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Résumé. — Les propriétés mécaniques de composites de carbone a fibres courtes ont été étudiées
expérimentalement en relation avec leurs propriétés électriques dans les 3 cas suivants : 1) fibres dans une
matrice epoxy rigide ; 2) fibres dans un gel bien formé ; 3) fibres sédimentant dans un liquide visqueux. Bien
qu’il n’y ait pas de corrélation précise entre le seuil de percolation électrique et ’augmentation continue du
module élastique avec la concentration de fibres, on peut voir une relation de plus en plus proche entre ces
deux notions lorsqu’on passe de la situation 1 a 3, c’est-a-dire quand I’influence de la matrice décroit. Une
discussion portant sur la relation avec les problémes d’encheveétrements et sur la percolation mécanique est
présentée.

Abstract. — The mechanical properties of random short carbon fiber composites have been studied
experimentally in relation with the electrical properties (continuity) in three different states : 1) fibers in a hard
expoxyde matrix, 2) fibers in a well formed gel, 3) fibers sediment in a viscous liquid. Although there is no -
precise correlation between the electrical percolation threshold and the continuous increase of elastic modulus
with fiber concentration, the variation of linear elastic properties can be seen to be more and more related to
the connectivity (and possibly entanglement) transition when going from state 1 to 3, i.e. as the influence of the
matrix decreases. A related discussion dealing with entanglement properties and mechanical percolation is

presented.

1. Introduction.

Studies of synthetic fiber composites have undergone
important developments in the last two decades
associated with the fast increase of their applications.
On the theoretical level, methods initially introduced
to describe the electric properties of composite
mixtures have been applied with some success to
these materials : homogeneization techniques (for
long fiber oriented composites), self-consistent
methods, bounds [1]. These methods, in order to
give any valuable information, need to assume
periodicity or, at least, regularity in the packing of
fibers which is generally the case in long fibers
composites. This is clearly not the case in chopped
fiber composites made of a tridimensional random
and tenuous net of entangled fibers. This class of
materials has undergone important recent develop-

(*) A detailed presentation can be found in J. Vareille
These 3° cycle, Paris VI (1986).

(**) Permanent address: ENSIETA, rue F. Verny,
29240 Brest Naval, France.

ments in the fabrication of sheet molding com-
pounds. They can be processed and can be prepared
at low cost and involve large concentrations of
fibers. We will consider only the limit of low
concentration of short fibers. Another application
which has stimulated fundamental research on ran-
dom packings of fibers [2] is the fabrication of
videodiscs. In particular, around the concentration
where the fibers start forming a continuous structure
(percolation threshold), there are singular geometric
fluctuations of statistical origin which add up to
possible heterogeneities created in the preparation.

In this article we describe a series of mechanical
experiments involving a random array of conductive
graphite fibers :

— the first experiments use fibers contained in an
epoxyde matrix. The results are compared with a
joint study of electrical properties of the same
materials by Carmona et al. [3]. However the matrix
is too « hard » to allow for the observation of any
effect related to the continuity of the stack of fibers,

— the second set of experiments uses fibers
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contained in a well-formed polyacrylamide soft gel.
There is indication of nonlinear variation of the
elastic modulus in the range of fiber concentration
where electrical percolation takes place,

— finally, we consider a sediment bed made of
entangled fibers which have sedimented on the
bottom of a cylindrical vessel starting from an
initially stirred suspension of fibers.

In the experiments, we can vary the length L of
the initially monodisperse fibers as well as the
concentration (in the two first sets of experiments).
However these parameters are insufficient to fully
characterize the entanglements which should depend
on the fiber-fiber and fiber-matrix interface, on the
fluid in which the fibers are initially mixed (initial
viscosity) and on the characteristics of the flow (as is
also well-known for a polymer fiber processing). The
present results should be considered as preliminary
and the analysis suggestive of possible approaches of
the mechanics of such heterogeneous packings.

