a déformation at which tne mean
dislocation densities are the same i n both cases.
The corresponding elastic strain energy) densitiesare ^ /2G and ’fbet /2G  hom/2G. These "ma-
croscopic elastic strain energies are fully re-
coverabl e upon unloading, as indicated in Figs. 9a
and 9b.

Viewed microscopically, however, an important dis-
tinction must be made. In the case of the heteroge-

Fig. 9. Stress-strain behaviour and elastic strain
energies. After T14].
a) Macroscopic behaviour for homogeneous dislocation

distribution.
b) Macroscopic behaviour for heterogeneous disloca-

tion distribution.
c) Microscopic behaviour of walls and cell interiors

for heterogeneous dislocation distribution.

neous dislocation distribution, the local microsco-

pic stress-strain behaviours of the cell walls and
the cell interiors are as shown in Fig. 9c. The

microscopic,yain eneegy density under load is

given by (fwlr + f c Tc ) /2G. 1 nad dit ion, it must
be noted that, because of the long-range nternal
stresses, a stored elastic strain energy density

(f 1 + fc039403C4c2)/2G is retained upon unloading.Detaifed considerations [14J show that the sum of
these two energy terms is independent of the degree
of heterogeneity of the dislocation distributions andis in fact constant and equal to hom/2G.
In the simple model discussed, the following conclu-
sion can be drawn. The degree of heterogeneity of
the dislocation distribution affects primarily the
relative magnitudes of the recoverable and the
stored elastic strain energies (the sum remaining
constant). With increasing heterogeneity the stored
strain energy increases at the expense of the re-
coverable strain energy [14,353.
A final word is in place regarding the question
whether heterogeneous dislocation distributions are
low-energy dislocation structures with respect to
the stored energy (LEDS [42]) or not. The compo-
site model approach C141shows that while the
elastic strain energy of the dislocation distribu-
tion decreases with increasing heterogeneity in the
sense of LEDS, the residual elastic strain energy
arising from the increasing long-range internal
stresses increases in the sense of a high-energy
dislocation structure (HEDS). Thus, heterogeneous
dislocation distributions must be classified as
intermediate-energy dislocation structures (JEDS) in
this terminology. At the same time, it must be
emphasized that energetic considerations should
preferably refer to the stress-applied state which
is characteristic of the deformation process [141.

4. CYCLIC DEFORMATION

4.1 The composite model of cyclic plasticity

The representation of the "hypothetical" stress-
strain behaviour of a two-component composite illus-
trated in Fig. 5 can be extended easily to the case
of reverse loading, as shown in Fig. 10. Based on
the microscopic behaviour of the components
(Fig. 10a), the macroscopic behaviour of the compo-
site (Fig. lOb) is obtained under the assumption
that no significant microstructural changes occur
during forward and reverse straining. This as-

sumption is approximately ful f i 11 ed in cycl i c sa-
turation. The cyclic hysteresis curve obtained in
Fig. lOb exhibits the property of kinematic

hardening in association with a Bauschinger effect,
i.e. a 1 oweri ng of the el asti c 1 i mi t after a rever-
sal of the sense of deformation [431. The dashed
"virgin" yielding curve illustrates the yielding of
the composite which is considered to be i ni ti al ly
free of (long-range) internal stresses. Under the
conditions stated, the cyclic hysteresis curve is
related uniquely to the virgin monotonie yielding
curve and can be obtained from the latter by multi-
plication of the stresses and the strains by a

factor of two. Materials obeying this rule are said
to exhibit Masing behaviour [28].
Fig. lOb refers to thé case where the (plastic)
strain amplitude is so large that the hard component
yields plastically. In general, two cases must be
considered in the case of a two-component composite,
as illustrated in Figs. lla and llb ci 191. When
!:t Tl/E, where E is Young’s modulus, a slim

sharply pointed hysteresis "loop", characteristic of
Cyclic microplasticity is obtained (Fig, lla),
whereas for larger amplitudes (e. t &#x3E; 6-1/E) the hy-
steresis loop assumes the "more rounded" shape cha-
racteristic of cyclic macroplasticity (Fi g. llb).
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Fig. 10. Cyclic stress-strain behaviour of a two-
component composite. After rl9l.
a) Microscopic behaviour of the components.
b) Macroscopic behaviour of the composite.