Section 2 contains a discussion of the preparation
of the three classes of samples. In section 3 to 5 the
results on the experiments are presented and discus-
sed. Percolation, which has been very effective to
describe the «non homogeneizable » electrical
properties of composites near certain concentration
thresholds, is reviewed in the appendix.

2. Preparation and structure analysis.

2.1 SAMPLE PREPARATION.

2.1.1 Fiber + resin. — We have used chopped long
bundles of 8 um diameter graphite fibers made by
Carbone-Lorraine using an array of parallel razor
blades which could produce monodisperse fibers of
length L varying between 1.1 and 9.8 mm. The
matrix was an epoxyde resin polymerizable at room
temperature. The components were intimately mixed
and then moulded in teflon containers. The reaction
of polyaddition took place at a regulated tempera-
ture (55°C) under nitrogen atmosphere. After
polymerization, samples were cut on a milling
machine in the form of parallelepipeds.

2.1.2 Fibers + gels. — We have used the same kind
of fibers as above (L = 1.1 mm). The matrix was a
polyacrylamide gel obtained by copolymerization
of mono- and bisacrylamide in the presence of an
activator (potassium persulfate) and of a basic
accelerator of reaction (tetramethyldiamine) [4].
The components were introduced in polystyrene
molds of size 50 x 50 x 10 mm or in cylindrical tubes
of glass (L = 50 mm, width 11 mm). The compo-

nents were permanently stirred in order to maintain -

a uniform concentration, as checked visually, up to
formation of the gel. The gels were subsequently
taken out of the mold and cut into parallelepipedic
(15x 10 x 10 mm typically) or cylindrical shape
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respectively. As no chemical coating of the fibers
was used, these are simply held within the gel.

2.1.3 Problems in sample preparations. — We have
not been able to prepare homogeneous samples with
individual fibers when the concentration was too
large (typically @ =1 % for L = 3 mm). For larger
concentrations, the fibers aggregated in oriented
bundles or in pin-cushions. This also led to appreci-
able breaking of the fibers and to a final polydisperse
distribution of fiber lengths (up to 80 % of broken
fibers).

2.2 ON THE RANDOM PACKING OF FIBERS. — Even
in the simplest case of the packing of monodisperse
spheres, there is a large number of possible packed
states characterized by their filling factor (1 — & ;
where @ is the porosity), average number of contacts
(or coordinance), and short range order charac-
terized by radial (and angular for elongated objects)
correlation function. These states depend on the
packing conditions, on the subsequent cycles of
pressure, on the interfacial conditions as charac-
terized by the roughness and the Coulomb limit
friction angle (between normal and tangential com-
ponent of forces). . ,

A powerful approach for the packing of non space
filling objects like fibers (spheres are space filling)
uses the concept of excluded volume introduced by
Onsager for the isotropic-nematic transition of long
rigid molecules (e.g. Tobacco Mosaic Virus) [5]. It is
defined as the volume in which the centre of an
object must lay in order for it to overlap a second
fixed object averaged overall possible relative orien-

. tations, and can be obtained for a variety of geomet-

ries by classical theorems of Integral Geometry [6].

In the case of rods of length L and radius r
interacting as hard core objects randomly oriented in
space, it is equal to :

Ve =7L?R +0(LR?).

In Onsager thermodynamic treatment, V., enters
as a second order correction in a virial expansion of
the free energy. There is a first order transition to a
Nematic with a finite long range order in the
orientations for a critical value of the number of
fibers per unit volume such that :

N Ve = Const .

Note that this concentration is very small (when
R/L <1) compared to that for packing. More
recently, the same concept has been applied to the
determination of the percolation threshold of con-
ducting objects [2].

The quantity N,V can be understood as an
average number of contacts per object which is
known to be nearly constant (quasi-invariant) for
various bond percolation problems and which is such
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that N, V., ~ 1.4 in the particular case of the
percolation threshold of long rods. This result was
confirmed on various numerical experiments which
gave the conjected dependence of N, in R™! L2,
or the critical volume fraction @, ~ No,(LR? 7) as
&, ~14(R/L). _

The existence of various thresholds given by the
same dimensionless form shows the multiplicity of
macroscopic configurations of the packing with an
ordered (crystalline) phase and a multiplicity of
metastable entangled (glassy) phases.

We may expect that the random lattice of rods is
not rigid above the concentration N, but only above
a higher entanglement threshold about which we can
only formulate a few conjectures :

we can assume that the only difference between
this higher threshold and the continuity one would
be in the larger number of contacts needed to reach
rigidity. If we let fibers fall one after the other on the
top of a sedimenting bed (see 3.3) without reorgan-
isation of the packing, we may expect each new fiber
to stop when it has established a number of contacts
corresponding to the nature of these contacts. How-
ever the importance of the quality or nature of
contacts (e.g. existence and importance of friction)
is of the uttermost relevance : in stabilizing the
glassy phase and in determining the critical volume
fraction @.. Indeed, the number of contacts N, op Vex
must take into account the number of degrees of
freedom blocked by a contact.

3. Mechanical studies of composites.

3.1 RESIN + FIBERS. — The mechanical study was
carried out in parallel with an electrical study of the
same system initiated by Carmona et al. [3]. We will
first review briefly these electrical studies and will
present our mechanical results.

— Electrical results.

A series of samples having a given fiber length L
shows an electrical percolation threshold as the
value of the concentration of fibers exceeds a critical
value @ (L). The properties of the transition from
the insulating state — insulating epoxyde matrix —
to a conducting one are recalled in the appendix.

The results are given in figure 8 as a function of
the ratio L/d where d is the diameter of the rod. On
the same plot we have indicated the results of
numerical simulations by Balberg and Binenbaum [2]
on randomly oriented cylinders in all directions of
space and those of Carmona [3] using only cylinders
along 3 orthogonal directions. The slope — 1 is that
deduced from the excluded volume argument given
in the previous chapter. The experiments only
qualitatively agree with this fit. This is probably
indicative of the fact that, as the length of the fibers
changes, the action of the mixing may lead to
different packings. However there is a clear indica-
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tion of an electrical percolation behaviour. The
value of the threshold being strongly related to the
entanglements produced during the mixing.

— Mechanical results.

We have submitted the samples to compression,
traction and flexion; we have also studied the
impact on strength and relaxation characteristics.
The last experiments did not show any significant
variation in amplitude when & varies, suggesting
that the mechanical behaviour is always governed by
that of the matrix. We will only consider the
traction-compression results. In figure 1a and b the
stress-strain relation given on two samples of the
same composition (@ = 0.3 % ; average length of
fibers (L) = 1.1 mm). In the traction experiment
there is an appreciable intermediate linear regime
which was used for the determination of the Young’s
modulus. Beyond the maximum stress, a domain of
plastic deformation is observed with striction and,
finally, ductile rupture. The striction becomes more
pronounced as the fiber concentration decreases.

On compression curves, a simple linear behaviour
is observed from the origin on. The rupture takes
place after a long domain of plastic deformation.
The order of magnitude of the modulus is large
compared to that of the second series of experiments
with a gel matrix, indicating that the direct contri-
bution of the fiber lattice is small with respect to that
due to the ¢poxyde and to the gel-epoxyde interac-
tion.

In figure 3, we have plotted the elasticity results
for both compression and traction as a function of
the fiber concentration for the same set of fibers as
in figure 2. The crosses give averages and the
squares give a value obtained by extensometric
method. The upper and lower curves are the Voigt
and Reuss first order bounds (Hashin [1]) which
correspond to series and parallel arrangments of the
phases.

There is no indication of anomalies around the
volume fraction @ = 1.5% where the electrical
measurements for the same length £ = 1.1 mm of
fibers indicate a percolating transition to a conduct-
ing state. This is not surprising because of the small
rigidity of the structure of fibers which does not
contribute much to the total rigidity. However, we
have observed some qualitative changes of the non
linear mechanical properties and as & varies across
this range : as the concentration of fibers increases
from a few percent, rupture turns from a ductile to a
brittle type.