4.2 Permanent softening

In the case of cyclic microplasticity, as defined
above, the hysteresis loop exhibits the phenomenon
of so-called permanent softening. When the compres-
sive deformation is plotted fin the first quadrant by
plotting the magnitude of the stresses against the
cummulative strain, the stress in compression lies
below the extrapolated branch of the tensile defor-
mati on by a constant amount 6U’, . A more detailed
considération shows that, expressed as a shear

stress 6"t"p as in eq. (11), the permanent softening
is: ’

Here ÔFC2 is the long-range internal back stress in
the soft components 2, frequently al so referred to
as the mean stress £20,30,413. This relationship
has prôved very val uabl e i n the work of Brown and
Stobbs [30] on dispersion-hardened copper single
crystals which exhibit a very marked permanent sof-
teni ng and where the permanent sof teni ng fry has
been found to be related intimately to the ong-
range internal stresses. On the other hand, the
absence of permanent softening in the case of
single-phase materials does not justify the conclu-
sion that long-range internal stresses are insigni-
ficant. Rather, the situation then can be similar to

Fig. 11. Cyclic hysteresis "loops" characteristic of
cyclic micro- and cyclic macroplasticity.
a) Cyclic microplasticity with permanent softening.
b) Cyclic macroplasticity without permanent soften-

ing.

that shown in Figs. 10 and llb, and in this case of
cyclic macroplasticity, the long-range internal
stresses are very significant indeed and in fact so
large that the hard components 1, i.e. the disloca-
tion walls, yield under the combined action of the
applied and the forward internal stress AT1’ com-

pare eqs. (12) and (13).

4.3 Application of the composite model to the cyclic
plasticity of fatigued copper single crystals

Several authors have analyzed the cyclic plasticity
of fatigued metal s in terms of différent types of
composite models [18,19,21-23). The present author
has applied the simple concepts outlined in Sec-
tions 4.1 and 4.2 in order to model the cyclic plas-
ticity of the matrix and of the PSB wall structures
in copper single crystals fatigued into cyclic satu-
ration [1,18,193. The hysteresis loop of the matrix
was found to be of the type illustrated in Fig. lla,
suggesting that in the range of cyclic microplasti-
city the dipolar veins act as hard undeformable
régions. On the other hand, the hysteresis loop of
the PSB wall structure was concluded to be approxi-
mated well by a loop characteristic of cyclic macro-
pl as ti c i ty as in Fig. llb, implying that the wal 1 s
yield plastically. The hysteresis loops obtained in
these studies were necessarily polygons characteris-
tic of the simple two-component composite model
used. In the following the model will be extended in
order to analyze a particularly simple case of a
hysteresis curve of a fatigued copper crystal.

The example chosen refers to the hysteresis curve of
a copper single crystal fatigued into cyclic satura-
tion at room temperature_lt a plastic shear strain
amplitude ip1 = 7.5 - 10 with a saturation shear
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stress amplitude roc = 29.8 MPa [441. At this

particular strain amplitude the dislocation micro-
structure is completely deprived of the matrix and
consists exclusively of the PSB wall struc-
ture [18,19,24,44]. Fig. 12 shows the hysteresis
loop in a plot of shear stress’t versus plastic
shear strain. 1. It is clear that in order to
model such a smobthly curved hysteresis loop satis-
factorily, a composite model with more than two
components is required. We therefore,al l ow for a
spectrum of local flow stresses U7 in the walls
and c in the channel s, respectively. In the pre-
sent case, this approach is considered to be adapted
better to the basically two-component nature of the
dislocation wal l structure than the use of a proba-
bility density function as in related models of

(polycrystal) cyclic plastici ty [22,23].
We assume that the hysteresis loop obeys Masing
behaviour. Then the shear stress, measured from the

tip of the loop, is equal to 2’"t We denote the
volume fraction of material that is deforming
plastically at a particular stress level by
f 1 - fi (2*0. It is then easy to show that
(tor r = 1) i n a pl ot of T versus el las i n

Fig. 12, the slope at a particular value of fpl
(or’C) is given by

Hence

Fig. 12. Hystérésis curve 01 copper single crystalfatigued at ipi = 7.5 - 10 into cyclic saturation[18,44]. p

Thus, if fp1(203C4) is known, the hystérésis loop is
obtained dry intégration of eq. (20). On the other
hand, for any given loop, fpl 1 can be determined
readily by a graphical method according to eq. (21).
In our case, f i is composed of two contributions,
namely f ’ f rom the channel s and f 1 w from the
walls:

Fig. 13 illustrâtes the model. As the stress -is
increased (in tension or in compression), measured
from the tips of the hystérésis loop, frifand itscomponents fp1,c and f ) increase as a function
of 2’T as 1n#di’cated. ri’thé fonctions f and
f w are separated sufficiently along thé stressaxis, then the résultant curve f i should exhibit
two points of inflection. Note tnat, in the simple
two-component composite model (Sections 4.1,4.2),
the functions f 1 c and fp1,w woul d be step-
functions with a jumt) fr2m zero’to fc and fw at the
discrete stress values 2 zc and 2, respectively.