3.2 GEL + FIBERS. — We are dealing here with a
well formed gel well above gelation threshold where
there is a much larger contrast between both phases.
Consequently we expect effects related to the
change in the geometry of the fiber assembly with
the concentration.
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Fig. 1. — Typical stress-strain relation for traction and compression of an epoxyde matrix reinforced with 0.3 % of short

carbon fibers.
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Fig. 2. — Evolution of the Young modulus for compression
of an epoxyde matrix charged with short carbon fibers.
The abscissa is the volume concentration of fibers. Let us
note that no singular behaviour is visible around the
percolation threshold (1.5 %).

In order to be able to measure the weak elasticity
of these samples (10~* N/m?) we have constructed
an automatic elasticity-micropress mounted on a
scale which could be programmed in displacement
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Fig. 3. — Same as figure 2 for traction.

amplitude to give a complete stress-strain curves.
This press will be described in an independent article
(Vareille [7]).

Preliminary experiments on pure gels have shown
that :

— it is not necessary to keep the gel in water
solution during the experiment. A whole exper-
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imental curve takes only 3 min. A typical relaxation
associated with the motion of water out of the gel
becomes perceptible typically after 15 min,

— deformation takes place at constant volume,

— on pure gels, even for large deformations
(more as 50 %) there is only a weak hysteresis,

— similar features are obtained on gel-fibers
composites as for pure gels apart from the existence
of a long hysteresis.

Figure 4 gives a stress strain relation for a compo-
site whose physical parameters are @ = 1.5 %,
L = 1.1 mm. The stress is defined as the ratio of the
applied force to the surface at this stage of compres-
sion. The surface is calculated by expressing that the
gel is incompressible (Poisson ratio v = 1/2) which
was verified directly. On the horizontal axis of the
figure 4 we have plotted In (1 + €) instead of the
strain e. These two variations are equivalent for
small ¢ but the former one is found to give a much
larger range of linear variation with stress for pure
gels (Treloar [8] ; this point is discussed in detail in
Vareille’s thesis [7]).

0,007 Nfment

Stress o

| 0.0035 ¥/mm™

| //.[
'F_’? < oa

Fig. 4. — Compression of a short-fiber-armed gel (polyac-
rylamide) (1.5 % of fibers). I : Non-linear behaviour due
to geometrical imperfection of the sample. II: Linear
stress-strain domain over which the elastic constant is
determined. III: Damping of the gel due to too large
stresses. This results in an hysteretic return to the origin.

Strain & 1n(1+€)

The load curve shows 3 regimes :

— region I in which there is a macroscopic
readjustment of the sample geometry,
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— region II is a reversible line domain which we
have used to calculate the Young’s modulus. The
domain of linearity decreases as the concentration of
fibers increases,

— region III leads to an hysteretic degradation of
the sample which appears only on gel-fibers com-
posites.

We have measured the mechanical properties of
32 samples of different concentrations. Afterwards,
we have also measured the electrical conductance of
a fraction of them. Figure 5 shows a continuous
increase of the average compression modulus with
@®. The ratio of the values of the moduli for

ang o
Modulus
Py
3 +
S0000]. |
. o
I' .
: +
+ o
10000 ° ° .
so00} o, + |
0 . | . . .
° dfr'nfei 'fﬁrzsﬂn’dz' Volume Fraction 3 F z

Fig. 5. — For polyacrylamide gels armed with short carbon
fibers, the Young modulus is shown versus the volume
concentration of fibers. The dashed line shows the ex-
pected percolation threshold.

@ =0 and 3.5 % is of the order of 20. We have also
indicated the electrical threshold obtained in epox-
yde-fiber composites of same fiber’s length. An
additional piece of information is given by the
fluctuations in the values of modulus obtained for
the same concentration. It also increases with con-
centration with an indication of maximum around
1.5 %. The final observation is in figure 6, where we
have plotted the Young’s modulus versus resistivity
on 8samples. The 3 circle points correspond to
different samples with the same nominal concen-
tration. Despite the dispersion of data, there is a
good correlation between the electrical and mechani-
cal data suggesting that the same fluctuations in the
fiber packing are responsible for an increase of
elastic modulus and decrease of resistivity (and vice
versa).
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Fig. 6. — Standard mean deviation of the measured values
of the Young modulus from figure 5.

It is rather tempting to relate the above results to a
percolation transition of the mechanical system. The
non linear increase of Young modulus which is
clearly visible above @ = 1 % could indicate a cross-
over from a regime dominated by the modulus of the
gel (# =0) to one where the formation of a
continuous fiber network causes the faster increase
of modulus. The maximum in the dispersion of data
could be related to a finite size effect. In percolation
problems, there is a correlation length which charac-
terizes the size of the representative elementary
volume of the composite and which should diverge
(typically as L|(® — @.)/ ¢c|—0.89 in 3 dimensions)
around percolation threshold &.. An estimate of this
length indicates that fluctuations of composition of
purely statistical origin due to the finite size
(Lo ~ 1 cm) of the sample should have a maximum
over a range of 30 % of @_ around threshold ; this is
not unreasonable considering our results. There are
probably other fluctuations due to packing
heterogeneities which also give rise to local fluctua-
tions in the geometry of the fibers and, hence,
reinforce the data dispersion.

The correlation between the evolution of the
Young modulus and that of the conductivity indi-
cates that the increase in the number of contact
points between fibers which controls the conductivity
also controls the elasticity. This does not necessarily
imply a correspondance between the electrical
threshold and a mechanical one smeared by the
effect of the finite gel elasticity (as in the discussion
of formula A.5 in the appendix for the corresponding
electrical problem). One can also think that there is
a mechanical threshold for soft to hard material
which would take place for higher concentrations

10 - 1
+*
+ o
(-]
4
+
10 e
0 10 400 Resistivity

Fig. 7. — Young modulus versus resistivity in a Log-Log
plot for short fibers armed gels. The concentration in
fibers varies from O (right hand side of the plot) to 3.5 %
(left). The three circles correspond to a concentration of
1.5 % (expected percolation threshold). Let us note that,
however large is the dispersion of data in figure 6, the
elastic properties are very well correlated to the electrical
ones.

than measured electrically and corresponding to a
limit of more strongly entangled fibers. The increase
seen in figure 5 would correspond to a precursory
behaviour to be compared with the increase of the
elasticity of soft plus hard spheres below a percola-
tion threshold of the hard objects (see formula A.2).
A somewhat similar effect is found in the work of
Feng and Sen[9] in which they considered an
incompletely connected triangular lattice of springs
(central forces) without any bond-bending elasticity
(see Appendix). If we consider that, at the electrical
continuity threshold of the lattice, there is some
freedom of rotation of two fibers in contact, rigidity
is achieved at a higher threshold corresponding to a
larger average number of contacts between fibers.
Using an excluded volume argument developped in
chapter 2.1, this would suggest a threshold for
entangled fibers of the order of 2 to 3 times the
electrical one if no further correlation between the
orientations of neighbouring fibers is created by the
mixing and when contacts are created. This seems to
be the case at least in the case of sedimentating
fibers (discussed below).