The result of the evaluation of the hysteresis loop
shown in Fig. 12 al ong these 1 i nes is shown in
Fig. 14. The rather big scatter of the data points
i n the range 2C s 35 MPa i s due to the inaccuracy
of the evaluation of the very steep slope in this
stress range. Nonetheless, the curve drawn through
the data points exhibits clearly the features expec-
ted according to the model with one inflection point
at 2Tc?35 MPa and another one at 2’t::.: 48 MPa. In
our model, the second inflection point denotes
roughly that external stress level at which the
weakest walls begin to yield plastically. Hence the
fact that such an inflection point exists provides
further évidence that the wal 1 s yi el d pl asti cal ly
and that the Eshelby factor r must be close to one,
compare Section 3.1. One might expect naively that
the second inflection point can be anticipated by
more inspection of the hysteresis loop. However, the
hysteresis loop displays no discontinuity except at
the tips. At best, it can be stated that the stress
level at which the second inflection point appears
is close to the point of intersection of the extra-
pol ated curves that approximate the ascending and
the almost horizontal parts of the curve,
cf. Fig. 12.

Fig. 13. Model showing how the volume fraction fplof plastically deforming material increases as a
function of increasing stress level.

The detailed evaluation is performed as follows. The
curve extending up to 2U7= 45 MPa is considered to

represent essentially only the function fpl c. It is
assumed that the value of f 1 obtained by tne extra-
polation of this curve up tu the saturation stress
level 2 Ts is identical with fc. A value of

fc -- 0.87 i s obtained. The functi on fp1,w i s found
by subtracti ng the extrapol ated curve fp1,c from
f . We note in passing that the shape of t E curvefp1,c correlates rather well with the curve obtained
f-ro1ii the distribution of the bowing stresses (ne-
cessary to drive the screw segments along the chan-
nels) based on the variations of the channel
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wi dths dc [19]. Next, a mean val ue 2 ’t’c&#x3E; i s defi-
ned somewhat arbi trari ly for f 1 = fc/2. This
procédure yi el ds c&#x3E; ~ 18 MPa. I order to obtain
the correspondi n9 mean value w&#x3E;, eq. (8b) ils
sol ved at the saturati on stress 1 eve‘l ’Tr = rf for
w&#x3E;, using the previ 2,usly found values fc,
fw ; 1-fc and ri c’&#x3E; for 7"": . Thi s 1 eads to a val ue
w&#x3E; ~ 109 MPa. It shou18 be noted tha t, i n the
présent évaluation, c&#x3E; and £r8p consist not

Fig. 14. Evaluation of the hysteresis curve shown in
Fig. 12 according to the model illustrated in
Fig. 13. A value of G = 42000 MPa was used.

only of the dominant athermal component but contain
also a (much smaller) thermal component.

The hysteresis curve in Fig. 12 is now well

characterized by f = 0.87 (0.9), fw = 0.13 (0.1),

c&#x3E; MPa). The values in brackets are listed for

comparison. They were obtained previously by combi-
ning the results of TEM observations with the simple
two-component composite model and by making use only
of the saturation stress value [191but not of the
actual hysteresis curve shape as was done here. The
good agreement between the results of these two
independent approaches is very gratifying. It is
clear then that the next step should be to extend
the present monocrystal model to polycrystals.

5. CONCLUDING REMARKS

A description has been given of the monotonic and
cyclic deformation behaviour of crystals containing
heterogeneous distributions of dislocations. It has
been shown that the composite model approach posses-
ses distinct advantages compared to models which
attempt to consider a number of individual disloca-
tion mechanisms. In particular, the straight-forward
interpretation of long-range internal stresses and
the applicability to reverse loading are noteworthy.
As they stand, the composite models provide good
descriptions as a first order approximation. With
further refinements, it should be possible to widen
considerably the scope of applicability of the com-
posite models.
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