3.3 SETTLING-SEDIMENTING-FIBERS. — In order to
isolate the effect of the entangled fibers from the
matrix, we have studied the sediment formed in
liquids whose density was adjustable and smaller
than that of the fibers. By measuring the height of
the sediment we deduce the volume fraction as a
fonction of the length of the fibers. We have plotted
our results obtained on sediments in water with
different fiber lengths on the same plot of figure 8 as
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Fig. 8. — Percolation thresholds of randomly distribution
fibers, for various aspect ratio (i.e. length over radius).
These results have been obtained by very different
methods : A Sedimentation limit ; @ Experimental points
obtained from araldite/fibers composites ; + Numerical
simulation of Balberg et al. [2] ; O Numerical simulation
of Boissonade, Barreau, Carmona (3) ; * Numerical simu-
lation of Vold [10] Sedimentation limit ; —e— from refer-
ence [2]: ¢, oc (L/r)!; ----from reference [2"]:
©.=2.65(L/r) .

the electrical threshold value determined on epoxyde
composites. For an aspect ratio of 102, the concentra-
tion of the sediment @, ~ 1.5 x 1072 is of the same
order as the critical concentration given by the
electrical measurements and the calculation. The
variation of @ with the fiber length is comparable to
that for the previous situations. This indicates that
entanglement thresholds and electrical ones are
closely related, as suggested in the discussion of 3.2).
The higher values for sediment also suggest that a
larger average number of contacts is involved in this
later problem as expected. As a rough approxi-
mation, we can use the analysis of 2.2 to estimate an
entangled threshold corresponding to an average of
4-5 contacts per fiber so as to ensure rigidity.
However, once we have reached the connectivity
threshold we have an « infinite » cluster of fibers.
The addition of more fibers to the sample cannot be
done in a neutral way. Interactions of new fibers
with others already present, will introduce large
correlations in the distribution and orientation of
fibers, over large scales of distance (excluded volume
effect). Therefore in any real system, we will have a
partial ordering of bunches of fibers in contact. Such
correlations also appears below threshold @, but
are small and localized. Experimentally, they appear
as negligible, unless other physical processes exist
which « memorize » the history of the array, like for
example due to the high viscosity of the embedding
medium.

In a more speculative way, we might even relate
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the increase in the scatter of the data (Fig. 5) around
&_ as the sign of a transition towards a correlated
phase which would exist above @ (see Appendix).

We have also plotted numerical results obtained
by Vold [10] in 1959 on the sedimentation of rods
made out of a chain of aligned spheres in contact. If
one corrects for the volume fraction of spheres in
such a rod, one finds again a very good agreement
with the percolation variation of & (L) in percola-
tion problem.

4. Conclusion and openings.

The sequence of experiments described above is
only preliminary and suggests the need for more
detailed material studies to ascertain the connection
between the random geometry of short fiber compo-
sites and their mechanical properties. The relation
between the electrical continuity and the problem of
entanglements deserves a full study. It would also be
of large experimental importance to be able to
characterize (and if possible to control) directly the
geometry of the fiber arrangement.

On the practical side, the existence of an electrical
percolation threshold at low fiber concentration (a
few percent) is of some importance (conducting
polymers, antistatic materials). After drying, the
gel-fiber composites lead to fiber blocks extremely
light, conducting and which can be machined. For
such applications, one would probably need to shift
from hydrophilic gels like polyacrylamide used here,
to hydrophobic ones (polystyrene).

The problem of sediments made of entangled
fibers is also of basic and practical interest in
particular in relation with filtration processes. One
would like to control at the same time the permeabil-
ity of the array as well as the mechanical behaviour.
The former experiments can be done using a sensi-
tive differential « permeability meter » developed in
our laboratory [11], or in centrifugation experiments,
like those of Buscall [12], measuring the variation of
thickness of sediments with the centrifugal force,
should also give an indication on the percolation
behaviour of such entangled systems. It would be of
particular interest to see if the non-linear response
which was predicted in Doi and Kuzuu [13] work in
rigid polymeric rods, due to the increase of the
number of active contacts with applied pressure is
present in this problem.

Appendix.

The theory of percolation provides a description for
the singular properties of a random homogeneous
mixture made of elements of very different proper-
ties (conductors + insulators ; hard + soft materials)
around the concentration threshold where a contin-
ous phase first appears across the material.

In particular the conductivity of a composite
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mixture varies above the critical concentration
® = &, of conducting objects as

D-P 7t

a(¢)~al[_] (A1)

c

For sufficiently regular distributions, the exponent ¢
which describes the «rate » of increase of o (D)
from zero is independent of the dimension of space :

for d=3 t=2+0.1.

If the mixture is made of very good conductors
(superconductors) in concentration & and of poor
conductors, the conductance diverges as concentra-
tion threshold is approached from below as

P - @ ]_s (A2)

s 250

C

for
d=3 s5s~0.8

01(0,) is a constant of the order of the conductivity
of the good (poor) conductor.

If the mixture is made of a mixture of good and
poor conductors, the transition takes place around
the same value @®_ but with a smooth variation
between the conductivity characteristic of a super-
conductor-conductor mixture for low & (formula
(A.2)) and that of an insulator-conductor mixture
(formula (A.1)) above threshold. The range of
cross-over between the two regimes is given by

E=AD/D ~ (d,/0 )¢+ (A3)
The conductivity value at threshold is
C’(‘D)~U1("2/"1)‘/(IH)- (A.4)

The results can be summarized in a simple formula

o(®) =0, h'*IF(e/h1/+9)  (A5)

where
h=oy/0

F(x) is an homogeneous function of the variable
which is constructed in such a way that is should give
the above results (A.1) to (A.4) when 4, ¢ — 0, for
e>0 and ¢ <0.

The idea to apply electrical percolation to the
mechanical properties of heterogeneous materials
was first suggested by de Gennes [14] for the rheolo-
gy of the sol-gel transition [15]. It makes use of the
geometric correspondance of the statistical objects
in the two problems (a statistical distribution of
finite clusters below @_; a ramified and tortuous
continuous percolation lattice paths above D).
Using this geometrical analogy, it was suggested that
the continuous increase of elasticity above @, could
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be characterized by the same critical exponent ¢ as in
expression (A.1) for the conducting insulating mix-
ture problem. A correspondance was also established

between the critical increase of elasticity of three

dimensional mixtures of hard objects and soft ones
below the percolation threshold of the hard objects
and with the dielectric problem (formula (A.2)).
These correspondances were verified experimentally
on several classes of gels. However the above
« scalar elasticity » correspondance with the scalar
electrical percolation problem, has to be modified to
take into account the vector character of the dis-
placement and force fields (Webman [16], Roux and
Guyon [17]). New sets of critical exponents are
predicted. In particular the critical onset of elasticity
is determined by the critical exponent  ~ 4 instead
of ¢ in (A.1). The large value of the exponent is
related to the extreme softness of the lattice near
threshold due to easy angular deformation taking
place over a singular correlation length &~ L&~ %%
(A.6), which is the scale of the mesh size of the
tenous percolation lattice. 3

Only very few model experiments on three dimen-
sional model composite materials have attempted to
characterize the critical mechanical percolation be-
haviour. In particular the work of Deptuck et al. [18]
using weak sintered metals with a filling factor
®=1-p (p porosity) above @ ~10% have
measured both the electrical conductivity and elastic
moduli near threshold and found a critical behaviour
of both quantities with exponents ¢ = 2.15 + 0.25,
7 =3.8+0.5. We also considered Buscall [12] re-
sults on sediments made with clay particles or
polymer latex where the elastic bulk modulus is
calculated from the compression of the sediment
under centrifugation. From the dependence of the
volume fraction with centrifugal forces we have
obtained a critical mechanical exponent T ~ 3.6.
Both results suggest indeed that the « scalar » elastic-
ity does not apply to the system. On the other hand
the values are consistent with « vector » models on
lattices involving both compression and bond bend-
ing terms.

A last class of lattice models which may be
relevent to the present studies deals with objects in
contact, with only central force interaction and no
angular elasticity [9, 19]. They lead to a higher
threshold than the connectivity (or conductivity) one
because simple continuity is not enough to insure
rigidity. Similarly we may think that random uncon-
solidated packings of objects in contact may exhibit
a rigidity threshold larger than a connectivity one as
suggested in the present work.
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